
HAL Id: hal-04048549
https://hal.science/hal-04048549

Submitted on 28 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Buffers optimization for multi-core decoders
E. Boutillon, Cédric Marchand

To cite this version:
E. Boutillon, Cédric Marchand. Buffers optimization for multi-core decoders. IEEE Wireless Com-
munications and Networking Conference, IEEE, Mar 2023, Glasgow, United Kingdom. �hal-04048549�

https://hal.science/hal-04048549
https://hal.archives-ouvertes.fr


Buffers optimization for multi-core decoders

Emmanuel Boutillon, Cédric Marchand

Université Bretagne Sud, Lab-STICC UMR 6285, CNRS

Email: {emmanuel.boutillon,cedric.marchand}@univ-ubs.fr

Abstract—For very high-speed satellite communication (up to
10 Gbit/s), the natural level of parallelism of a single decoder
might be insufficient to achieve the decoding throughput. A
known solution is to implement several decoder cores working
in parallel. This solution entails efficient control and design of
the input and output buffers to regulate the varying number
of decoding iterations of each decoder. This paper presents
a methodology to build such a system effectively for iterative
decoders with stopping criteria. As an application, we present
the result of the implementation of 3 DVB-S2/S2X decoders in
a single FPGA. Simulation results of the whole system show
performance within (or very close to) the standard requirements.
The implementation can handle code rates from 13/45 (3.3 Gbit/s
air throughput) up to 9/10 (10 Gbit/s air throughput) for several
modulation sizes.

Index Terms—Buffer, Multi-core, decoder, DVB-S2, architec-
ture

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes [1] have been

adopted in several standards, such as the 2nd Generation

Satellite Digital Video Broadcast (DVB-S2) [2] and its op-

tional extension in DVB-S2X [3]. DVB-S2 was designed for

up to nc = 360 processing units in parallel, thus enabling

hardware-friendly layered implementation for up to a few

hundred Mbit/s throughput [4], [5]. However, once the code

parallelism is fully exploited, increasing the throughput be-

comes much more challenging. A designer can maximize

the operating clock rate by pipelining, but layered decoding

suffers from data dependency between successive layers [12].

Further increasing the parallelism is possible with a fully

parallel solution for a single Code Rate (CR) and a short

frame length [6]. However, in the case of DVB-S2 frames of

length N = 64, 800 bits, a fully parallel solution would lead to

routing congestion and loss of flexibility required to achieve

adaptive coding modulation. A straightforward and efficient

solution is to increase the decoding throughput by a factor P
by implementing P decoders in parallel [7], [8].

Using a stopping criterion in an iterative decoder allows

stopping the decoding process as soon as a codeword is

decoded. The average time to process a frame is thus reduced

by a factor ia/im, where im is the maximum number of

iterations and ia is the average number of iterations before

convergence. In a real-time system, such a technique requires

input and output buffers to smooth the variation between

the constant input/output frame throughput and the variable

time for decoding each frame. The size of the input/output

buffer can be determined formally as a function of three

parameters: the maximum probability of input buffer overflow,

Fig. 1. Multi-core architecture.

the effective frame throughput, and the distribution of the

number of decoding iterations at a given Signal-to-Noise Ratio

(SNR) point [9], [10], [11].

This paper proposes a pragmatic extension of the buffering

technique defined for a single decoder [9], [10], [11] to the

case where P decoders work in parallel. It presents a model

of the whole system which allows for determining the input

buffer’s size. It also proposes a mechanism to re-order the

frame after the decoding process using the output buffer and

defines a lower limit on the output buffer size. Finally, we

provide the FPGA implementation results of a multi-Gbit/s

Adaptive Coded Modulation DVB-S2 decoder.

The paper is outlined as follows. Section II presents the

multi-core architecture. Then, in section III, an algorithm

based on a Markov chain is proposed to modelize the input

buffer behavior and determine its size. Section IV describes

the output buffer and a simple equation to determine its size.

Section V provides the simulation results and complexity

analysis. Finally, section VI concludes this paper.

II. MULTI-CORE ARCHITECTURE

When targeting a high-throughput LDPC decoder, a de-

signer can maximize the operating clock frequency or increase

the number of parallel processing units of the decoder up

to a given point. However, increasing the parallelism further

can be counterproductive, especially when code flexibility is

required. An efficient, strategy is to process multiple decoders

in parallel.

Fig. 1 shows the global architecture of the multi-core

architecture option. The iterative decoder of this study is an

LDPC decoder for the DVB-S2 standard but the architecture is

valid for any iterative decoder with stopping criteria. The Input

Interface (II) receives data from the channel with a parallelism

of ni data per clock cycle and re-orders the frame by blocks

of nc data, with nc the level of parallelism of one decoder.

The internal architecture of the II is out of the scope of the



paper. However, it is worth mentioning that its architecture

is not trivial. In fact, it performs a configurable (several code

rates) and parallel interleaving of the parity bits of the received

frame. Once the II processes a frame, the frame is sent to the

FIFO Input Buffer (FIB) of size bi frames. An identification

number Id is associated with each frame entering the FIB.

The FIB sends the oldest received frame as soon as one of the

iterative decoders is available. Once decoded, the frame is sent

to the output buffer of size bo frames. Due to the unknown

number of decoding iterations of a decoder, the initial order of

arrival of the frames may not be respected after the decoding

process. Thanks to the frames Id, the output buffer is able to

restore the original arrival order of the frames. Implementing

this architecture would leave the designer with two unknown

variables bi and bo that significantly impact the multi-core

decoder’s performance and complexity. The behavior, control,

and size of input and output buffers are discussed in the

following sections.

III. INPUT BUFFER

The FIB is implemented with a Random Access Memory

(RAM) using circular write/read addresses. The nth received

frame is given an Identification number Id equal to Id = n
mod bo, as shown in the toy example of Fig. 2 where bo = 5
and P = 2. As soon as a decoder is idle, the control sends

a pull signal to the FIB. If the FIB contains at least one

frame, the oldest frame is transmitted to the idle decoder;

otherwise, the decoders stay idling until a new frame arrives in

the FIB. Before the input buffer gets full, the buffer sends a full

signal to the control unit. The control unit checks the decoding

status of the P LDPC decoders and stops the decoder having

the greatest number of decoding iterations. This situation is

illustrated in Fig. 2 by the received frame number 12 (with Id
= 2) where the control stops decoder 2 before the convergence

of the decoder. This stopping process frees space in the FIB

just in time to avoid a buffer overflow. The choice of stopping

the decoder with the greatest number of iterations relies on

the fact that most frames are decoded in a low number of

iterations, and only a few frames will be decoded in a high

number of iterations up to im. The bet is that the frame

with the greatest number of iterations is a frame stuck in a

trapping set configuration that uses unnecessary processing

time. Furthermore, in the case of the DVB-S2 standard, the

outer BCH code may suppress the remaining errors of the

stuck frame, even if the decoder has not yet converged [13].

In the case of a standard with a re-transmission protocol, the

control can send a re-transmission request for the stopped

frame.

A trade-off between hardware complexity and performance

degradation determines the FIB size bi. On the one hand, the

memory required to store a received frame is high. The size

of a frame stored in FIB is equal to N times 6 (number of bits

to quantize the soft information in our implementation) bits.

Thus, one should minimize bi to save area. On the other hand,

reducing the buffer frame storage capacity would increase the

risk of a buffer-full scenario leading to significant performance

degradation. A patch that simulates the FIB state can be added

to an existing decoder simulation to estimate the degradation

due to the buffer-full scenario. However, the patch design

is challenging when considering multiple decoders, and the

simulation time can be prohibitive when targeting very low

FER for different buffer sizes and throughput scenarios.

A Markov chain model can describe the buffer state to

estimate the minimum buffer size required to avoid perfor-

mance degradation. When considering only one decoder, the

problem is known as the D/G/1/B queuing problem, where

D stands for Deterministic inter-arrival time, G for General

distribution of the service time, 1 is for one decoder, and

B is the input buffer size. In [10], a case study with DVB-

S2 shows that the throughput may be doubled with bi = 2
frames. A single input buffer of size bi shared between P
decoders in parallel gives the D/G/P/bi queuing problem.

A discrete-time Markov chain model of the parallel decoders

has been developed to estimate the input buffer occupancy.

In this model, the time unit is one decoding iteration. The

state of a decoder is either idle or decoding. The Probability

Density Function (PDF) of the number of decoding iterations

of a decoder gives the general distribution G. A Monte-Carlo

simulation of the decoder at the targeted SNR allows for

estimating the G distribution.

The simulation of the Markov model showed that the buffer

size is driven by the ratio ρ (with ρ ≤ 1 to meet the real-

time constraint) between the effective input throughput Te (in

Gbit/s) and the average global decoding throughput of the

system, i.e., the number P of parallel decoders multiplied by

the average decoding throughput Ta of each decoder, thus,

Te = ρPTa Mbits/s. (1)

The air throughput Ta is determined as

Ta =
N × Fclk

E × ia + L
Mbits/s, (2)

where N is the codeword size (here 64,800), Fclk (in MHz)

is the clock frequency, E is the number of clock cycles to

perform a decoding iteration and ia is the average number of

decoding iterations. L is a constant that includes the pipeline

latency, the time to input a frame to a decoder, and the time

to output the frame from a decoder. In the study, to allow

simplifications in the Markov model, L is approximated to E,

and Ta becomes

Ta =
N × Fclk

E × (ia + 1)
Mbits/s. (3)

Equations (1) and (3) give Te as a function of Fclk/E. Since

the duration of a decoding iteration is Fclk/E, each decoding

iteration, the fraction F of a frame that enters the II of the

multi-core architecture is defined as

F =
ρ× P

ia + 1
. (4)

Algorithm 1 presents the Markov model used to estimate

the FIB occupancy statistics, through Monte-Carlo simulation,

according to the problem’s parameters. In this algorithm, the



Fig. 2. Example of the behavior of the input and output buffers.

function G() is a random variable that gives the number of

decoding iterations required to decode the received codeword.

A Monte-Carlo simulation of one decoder at the targeted

SNR provides the G() distribution estimation. The state of

the decoder k is represented as S(k), with the convention that

S(k) = 0 presents the decoder at the idling state. S(k) > 0
indicates the number of remaining decoding iterations to be

performed before the end of the decoding process. Each

time a decoder starts a decoding process, S(k) is initialized

to G() + 1. When decoding, i(k) indicates the number of

iterations already done plus one. When a decoder is idling,

i(k) is set to 0.

For a given code rate and SNR, one can obtain G() and

ia by simulation, and F is obtained for a given ρ value by

applying equation (4). Then, Algorithm 1 provides P (n), the

probability that the FIB contains n frames. Fig. 3 shows the

obtained P (n) for the code rate r = 9/10 and different ρ
values. Considering a buffer of size bi = 6, the state n = 6
corresponds to a buffer full state that leads to a preemptive

stop of a frame. The DVB-S2X standard [3] requires a Quasi

Error Free (QEF) performance defined at a FER equal to 10−5.

Thus, to avoid performance degradation, we retrieve from Fig.

3 the couples (ρ, bi) that have a P (n = bi) value below 10−5.

The four couples (0.84, 3), (0.86, 4), (0.87, 5), and (0.88, 7) are

valid couples. The couple with the best compromise between

complexity (targeting low n value) and throughput (targeting

high ρ value) is then selected. Based on the available memory

on the targeted FPGA, we set bi = 5 to target ρ = 0.87.

To prove the efficiency of the shared FIB, we consider one

decoder (P = 1) with the same G(), computing one-third of

the frame input (F = F/3) and applying Algorithm 1 for

different ρ values. The simulation results show that a FIB of

size bi = 2 and ρ = 0.83 are required to get a probability of

overflow below 10−5. Thus, ρ is improved and overall input

buffer size is reduced when the input buffer is shared among

the 3 decoders compared with 3 decoders that embed their

own buffer.

1 2 3 4 5 6 7

 n

10
-6

10
-4

10
-2

10
0

 P
(n

)

 = 0.84

 = 0.86

 = 0.87

 = 0.88

Fig. 3. Probability of input buffer occupancy for several ρ factors.

IV. OUTPUT BUFFER

Let us consider the example of Fig. 2 where decoder 1 starts

decoding frame 0 and then decoder 2 decodes frame 1. Due to

the unknown number of decoding iterations of a decoder, the

initial order of arrival of the frames may not be respected after

the decoding process. For example, in Fig. 2, frame 0 is output

after frame 1. The output buffer is in charge of reordering the

frame outputs in the same order as they were at the input.

Before entering one of the decoders, each new frame is

associated with an identification number, denoted Id. Id is

determined as the number of frames already received modulo

the output buffer size b0 (Id takes its values between 0 and

b0−1). When decoded, the frame is written in the output buffer

at the address given by its Id. The initial order of arrival is

reconstructed by the output buffer by reading circularly the

stored frames from frame addresses 0 to b0 − 1. In our case

study, without loss of generality, the output of a frame is

also controlled by an external control signal indicating that

the outer BCH decoder is available.



Input : rmax, G(), F , bi
Output: B: Buffer size statistics
Initialization i([1, 2, ..., P ]) = 0 ; // nb of

iterations done

S([1, 2, ..., P ]) = 0 ; // Idle Decoders

B([1, 2, ..., bi]) = 0 ; // for statistics

µ = 0 ; // II set to 0

n = 0 ; // Nb frames in FIB

r = 0 ; // Number of received frame

while r < rmax do
µ = µ+ F ; // update II state

if µ > 1 then
µ = µ− 1 ; // output from II

n = n+ 1 ; // input in FIB

r = r + 1 ; // one more frame received

B(n) = B(n) + 1 ; // Update FIB

statistics

end
// Process case of FIB overflow

if n == bi then
l = arg

k

max{i(k)}

S(l) = 0 ; // lth decoder idle

end
// Update iterative decoders state

l = 0 ; // no idle decoder by default

for k = 1, 2, . . . , P do
if S(k) > 0 then

S(k) = S(k)− 1 ; // Remaining

iteration

i(k) = i(k) + 1 ; // Iterations done

else
l = k ; // index of an idle decoder

i(k) = 0 ; // idle: no iteration

done

end
end

// Frame pulled from FIB to lth decoder

if (n > 1) and (l > 0) then

n = n− 1 ; // From FIB to lth decoder

S(l) = G() + 1 ; // Remaining nb of

iterations

end
end
P = B/rmax

Algorithm 1: Markov model of FIB behavior

The output buffer has another specific behavior that impacts

the buffer size bo estimation. Let us work on the scenario

illustrated in Fig. 2 where frame 0 is decoded in im = 19
iterations on decoder 1. Let us assume that a new frame arrives

every 4 decoding iterations, i.e.: F = 1/4. Starting with empty

buffers, and frames 1 to 4 decoded in 2 iterations. While the

first decoder decodes frame 0, the second decoder decodes

the next 4 frames. The output buffer needs to store at least

the 4 decoded frames plus frame 0 to output frames in the

same order as they have arrived at the decoders. The proposed

solution consists in increasing bo in such a way that the output

buffer can store all the fast decoded frames while one decoder

decodes in im iterations. Considering a fast decoded frame

decoded in 1/F iterations or less, bo is lower bounded by

bo ≥ im × F. (5)

Note that the output buffer stores hard decisions (N bits

per frame), reducing the constraint on the output buffer size

compared with the input buffer size. Even at high SNR, LDPC

codes have trapping sets that may prevent the early stopping

of the LDPC decoder. In that case, a decoder can reach im
iterations while other decoders decode much faster. Thus, the

scenario of Fig. 2 is possible, especially at high SNR, which

is a problem when targeting QEF performance.

In the DVB-S2X implementation, each decoded frame is

output to an external BCH decoder that may be unavailable.

Thus, the size of the output buffer is increased to allow

additional buffering capacity to smooth the variation of the

time processing of the BCH code. The size of the output buffer

bo has been set to bo = 12 to maintain a comfortable margin.

V. IMPLEMENTATION AND SIMULATION RESULTS

A. Synthesis results

The architecture presented in Fig. 1 is synthesized on a Zynq

UltraScale+ ZU11eg FPGA from Xilinx. Three LDPC cores

are implemented in parallel to reach 10 Gbit/s throughput.

The multi-core decoder is part of the prototype of an ultra-

wideband DVB-S2X satellite MODEM [14].

xczu11eg LUT REG BRAM URAM

1 LDPC core 60k 58k 111.5 0

Input Buffer 26 28 0 30

Output Buffer 37 38 0 5

Control 157 188 0 0

Input Interface 9k 18k 0 15

Output Interface 794 448 0 0

Total multi-core 196k 193k 350 35
TABLE I

SYNTHESIS RESULTS.

Table I shows the synthesis results of the multi-core decoder

architecture and the results of each block synthesized alone.

The LDPC decoder is a layered decoder based on the architec-

ture presented in [15] and soft input values coded on 6 bits to

obtain good complexity over FER performance compromise.

The system decodes long frames of code rates 3/5, 3/4, 5/9,

and 9/10 from DVB-S2 and code rates 13/45, 9/20, 23/36,

28/45, 128/180, 135/180, 140/180, and 22/30 from DVB-S2X.

The hardware resources required by the multi-core architecture

on a ZU11eg FPGA are 66% of LUT, 32% of Registers,

58% of Block RAMs, and 44% of Ultra RAMs. The input

parallelism is ni = 30, the input buffer stores bi = 6 frames,

and the output buffer stores bo = 12 frames. The input and

output buffers use Ultra RAM (URAM), which are memory

blocks in the UltraScale+ family dedicated to buffering and

storage.

The maximum clock frequency Fclk is 335 MHz. The

effective air throughput T is thus given by

T = min(Ti, Te), (6)

where Te is given by (1) and Ti = ni ×Fclk is the maximum

capacity of the input throughput. For ni = 30 and Fclk = 335
MHz, Ti = 10.05 Gbit/s.



-5 0 5 10 15 20

E
s
/N

o
(dB)

10
-8

10
-6

10
-4

10
-2

10
0

F
E

R

13/45

QPSK

3.3

0.94

28.6

 T (Gbps)=

 =

 i
a
 =

9/20

QPSK

3.4

0.94

28.6

3/5

QPSK

4.3

0.92

17.0

3/4

QPSK

5.7

0.91

16.0

23/36

8PSK

4.4

0.92

20.0

28/45

16APSK

3.4

0.9

25.1

3/4

16APSK

6.0

0.91

15.5

5/6

16APSK

5.5

0.91

15.9

9/10

16APSK

9.2

0.87

11.3

5/6

32APSK

6.8

0.91

12.6

9/10

32APSK

10.0

0.87

8.6

3/4

128APSK

4.8

0.91

15.8

22/30

256APSK

3.8

0.9

18.9

Bit true simulation

DVB-S2 requirement

Fig. 4. Bit true simulation results for soft input values coded on 6 bits and the air throughput T for FER below 10
−5.

B. Simulation results

The stopping criteria used in simulations is described in

[16]: when all the parities of all layers are satisfied during a

decoding iteration, convergence is almost obtained. After an

additional decoding iteration, the ”decoding stop” flag rises,

and the decoder outputs its results. Fig. 4 illustrates the bit-true

C simulation results for normal frame size with a parallelism of

nc = 360. The decoding algorithm is an optimized offset Min-

Sum algorithm with input information quantized with 6 bits.

The maximum number of iterations is im = 35. Note that the

performance is given considering the correction of the outer

BCH code (not included in the design). For each code rate,

the obtained air throughput (see (6)) and the average number

of iterations ia are given for the SNR given by DVB-S2

requirements. For code rate r = 9/10, the input air throughput

is equal to T = 9.2 Gbps with the 16APSK modulation and

to 10.05 Gbps (11.7 Gbps saturated by Ti) with the 32APSK

modulation.

A patch based on algorithm 1 can be added to the bit-

true C simulation to compute the statistics of the input buffer

occupancy. However, once the G() is generated by the C

simulation, algorithm 1 computes the input buffer statistics

on one million frames at least a thousand times faster than

the bit-true C simulation with the patch. This fast computing

allows testing all code rates with many throughputs (ρ) and

complexity (buffer size) compromises in a reasonable time.

VI. CONCLUSION

In this paper, a high throughput DVB-S2 decoder is obtained

by processing 3 decoders in parallel. The 3 decoders share

the same input buffer of size 6 frames. The input buffer

size is simulated thanks to a provided Markov model that

allows the optimization of the input buffer size such that the

frame error rate is not impacted by a buffer-full scenario.

The output buffer regulates the variable decoding time of

the frames and restores the initial frame order arrival. The

output buffer is sized to cope with dramatic scenarios that

may occur at high SNR. Simulations show high throughput

and performance that conform with the standard requirements

for a wide range of code rates. Although the multi-core

architecture is implemented for the DVB-S2 standard, the

presented solutions for input and output buffer control and size

optimization are valid for any iterative decoder with stopping

criteria.

ACKNOWLEDGEMENT

This paper is based on work performed for WideNorth

(www.widenorth.com) as part of their work in the ARTES

4.0 technology and product developments contract ’SSDR

Applications’ with the European Space Agency.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, Cam-
bridge, 1963.

[2] ETSI, “Second generation framing structure, channel coding and modu-
lation systems for broadcasting, interactive services, news gathering and
other broadband satellite applications (DVB-S2),” EN 302 307 V1.2.1,
2009

[3] “Digital Video Broadcasting (DVB); Second generation framing struc-
ture, channel coding and modulation systems for Broadcasting, Interac-
tive Services, News Gathering and other broadband satellite applications;
Part II: S2 Extensions (DVB-S2X) - (Optional),” DVB Document A83-
2, 2014.

[4] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle and N. Wehn,
”A novel LDPC decoder for DVB-S2 IP,” 2009 Design, Automation
& Test in Europe Conference & Exhibition, 2009, pp. 1308-1313, doi:
10.1109/DATE.2009.5090867.

[5] C. Marchand and E. Boutillon, ”LDPC decoder architecture for DVB-S2
and DVB-S2X standards,” 2015 IEEE Workshop on Signal Processing
Systems (SiPS), 2015, pp. 1-5, doi: 10.1109/SiPS.2015.7345034.

[6] C. -C. Cheng, J. -D. Yang, H. -C. Lee, C. -H. Yang and Y. -L. Ueng, ”A
Fully Parallel LDPC Decoder Architecture Using Probabilistic Min-Sum
Algorithm for High-Throughput Applications,” in IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp. 2738-2746,
Sept. 2014, doi: 10.1109/TCSI.2014.2312479.

[7] M. Li, V. Derudder, K. Bertrand, C. Desset and A. Bourdoux, ”High-
Speed LDPC Decoders Towards 1 Tb/s,” in IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 68, no. 5, pp. 2224-2233,
May 2021, doi: 10.1109/TCSI.2021.3060880.

[8] B. Le Gal and C. Jego, ”High-Throughput Multi-Core LDPC Decoders
Based on x86 Processor,” in IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 5, pp. 1373-1386, 1 May 2016, doi:
10.1109/TPDS.2015.2435787.

[9] G. Bosco, G. Montorsi and S. Benedetto, ”Decreasing the complexity
of LDPC iterative decoders,” in IEEE Communications Letters, vol. 9,
no. 7, pp. 634-636, July 2005, doi: 10.1109/LCOMM.2005.1461688.

[10] M. Rovini and A. Martinez, ”On the Addition of an Input Buffer to
an Iterative Decoder for LDPC Codes,” 2007 IEEE 65th Vehicular
Technology Conference - VTC2007-Spring, 2007, pp. 1995-1999, doi:
10.1109/VETECS.2007.413.



[11] S. L. Sweatlock, S. Dolinar and K. Andrews, ”Buffering requirements
for variable-iterations LDPC decoders,” 2008 Information Theory and
Applications Workshop, pp. 523-530, doi: 10.1109/ITA.2008.4601025.

[12] C. Marchand, J. -B. Dore, L. Conde-Canencia and E. Boutillon, ”Con-
flict resolution for pipelined layered LDPC decoders,” 2009 IEEE
Workshop on Signal Processing Systems, 2009, pp. 220-225, doi:
10.1109/SIPS.2009.5336255.

[13] Cédric Marchand and E Boutillon, ”Before convergence early stopping
criterion for inner LDPC code in DVB standards,” Electronics Letters,
IET, 2015, 51 (1), pp.114 - 116.

[14] Bjarne Risløw, Helge Fanebust, Cédric Marchand, Matthieu Arzel
and Jean-Noël Bazin, ”User terminal wideband modem for very high
throughput satellites,” in Ka and Broadband Communications Confer-
ence, Italy, October 2022.

[15] C. Marchand and E. Boutillon, ”LDPC decoder architecture for DVB-S2
and DVB-S2X standards,” 2015 IEEE Workshop on Signal Processing
Systems (SiPS), 2015, pp. 1-5, doi: 10.1109/SiPS.2015.7345034.

[16] D. E. Hocevar, ”A reduced complexity decoder architecture via layered
decoding of LDPC codes,” IEEE Workshop on Signal Processing
Systems (SiPS), 2004, pp. 107-112, doi: 10.1109/SIPS.2004.1363033.


