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Abstract—A new efficient preamble-less short frame, called
Quasi-Cyclic Short Packet (QCSP), has been recently proposed
for the Internet of Things (IoT) deployment. It has demonstrated
its good performances in the process of detection, synchroniza-
tion, and error correction in an asynchronous Additive White
Gaussian Noise (AWGN) channel, with residual frequency offset,
and at a very low Signal-to-Noise Ratio (SNR). The detection
process uses the normalized score of a non-coherent frame
match filter to assess the presence of a frame or not. In this
paper, we improve the detection performance by combining non-
coherent detection with coherent detection. The proposed method
decreases the probability of miss-detection by two decades, for a
given probability of false alarm.

Index Terms—IoT, Short-packets, Coherent detection, Weight-
ing factor.

I. INTRODUCTION

Transmitting many short packets in a wide area Internet of
Things (IoT) network is a complex problem. In fact, when the
message length is small (temperature sensor sending data to
a base station for example), information exchange related to
signaling, synchronization, and identification represents a cost
of radio-spectrum utilization that alleviates resources for effec-
tive data transmission. This problem introduces a fundamental
change in massive IoT networks, leading to unsupervised
networks [1]. Moreover, the use of a preamble associated
with each frame to facilitate the detection and synchronization
tasks becomes also problematic since a significant part of the
bandwidth is wasted [2]. In [3]–[7], efficient methods for trans-
mitting and receiving short packets without preamble have
been demonstrated for positive SNR values (i.e., SNR greater
than 0 dB, typically), but not for very noisy environments.

Recently, a new preamble-free frame, called Quasi-cyclic
Short Packet (QCSP), has been proposed [8]. The QCSP
frame is based on the association of a Cyclic Code Shift
Keying (CCSK) modulation and a Non-Binary Forward Error
Control (NB-FEC) code. It is shown that the frame can be
reliably detected thanks to a simple non-coherent detection
algorithm based on the comparison between a cumulative score
function and a threshold value U0. In [9], another detection
method called a time-sliding window has been proposed which
replaces the frequency domain correlation with a time domain
correlation taking full advantage of the QCSP frame structure.
In [10] and [11], time, frequency, and phase synchronization
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methods are proposed and show their good performances for
the short-data packet transmission.

Moreover, the proposed method which is presented in [8]
is based on a theoretical Gaussian channel with a calibrated
level of noise and signal. In a real radio receiver, the amplitude
of the signal is subjected to an unknown multiplicative factor
due to the front end of the radio frequency stage in general,
and the behavior of the automatic gain control in particular.
Henceforth, the comparison of the score function with a fixed
threshold becomes sensitive to a scaling factor, leading either
to a huge number of false alarms when the multiplicative
factor is greater than expected, or to a vanishing probability
of detection when the multiplicative factor is lower than
expected. To mitigate this problem, the signal is normalized
by its energy, so the score function becomes independent of
a multiplicative factor affecting the input signal. However, the
drawback of this normalization is that the energy increased at a
frame arrival is flattened by the normalization. This increased
energy can’t be used anymore to help detection, which leads
to a sensitive reduction in detection performance (see section
II-B).

In this paper, we first propose to replace non-coherent
detection with a coherent detection method. This method is
based on the frequency domain searches on the successive
decoded symbols of a frame. Prior to this frequency search,
the decoded symbols are weighted according to their relia-
bility. This method is called Weighted Coherent Sum (WCS)
detection. The second contribution is to combine both non-
coherent detection and coherent detection techniques to further
improve detection. The performance analysis of the proposed
methods is performed as a trade-off between the probability
of miss-detection and the probability of false alarm.

The rest of the article is structured as follows. Section II
presents the QCSP communication system model and illus-
trates the problem statement of the article. Section III describes
the proposed enhancement of the detection method in detail.
The simulation results are summarized and analyzed in section
IV. Finally, the conclusion and perspectives are presented in
Section V.

II. DETECTION OF QCSP FRAMES

This section illustrates firstly the overall QCSP
communication chain. Then, it explains the Detection Error
Trade-off (DET) probabilities. Finally, it states the effect



of normalization on the detection performance proposed in [8].

A. QCSP Communication chain

The overall QCSP communication chain is shown in Fig.
1. Let us describe it in detail. In the following, the Galois
Field of order q = 2p, p ∈ N, is represented as GF(q). At the
transmitter side, a Non-Binary Error Correction Code (NB-
ECC) of coding rate Rc = K

N , encodes an input message M
of K GF(q) symbols (each symbol on p bits), to N GF(q)
symbols forming the codeword C. The considered NB-ECC
is Non-Binary Low-Density Parity-Check (NB-LDPC) since
they are efficient for small frame lengths. Consequently, the
output codeword is composed by the vector C of N elements
in GF(q), C = (cn)n=0,1,...,N−1. In the sequel, each element
of GF(q) is considered as an element in [0, q − 1] using its
binary representation. The CCSK modulation maps each GF
symbol cn of the codeword C to a circular shift of an initial
binary sequence P0 by cn positions. Note that the sequence P0

has good auto-correlation properties. In this paper, we study
only the case where the length of P0 length is set to q, defining
a modulation rate of Rm = p

q . The circularly cn-right-shifted
version of P0 is denoted Pcn , thus, Pcn = P0(i−cn mod q),
i = 0, 1, ..., q − 1.

Effective coding rate:  

Message M Codeword C CCSK Frame FCCSK

AWGN channel

Frame F

Studied function

Received data

Fig. 1. QCSP System Model.

The combination of the two rates, Rm and Rc, defines
the QCSP effective rate Reff = Kp

Nq . Consequently, the
CCSK frame FCCSK is the concatenation of N encoded
CCSK symbols i.e. FCCSK = (Pcn)n=0,1,...,N−1. Finally,
the QCSP frame F is obtained after applying Binary Phase
Shift Keying (BPSK) modulation. Moreover, to help the time
synchronization process [10], an additional modulation (called
Over-modulation) is used at the symbol level to generate
a known pattern of phase shift. As a result of the use
of over-modulation, we finally obtain the QCSP frame F
defined as F = ((−1)bnPcn)n=0,1,...,N−1, with the sequence
B = (bn)n=0,1,...,N−1 ∈ {0, 1} is a sequence with good auto-
correlation properties. Since we are focusing on the detection
process, the effect of over-modulation can be assumed as
fully mitigated at the receiver side, and thus, it is no more
considered in the rest of the paper.

The QCSP frame passes through a complex Additive White
Gaussian Noise (AWGN) channel N (0, σ2) of zero mean and
standard deviation σ =

√
10−SNR/10, where SNR represents

the signal-to-noise ratio Es/N0 of the transmission channel.

Carrier frequency errors are also considered, leading to a
frequency offset F Hz affecting the received frame. In Tc

seconds (duration of a chip), the frequency offset generates
a rotation TcF

2π radians between two consecutive chips. In the
sequel, a normalized frequency offset f0 = FTc is used.
This f0 generates a rotation of 2πf0q radians between two
chips separated by a symbol duration T = qTc. Note that
f0 can be bounded to the interval [−fm/2, fm/2] since the
detection process [8] uses a time-frequency decomposed grid
with a frequency resolution of fm. Typically, fm should verify
fm ≤ 1

2q so that, at maximum, there is less than half a rotation
between the first chip and the last chip of a given symbol. This
maximum rotation still allows the decoding of the symbols
with a limited degradation penalty. Finally, the initial phase
offset φ is unknown too and φ ∈ [0, 2π]. At the receiver side,
the kth term y(k) of the received frame Y can be expressed
as

y(k) = ej(2πf0k+φ)F(k) + z(k). (1)

for k = 0, 1, . . . , qN − 1. The additive term z(k) corresponds
to the noise injected by the channel.

At the reception time, the received data stream Y is taken
as a stream of N blocks Y = (yn)n=0,1,...,N−1, where the
nth bloc corresponds to the transmission of the nth symbols
of F . In other words, yn = (y(k))k=nq,nq+1,...,(n+1)q−1, or
directly, yn(l) = y(qn+ l), l = 0, 1, . . . , q − 1. According to
(1) The value of yn(l) is thus equal to

yn(l) = ej(2πf0(nq+l)+φ)P0(l − cn) + z(nq + l), (2)

The key to the detection method is obtaining a reliable
score function that takes high values when a QCSP frame is
presented and low values when the QCSP frame is absent.

Each received QCSP frame Y is demodulated by correlating
yn with each of the q possible shifted sequences Ps, s =
0, 1, ..., q− 1 to generate the vector Ln = (Ln(s))s=0,1,...,q−1

where the sth component is defined as

Ln(s) =

q−1∑
l=0

yn(l)Ps(l) (3)

The vector Ln is equal to the circular correlation of yn and
P0, i.e.,

Ln = yn ⋆ P0. (4)

where ⋆ denotes the circular correlation. This computation can
thus be done in the spectral domain as

Ln = F−1(F(yn)⊙F(P0)
∗), (5)

where the operator ⊙ denotes the element-wise (or Hadamard)
product of two vectors, and X∗ represents the vector obtained
by taking the conjugate of each component of X. The operators
F and F−1 represent the Fast Fourier Transform (FFT) and
its inverse (IFFT), respectively.

The maximum likelihood decision dn at the symbol is given
as

dn = argmax
s=0,1,...,q−1

{|Ln(s)|},
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Fig. 2. Illustration of the detection problem and the effect of the scaling factor on threshold non-normalized detection probabilities.

and the associated correlation value is denoted γn, and given
as

γn = Ln(dn). (6)

When the decision is correct (dn = cn), the expression of
γn = Ln(cn) can be determined thanks to (2) and (3) as (see
[8] for the details of the computation)

γn = ejϕej(2πqf0)nqA(f0) + Zn. (7)

with Zn corresponding to the sum of the q samples of noise,
i.e., a noise of variance qσ2, ϕ given as ϕ = φ+ πf0(q − 1)

and A(f0) = sin(πf0q)
q sin(πf0)

the attenuation factor depending on
f0 (A(f0) ≤ 1, with A(0) = 1). One can note that when
f0 = 0, (7) gives γn = ejφq + Zn. When f0 ̸= 0, in
the absence of noise, the vector γ = (γn)n=0,1,...,N−1 is a
pure sinusoidal signal with a frequency of qf0 (i.e. rotation
of 2πqf0 radian between two consecutive components). This
rotation prevents the coherent summation of the elements of
the vector γ. Therefore, the score function is obtained through
a detection filter S(Y) using incoherent summation, i.e., the
summation of absolute values of γn.

S(Y) =

N−1∑
n=0

|γn|. (8)

The detector can determine whether a frame is present or
not by comparing the value of the score function S(Y) with
a threshold U0 in order to know the DET probabilities, i.e.
probabilities of miss detection Pmd and false alarm Pfa. If the
value of the score function exceeds the threshold U0, the arrival
of a new frame is assumed. However, if the value of the score
function is lower than the threshold value, then the absence of
a new frame is assumed. This first method of detection [8] is
called the Incoherent Sum (IS) detection in the sequel.

Fig. 2(a) illustrates three different threshold values that
correspond to various probabilities of false alarm Pfa =
10−4, 10−6 and 10−10 versus the output of the correlation filter
over a Gaussian channel. It can be clearly inferred from Fig.
2(a) that the threshold value U0 allows a trade-off between
Pfa and Pmd. In fact, in a perfect detection, both should

be equal to zero to decide perfectly the presence or not of
a new frame. In practice, the high value of U0 decreases
Pfa but increases Pmd, while the low value of U0 has the
symmetrical effect. For example, at threshold value U0 = 1200
that corresponds to Pfa = 10−4, the probability of miss
detection is approximately Pmd = 10−4. This value increases
to Pmd = 5 × 10−3 for U0 corresponding to Pfa = 10−10.
Thus, the value of U0 is selected according to the system
requirements.

B. Problem statement

The IS detection method proposed in [8] is efficient. How-
ever, it suffers from a flaw when the signal is affected by an
unknown scaling factor. In fact, when the multiplicative factor
is lower than expected, the miss detection errors increase. Fig.
2(b) shows the impact of a multiplicative factor of the received
signal by a factor of 0.9. All the probability density functions
are shifted to the left and, for a fixed threshold value, Pmd

increases by two decades. Fig. 2(c) illustrates the increase
of false alarms for a multiplicative factor greater than 1. To
mitigate this problem, [9] proposes to normalize γn in (8) by
the norm ||yn|| of yn given by

∥yn∥ =

√√√√q−1∑
l=0

|yn(l)|2 (9)

to get the scaling factor invariant γ̄ given as

γ̄n =
γn

∥yn∥
(10)

Consequently, the new normalized score S̄(Y) is given as

S̄(Y) =

N−1∑
n=0

|γ̄n|. (11)

This method is called Normalized Incoherent Sum (NIS)
detection, since the summation is done on the module of |γ̄n|.

In the next section, we extend the NIS detection method
to a Weighted Coherent Sum (WCS) detection. Then, the



combination of the two methods is performed in order to
further improve the detection performance.

III. WEIGHTED COHERENT DETECTION

Let us first consider a Genius-Aided detector that knows
perfectly the frequency offset f0 and the N symbols cn of
the received frame. In this case, the optimal detection algo-
rithm can be performed coherently, which increases greatly
its performance. After describing the optimal Genius-Aided
detector, we show how to take into account the fact that the
transmitted symbols are unknown at the receiver side, but only
estimated [9]. Then, we show how the FFT allows testing, with
a low complexity cost, several frequency hypotheses in parallel
to mitigate the fact that f0 is also unknown. The resulting
detector is called ”Weighted Coherent Detection”. Finally, the
state-of-the-art detector [9] and the proposed WCS detector
are combined to further improve the detection performance.

A. Genius-Aided detector

Assuming that the receiver knows the exact value of f0, the
residual frequency offset that affects the received symbol (see
(1)) can be suppressed by multiplying y(k) by e−2jπf0k prior
to the computation of the Ln. In that case, by taking dn as
cn (known by the Genius), γn becomes equal to qe2jπφ+Zn,
with qe2jπφ the coherent sum on q terms of the initial phase
of the received signal and Zn a Gaussian noise of variance
qσ2 (the sum of q independent noise of variance σ2). The
Genius-Aided score ṠGA(Y ) is given as

ṠGA(Y ) = |
q−1∑
n=0

γ̄n|. (12)

During the coherent summation of the terms γ̄n, all the
signal terms are added coherently, while the noisy terms
are added incoherently. This leads to a high capacity to
discriminate the hypothesis about the arrival, or not, of a
frame.

B. CCSK Weighting factor

In this section, we will assume a Partially Genius-Aided
decoder (PGA-decoder) for which only f0 is known by the
receiver. In this case, the direct summation of the normalized
γ̄n values can be severely affected by the erroneous decision
taken at the symbol level. In fact, when dc ̸= cn, the amplitude
of γ̄n is high (at least, higher than |Ln(cn)|∥yn)∥) and the
phase is not correlated with the true phase of Ln(cn). At
low SNRs, where the detection method is a critical problem,
the coherent summation of the normalized γ̄n values gives a
detection performance significantly inferior to detection based
on the score function given in (8). To mitigate this problem,
we propose to weight the γ̄n by the reliability of the decision
dn before making the coherent summation. Our objective is
to assign low weight to the γ̄n associated with an unreliable
decision, and high weight otherwise. To do so, we use the αn

weight defined as

αn =
|γn| − |ϵn|

∥yn∥
, (13)
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Fig. 3. CCSK weighting factor, a) case 1: reliable, b) case 2: unreliable.

where |ϵn| is the second maximum correlation value defined
as

ϵn = max{|Ln(s)|, s = 0, 1, . . . , q − 1, i ̸= dn}. (14)

The derivation of this weighted factor is obtained both with
some mathematical arguments, not described here due to the
lack of space (e.g. in a glance, it can be shown that Prob(dc =
cn) grows in 1/(1+ae−bα), with a and b two constants), and
by empirical experimentation. The normalization factor ∥yn∥
of (13) is required to make the scaling factor αn invariant
to a scaling of the amplitude of the received frame Y . Fig.
3 justifies graphically the link between α and the reliability
of the decision dn. In the upper plot, |ϵn| ≪ |γn∥ and the
decision dn = 60 is thus reliable. In the bottom plot, the
correct decision is dn = 28 but since |ϵn| is very close to |γn|,
the correct decision could also be dn = 35 with a significant
probability.

The partially genius-aided score function ṠPGA(Y ) is thus
given as

ṠPGA(Y) = |
q−1∑
n=0

αnγ̄n|. (15)

In the following section, we will consider that the frequency
f0 is unknown.

C. Frequency Domain Searching

The frequency offset f0 is unknown. However, as explained
earlier in the paper, f0 is bounded between [−fm/2, fm/2]. It
is thus possible to split this interval with a quantization step fδ
small enough so that coherent summation can be applied over
the whole frame (more precisely, the whole vector γ̄), typically
fδ ≤ 1

4qN so that the residual frequency error generates less
than a quarter of rotation between γ0 and γN−1. The most
efficient way in testing all the hypotheses in parallel is to



compute the FFT Γ of the vector α · γ̄ = (αnγ̄n)n=0,1,...,N−1

with an FFT size L.
Let us study first the problem with almost ideal conditions,

i.e., no noise (Zn = 0, and no detection errors), γ̄n = γn and
αn = 1. Then, using the definition of the FFT of size L and
the value of γn given in (7), we get

|Γ(i)| = |
N−1∑
n=0

γne
−j2π in

L | (16)

= A(f0)q|
N−1∑
n=0

ej2πn(qf0−i/L)|. (17)

The maximum of |Γ| is thus obtained for i0 verifying qf0−
i0/L = 0. Taking into account that i0 is an integer value,
i0 is rounded as i0 = ⌊qf0L + 0.5⌋. Since by hypothesis,
f0 ∈ [−fm, fm], then i takes its values inside the set I =
J−qfmL, qfmLK, or, taking into account the L periodicity of
the FFT, i0 takes its value inside the set I = J0, qfmLK ∪
JL(1−qfm), L−1K. Finally, L should be high enough so that
the N(qf0 − i0/L) ≪ 1 in order for the summation of (17)
remains almost coherent. In practice, we take L = 4N , which
correspond to fδ = 1/(4qN).

The WCS method is thus defined as{
Γ = F(α · γ̄, L)
Ṡ(Y) = max{|Γ(i)|, i ∈ I}

(18)

One should note that all the hypotheses used to justify
the WCS detector are never verified in a real transmission.
However, in spite of detection errors and noise, the score
function Ṡ(Y) goes high enough in a presence of a frame
to be used efficiently as a detection criterion, either alone,
or combined with the NIS detector, as explained in the next
chapter.

D. Joint NIS and WCS detector

The score function S̄(Y ) given by the NIS method and
Ṡ(Y ) given by the WCS method are not fully correlated, as
shown in Fig. 4 (note the ellipsoid shape).

It is thus possible to increase detection performance by
using a linear combination of S̄(Y) and Ṡ(Y) by generating
the new score function ˙̄S(Y) defined as

˙̄S(Y ) = S̄(Y ) +mṠ(Y ). (19)

where m is a parameter that gives the slope of the line that
separates the two clusters. Its value is selected in order to
minimize the probability of miss detection for a given proba-
bility of a false alarm. In Fig. 4, a frame of length N = 120
symbols over GF(64) is considered at an SNR of −12 dB.
Each point corresponds to a couple (Ṡ(Y ), S̄(Y )) obtained
either in the absence of a frame (lower left cluster, with a red
circle) or in the presence of a frame (upper-right cluster, with
blue cross). Each cluster contains 105 points. The thresholds
for a probability of false alarm Pfa = 10−5 are indicated
respectively by the vertical line (WCS detector: Ṡ(Y ) =
73.53), the horizontal line (NIS detector: S̄(Y ) = 17256)

Fig. 4. Example of distribution of score functions of the NIS, WCS, and joint
NIS-WCS detectors.

and the oblique line (joint WCS-NIS detector: m = 16 and
˙̄S(Y ) = 18175). The zoomed region considers more points

(5× 106 instead of 105), to highlight the residual probability
of miss-detection. In this example, we get Pmd = 4.06×10−4

for the NIS, Pmd = 1.09 × 10−6 for the WCS detector and
Pmd = 3.4 × 10−6 for the joint NIS-WCS method, i.e. a
reduction of more than two decades of Pmd compared to the
state-of-the-art NIS method.

IV. SIMULATION RESULTS

This section presents the simulation results of the proposed
methods. Fig. 5 shows the DET probability curves for each
detection method studied in this investigation, the considered
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Fig. 5. DET probability curves, for a frame of N = 120 symbols in GF(64)
for SNR = −12 dB, n0 = 0, and fm = 1/(8q).

scenario is a frame of N = 120 symbols over GF(64) with
a SNR of -12 dB, and fm = 1/(8q). First, it is observed
that when using normalization (i.e., the NIS method), a no-
ticeable degradation of the detection performance is observed



compared to the classical IS detector. This is due to the fact
that the normalization factor canceled the side information
given by the increase of energy when a frame arrives. This
performance gap can be partially mitigated when using the
proposed WCS method. However, the linear combination of
NIS and WCS scores almost recover the performance gap.
The DET probability curves are given for Several values of
the slopes m. The optimal one is m = 16 (see also Fig. 4).

Under the same scenario, Fig. 6 shows the effect of the
maximum offset frequency value fm when using the classi-
fication technique with slope m = 16. When the value of
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Fig. 6. Pmd as a function of SNR for each offset frequency value fm when
using the classification technique (m = 16).

the maximum offset frequency amplitude fm decreases, the
detection performance becomes closer to the PGA decoder
(f0 = 0).

Finally, Fig. 7 shows the probability of miss-detection for a
probability of false alarm Pfa of 10−5 for different detectors.
The QCSP frame is of size N = 120 symbols over GF(64) and
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Fig. 7. Pmd as function of Es/N0 for a QCSP frame of N = 120 symbols
over GF(64) for fm = 1/(8q). The probability of false alarm Pfa is set to
10−5.

the maximum absolute frequency offset is set to fm = 1/(8q).
One can note in this figure that the proposed joint NIS-WCS
detector is robust to scaling on the QCSP frame Y , and just
0.1 dB below the detection performance of the IS detector for
a probability of miss-detection of 10−5.

V. CONCLUSION

This paper presents two contributions to improve the detec-
tion performance of a QCSP frame immune to a scaling factor
on the input signal. The first contribution was to propose a
detection method based on a weighted coherent sum of the
decoded symbols. The second contribution was to combine
linearly the score of the Normalized Incoherent Sum (from
the state of the art) and the proposed Weighted Coherent Sum
to further improve the detection performance. Compared to the
state of the art, a gain of 0.5 dB of SNR has been observed (see
Fig. 7). In the prospects, we will study intermediate solutions
between the NIS and the WCS detectors. In fact, it is possible
to do a coherent summation over each group of k consecutive
decoded symbols and an incoherent summation over the N/k
groups. We will also study the implementation of the proposed
method in a real-time decoder.
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