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Abstract: In this paper, a generalization of Poiseuille’s law for a self-similar fluid flow through a tube
having a rough surface is proposed. The originality of this work is to consider, simultaneously, the
self-similarity structure of the fluid and the roughness of the tube surface. This study can have a
wide range of applications, for example, for fractal fluid dynamics in hydrology. The roughness of
the tube surface presents a fractal structure that can be described by the surface fractal noninteger
dimensions. Complex fluids that are invariant to changes in scale (self-similar) are modeled as
a continuous medium in noninteger dimensional spaces. In this work, the analytical solution of
the Navier–Stokes equations for the case of a self-similar fluid flow through a rough “fractal” tube
is presented. New expressions of the velocity profiles, the fluid discharge, and the friction factor
are determined analytically and plotted numerically. These expressions contain fractal dimensions
describing the effects of the fractal aspect of the fluid and of that of the tube surface. This approach
reveals some very important results. For the velocity profile to represent a physical solution, the
fractal dimension of the fluid ranges between 0.5 and 1. This study also qualitatively demonstrates
that self-similar fluids have shear thickening-like behavior. The fractal (self-similarity) nature of the
fluid and the roughness of the surface both have a huge impact on the dynamics of the flow. The
fractal dimension of the fluid affects the amplitude and the shape of the velocity profile, which loses
its parabolic shape for some values of the fluid fractal dimension. By contrast, the roughness of
the surface affects only the amplitude of the velocity profile. Nevertheless, both the fluid’s fractal
dimension and the surface roughness have a major influence on the behavior of the fluid, and should
not be neglected.

Keywords: self-similar fluid; noninteger dimensional spaces; fractal tube surface; Poiseuille’s law;
surface fractal dimensions, Navier–Stokes equations for fractal medium

1. Introduction

A medium that exhibits fractal properties has a structure that remains unchanged when
lengths are uniformly scaled, meaning that a fractal medium (or object) appears, statistically,
similar at different scales (see Figure 1). This self-similarity appears almost everywhere in
nature, from the lungs of a human being to the galaxies of outer space. Fractal objects have
characteristics that remain unchanged regardless of the scale at which they are observed,
and these features can be described using dimensions that are not whole numbers [1].
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According to Mandelbrot [1,2], these fractal dimensions can give a better understanding of
turbulence, star distribution, galaxies, and so on. Fractal methods have become increasingly
popular in recent years and have the potential to be useful in a variety of fields and contexts
including biology and medicine [3,4], geology and earth sciences [5,6], image analysis [7,8],
astronomy [9,10], and acoustics [11–15]. Fluids and rough surfaces which are the scope of
our study also exhibit a self-similar “fractal” structure. Examples of self-similar “fractal”
fluids include fractal emulsions in which a fluid is fractally dispersed in another fluid [16],
fractal solutions, with a fractal distribution of a solute dissolved in a nonfractal solvent [17],
fractal suspensions in which a solid is fractally distributed in a fluid [18]. Several researchers
have developed models for examining fractal fluids in noninteger dimensional spaces
(NIDS), including Ostoja-Starzewski [19–22], Balankin [23–25], and Tarasov [26,27]. This
article considers the method proposed by Tarasov [26].

Figure 1. Examples of objects that display a self-similar “fractal” structure.

Vector calculus in spaces with noninteger dimensions is widely used in various fields,
e.g., to regularize ultraviolet divergences in quantum field theory [28,29] and to study
critical phenomena and phase transitions in statistical physics [30,31]. Tarasov [26] pro-
posed a way to extend vector calculus to spaces with noninteger dimensions, defining first-
and second-order operators such as the gradient, divergence, scalar and vector Laplace
operators. These operators can be used to reformulate the Navier–Stokes equations for a
fractal Newtonian incompressible fluid flow [27,32]. For a self-similar fluid, the mass of a
region of the fluid enclosed within a ball of radius R follows a power-law relation of the
form M ∝ RD [26], where D is a noninteger dimension of a fluid particle [26,33]. The fractal
dimension D reflects the degree to which the fluid fills the Euclidean space in which it
exists. For a self-similar viscous fluid, D < 3, while for a viscous fluid, D = 3 (see Figure 2).
The power-law relationship M ∝ RD can be derived through the use of integrations in
noninteger dimensional spaces (see ref. [33] for more details).

Figure 2. Schematic of a ball region of a fluid with radius R: (a) viscous fluid; (b) self-similar
viscous fluid.

For tubes with a radius less than a few millimeters, the roughness of the surface plays
a significant role and cannot be neglected. According to Brown [34], factors that influence
the flow of a fluid through a medium with a rough structure include the surface fractal
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dimension and the ratio of the average distance between surfaces to the root mean square
of the surface height. In this study, we focus on the impact of the surface fractal dimension.

Johnson et al. [35] introduced the term “fractal” to describe the roughness of the
pore surface (fluid–structure interface) and to calculate a compensation for the viscous
attenuation in porous media caused by this roughness. Researchers have conducted several
investigations to model the effect of surface roughness on fluid flow, including those of
Brown [34,36], Chen et al. [37], who used the Weierstrass–Mandelbrot function to character-
ize the self-affine roughness at different scales, and Ghanbarian et al. [38], who proposed
that the length and radius of a rough pore can be related through a power-law relationship
that was determined by surface fractal dimensions. In their paper, Ghanbarian et al. [38]
used the fractal approach to describe the relative permeability for the case of a rough
pore. The application of this approach led to a significantly better prediction of the relative
permeability when compared to standard approximations and experimental results. Thus,
seeing the accuracy of this model, we considered using the tube length–radius relationship
to describe the roughness of the tube surface. The originality of this study is that, for the
first time, it takes simultaneously into account the effect of the fractal nature of the fluid
and that of the tube’s surface roughness on the dynamics of the flow, which, according to
our knowledge, has not been considered yet. We combine Tarasov’s model [32] describing
self-similar fluids, with that of Ghanbarian et al. [38] that describes rough “fractal” tube
surfaces. This approach is of great interest because it can have a wide range of applications
in any field that involves the flow of a fluid that present a self-similar property through
a tube exhibiting a “fractal” structure, e.g., fractal fluid dynamics in hydrology [39]. An
example of application can be the human bone which is saturated by two main fluids,
interstitial fluid and blood [40]. It is common knowledge that blood is made up of many
suspended particles as well as proteins, carbohydrates, mineral ions, hormones, carbon
dioxide, and blood cells. Blood can exhibit some characteristics of a fractal distribution of
various blood components, such as bacteria, viruses, and medications entering the blood.
The human bone is a porous medium, in which the fluid–solid interface is not regular
in shape and can be considered as fractal as well. A fractal analysis is also crucial in
examining the blood circulation in heart and blood vessels [41,42]. A study was recently
carried out on the flow of a self-similar, non-Newtonian fluid through a cylindrical pipe.
The results showed the effect of the self-similar structure on the rheological behavior of the
non-Newtonian fluid [43]. Another study [44] looked at the impact of surface roughness
on the flow of a viscous non-Newtonian fluid, using surface fractal dimensions to model
the roughness. In this paper, a generalization of the flow of a self-similar Newtonian fluid
through a rough-walled pipe is presented. The rest of this paper is organized as follows. In
Section 2 we delve into the theoretical models and the mathematical formulations needed
for this study. In Section 3, the study of the flow of a Newtonian self-similar fluid through
a rough-walled tube is considered. Section 4 presents a discussion of the findings of the
study. The paper concludes with a summary of the main points in Section 5.

2. Theoretical Models
2.1. Poiseuille’s Law for Viscous Fluid Flow through a Cylindrical Pipe

The well-known Hagen–Poiseuille’s law describing the flow of a Newtonian incom-
pressible fluid through a cylindrical pipe can be obtained by solving the following equations:

∇ · v = 0, (1)

dv
dt

= f− 1
ρ
∇p + ν∆v. (2)

Equations (1) and (2) describe the continuity and the momentum equations, respectively.
v = v(r, θ, x) is the velocity vector field of the fluid, p refers to the pressure, ρ the density
of the fluid, ν the kinematic viscosity, and f the vector field that describes a mass force.
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d/dt on the left-hand side of Equation (2) represents the material derivative given by the
following relation:

dv
dt

=
∂v
∂t

+ (v.∇)v. (3)

For an established laminar flow with respect to the X-axis, solving Equation (2) with
boundary conditions vx = vmax at r = 0 and v = 0 at r = R yields:

vx(r) = −
1

4µ

dp
dx

R2
(

1−
( r

R

)2
)

, (4)

where vx(r) represents the velocity distribution in the x direction, R is the pipe radius, and
µ = ν/ρ is the dynamic viscosity of the fluid. Note that vx(r) is a function of r only, which
is due to the symmetry of the cylindrical pipe and the continuity equation, which simplifies
to ∂vx/∂x = 0. Equation (4) describes the laminar flow of a viscous fluid though a smooth
cylindrical pipe. In the next section, we consider the surface of the tube to be rough, with
an irregular cross section. The roughness of the tube is modeled using the model from
Ghanbarian et al. [38].

2.2. Modeling Surface Roughness Using Fractal Dimensions

Let us assume that the tube surface is rough with an irregular cross section (Figure 3).
Ghanbarian et al. [38] proposed that the perimeter of a fractal object could be related to its
cross-sectional area:

P2 ∝ ADs2 , (5)

where Ds2 is the surface fractal dimension 1 ≤ Ds2 < 2. This exponent determines the
smoothness or roughness of the boundary of a cross section. When the boundary is smooth
then Ds2 = 1. As for the cross section of the tube A, we can apply the simple assumption
A ∝ r2

e , where re is the mean tube radius or equivalent radius (see Figure 4).

Figure 3. Schematic of a viscous fluid flow through a rough-walled tube.
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Figure 4. Schematic of the cross section of the tube that displays an irregular pattern.

The Length–Radius Relationship in a Tube

Fractal objects in nature exhibit varying scaling factors and exponents in different
directions, which means that they cannot be accurately described using a single fractal di-
mension. This property, known as scale-invariance, demonstrates the structural anisotropy
and self-affinity of these objects [45].

The roughness of the boundary of a tube can be estimated using a three-dimensional
surface fractal dimension (Ds3) that falls within a range of values between 2 ≤ Ds3 < 3.
The dimension Ds3 describes the boundary’s roughness along the tube structure.

As the three-dimensional surface fractal dimension (Ds3) approaches 3, the surface
becomes increasingly rough, and for Ds3 = 2 the surface is smooth.

Ghanbarian et al. [38] suggested, for a fractal object, a relationship between the tube
surface area As and its volume V (Figure 3):

A3
s ∝ VDs3 , (6)

where:
V = L× A, (7)

where L is the tube’s length. The surface area (As) of the tube can be approximated using
the length of the tube (L). The equation for this approximation is as follows:

As ∝ P× LDr , (8)

where LDr = L f is a fractal length which is proportional to the straight line L to the power
of the dimension Dr. The latter is a dimension which describes the roughness of the line by
representing the power to which the straight line length (L) is raised in order to calculate
the fractal length (L f ) (along the x direction in Figure 3).

Combining Equations (7) and (8) with Equations (5) and (6), we get:

L ∝ r
2Ds3−3Ds2
3Dr−Ds3

e . (9)

Assuming that the roughness along the tube’s structure is isotropic, we then get
Dr = Ds3 − 1 [1], which is not necessarily equal to Ds2, in particular when the medium is
anisotropic [38]. Following this assumption, Equation (9) becomes:

L ∝ rγ
e , (10)

where γ = 2Ds3−3Ds2
2Ds3−3 . The dimensions 2 ≤ Ds3 < 3 and 1 ≤ Ds2 < 2 set boundaries for the

behavior described in Equation (10), where −2 < γ ≤ 1. For instance, γ = 1 represents a
nonfractal object with a smooth surface and regular cross section. Note that the nonfractal
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case is obtained for Ds3 = 2, Ds2 = 1 and Dr = 1. γ can take negative values, therefore L
can be inversely proportional to re, depending on the values of Ds2 and Ds3.

Equation (10) is valid for anisotropic fractal media [38]. In this case, two dimen-
sions, Ds3 and Ds2, are needed to describe the roughness of the boundary of the tube’s
cross section.

In the case of an isotropic self-similar fractal medium, the roughness fractal dimension
(Dr) can be set as Dr = Ds2 = Ds3 − 1. With this setup, only one dimension is needed to
describe the roughness of the boundary. For an isotropic self-similar fractal medium, one
can set Dr = Ds2 = Ds3 − 1. In this case, only one dimension is needed to describe the
roughness of the boundary. Following this assumption, we get the following expression
for γ:

γ =
3− Ds3

2Ds3 − 3
. (11)

Since 2 ≤ Ds3 < 3, γ varies between 0 and 1. For a smooth surface, we have γ = 1, and
for a rough surface, γ = 0. The expression (11) was used in [38] to model the relative
permeability in heterogeneous porous media, which led to very accurate results.

We can write:
L = c× rγ

e , (12)

where c is the constant of proportionality
Next, we study the effect of the fluid’s fractal structure on its flow through a tube with

a smooth surface. To do this, we use Tarasov’s noninteger dimensional space vector calculus
to solve the Navier–Stokes equations that describe the laminar flow of a self-similar fluid.
This approach allows us to analyze the flow of fluids with a complex, scaling structure.

2.3. Vector Calculus in Noninteger Dimensional Space

Fluids can also possess the property of self-similarity at different scales, which is
closely related to the concept of fractals [1]. In fact, self-similarity is considered one of
the defining characteristics of fractals. Therefore, a self-similar fluid can be described as
a fractal fluid. The mass of a ball region (VD) of a self-similar “fractal” fluid with radius
R follows the relationship M ∝ RD, where D is the mass dimension that describes how
well the fluid particles fill the ball region. For self-similar fluids, the mass dimension is
less than 3 (see Figure 2). We can define Sd to be the boundary of the ball region of fractal
dimension d.

The dimension of the ball region of a self-similar fluid (D) and the dimension of the
boundary of this region (d) are not related by d = D− 1 [26]. As a result, we can define the
dimension of a line along the radial direction (αr) using the following relationship [26]:

d = D− αr. (13)

Tarasov [26] proposed a way to extend vector calculus to include noninteger dimen-
sional spaces using these dimensions. This extension includes the definition of first- and
second-order operators such as the gradient, divergence, and scalar and vector Laplace
operators for noninteger dimensional spaces (NIDS). The scalar and vector fields in this case
are assumed to only depend on r due to cylindrical or spherical symmetry (see refs. [26,33]
for more details). The divergence and gradient operators in noninteger dimensional space
are written in the following form:

DivD,d
r u(r) =

π(1−αr)/2Γ((d + αr)/2)
Γ((d + 1)/2)

(
1

rαr−1
∂ur(r)

∂r
+

d
rαr

ur(r)
)

, (14)

GradD,d
r φ =

Γ(αr/2)
παr/2rαr−1

∂φ(r)
∂r

er, (15)

where u(r) is a vector field and φ(r) is a scalar field.
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Using Equations (14) and (15), we can establish the NIDS Laplacian operators. The
vector Laplacian for vector field u = ur(r)er has the following expression:

∆D,d
r u = GradD,d

r DivD,d
r u = A(αr, d)

(
1

r2αr−2
∂2ur

∂r2 +
d + 1− αr

r2αr−1
∂ur

∂r
− αrd

r2αr
ur

)
er, (16)

where

A(αr, d) =
Γ((d + αr)/2)Γ(αr/2)
π(2αr−1)/2Γ((d + 1)/2)

. (17)

The scalar Laplacian for the scalar field φ(r) is:

∆D,d
r φ = DivD,d

r GradD,d
r φ = A(αr, d)

(
1

r2αr−2
∂2φ

∂r2 +
d + 1− αr

r2αr−1
∂φ

∂r

)
. (18)

For more details, see ref. [26,27,32,33].
Using these operators we can write the Navier–Stokes and continuity equations for

a fractal medium, which describe the behavior of incompressible Newtonian self-similar
fluids within the NIDS approach:

DivD,d
r v = 0, (19)

dv
dt

= f − 1
ρ
∇x p + ν∆D,d

r v, (20)

where v is the velocity vector, f the vector field that describes body forces, ρ the fluid
density, p the pressure of the fluid, ν the kinematic viscosity, and ∇x refers to the gradient
operator in the x direction. d/dt represents the material derivative:

dv
dt

=
∂v
∂t

+
(

v, GradD,d
r v

)
. (21)

3. Laminar Flow of a Self-Similar Fluid through a Tube with Rough Walls

When in nature, both a fluid and a rough surface display a fractal structure (e.g., blood
flow through blood vessels, any self-similar fluid flow through a rough tube), they can
be modeled using noninteger dimensions. Therefore, it is important to understand and
investigate the effect of the fractal nature of the fluid and the roughness of the surface
on the behavior of the flow. For this purpose, a combination between Ghanbarian et al.’s
model, explained in Section 2.2, and Tarasov’s model, explained in Section 2.3, is presented.
This new approach allows us to study and compare the effects of the fractal structures of
the fluid and the surface.

3.1. Velocity Profile of a Self-Similar Fluid

To analyze the flow of a self-similar fluid through a tube with a rough surface (as
shown in Figure 5), we must first establish the equations that describe the behavior of
the fluid in such case. We can apply Equation (20) for a steady state flow of a self-similar
fluid through a cylindrical pipe and parallel to the X-axis (Figure 5). Equation (20) then
simplifies to:

∆D,d
r vx(r) =

1
µ

dp
dx

, (22)

the velocity component in the x direction (vx(r)) only depends on r due to the symmetry of
the cylinder.
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Figure 5. Schematic of self-similar fluid flow through a tube with a rough structure.

Furthermore, since the flow is in the x direction, we define d→ dx = d− αx, where αx
is the dimension of a line along the x direction. It is assumed that αx > 1 can be used to
describe a fractal turbulent flow in a pipe [27].

Using the boundary conditions vx(0) = vmax and vx(R) = 0 for the solution of
Equation (22), we find the following velocity profile:

vx(r) = −
1

2(dx + αr)αr A(dx, αr)µ

dp
dx

R2αr

(
1−

( r
R

)2αr
)

, (23)

where A(dx, αr) is defined by:

A(αr, dx) =
Γ(αr/2)Γ((dx + αr)/2)
π(2αr−1)/2Γ((dx + 1)/2)

. (24)

We can define the effective dynamic viscosity by:

µe f f (αr, dx) =
1
2
(dx + αr)αr A(αr, dx)µ. (25)

Using the above expression, Equation (23) can be written in the following form:

vx(r) = vmax(αr, dx)

(
1−

( r
R

)2αr
)

, (26)

where
vmax(αr, dx) = −

1
4µe f f (αr, dx)

dp
dx

R2αr . (27)

For a nonfractal case (dx = αr = 1), we get the usual Poiseuille’s law (4). Note that
in Equation (26), for αr < 1 the velocity profile is proportional to a noninteger power,
hence the profile is no longer parabolic. Notice that dvx(r)

dr ∝ r2αr−1. For the velocity profile
vx(r) to represent a physical solution, the power 2αr − 1 needs to be a positive number,
otherwise the gradient of vx diverges. Thus, this gives limits to the values permitted for αr.
Consequently, we get 0.5 < αr ≤ 1.

For a rough surface, we use the length–radius relationship (12) established in Section 3.
In order to more easily analyze the flow through tubes that have irregular cross sections,
we use the equivalent radius (re) (see Figure 4), hence

R→ re.
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Considering this assumption and substituting the tube length–radius relationship (12) into
Equation (26) yields:

vx(r) =
∆p

4µe f f (dx, αr)c
r2αr−γ

e

(
1−

(
r
re

)2αr
)

. (28)

Equation (28) is a velocity distribution that contains fractal dimensions, which de-
scribes the flow of a self-similar fluid through a tube having a rough surface. For Ds3 = 2
and dx = αr = 1, we get the usual Poiseuille’s law for a nonfractal case.

For an isotropic self-similar fractal medium, we have Dr = Ds2 = Ds3 − 1, where

γ =
3− Ds3

2Ds3 − 3
.

Since 2 ≤ Ds3 < 3, γ varies between 0 and 1. For γ = 1, we get a smooth surface, and for
γ = 0 the surface is extremely rough.

3.2. Fluid Discharge

The new expression of the velocity profile (28) can be used to obtain the fractal fluid
discharge. Since self-similar fluids are described as a homogeneous continuum that can be
quantified by fractal dimensions, we can use the integration in a noninteger dimensional
space [46]:

∫
RD

dDrφ(r) =
2π(D−1)/2

Γ((D− 1)/2)

∫ ∞

0
drrD−1

∫ π

0
dθsinD−2θφ(r, θ), (29)

where dDr represents the volume element in a noninteger dimensional space. Having that

∫ π

0
dθsinD−2θ =

π1/2Γ((D− 1)/2)
Γ(D/2)

, (30)

the expression of the fluid discharge Q can be written as

Q =
2πd/2

Γ(d/2)

∫ re

0
rd−1vx(r)d, (31)

with d being a noninteger dimension that characterizes the cross section. Using Equa-
tion (28) for the velocity profile vx(r), for simplification, we can consider αr = 1. We
then get:

Q =
4πd/2∆p

Γ(d/2)µc(d + 2)d2 rd+2−γ
e . (32)

For d = D− 1, we get:

Q =
2π(D−1)/2∆p

Γ((D− 1)/2)µc(D + 1)(D− 1)2 rD+1−γ
e . (33)

Using an effective viscosity:

µe f f =
π(3−D)/2

16
(D + 1)(D− 1)2Γ((D− 1)/2)µ, (34)

we get the final expression of the fluid discharge:

Q =
π

8
∆p

cµe f f
rD+1−γ

e . (35)
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Notice that for the nonfractal case (D = 3 and Ds3 = 2), we get the usual Hagen–
Poiseuille’s equation for the fluid discharge:

Q =
π

8
∆p
µL

R4, (36)

where R is the the radius of a tube with a circular cross section.
In comparison with Hagen–Poiseuille’s equation, the new expression of the fluid

discharge (35) contains fractal dimensions D and Ds3, and an effective viscosity µe f f . The
fluid discharge (35) is proportional to the radius to the power of (D + 1− γ) instead of R4,
and for the fractal case, the power (D + 1− γ) is less than 4.

3.3. Darcy’s Friction Factor

It would also be interesting to see how the roughness affects the behavior of the fluid,
by calculating the friction factor for the fractal case. The friction factor can be expressed
using the Darcy–Weisbach equation [47] as follows:

f =
8τw

ρv̄2 , (37)

where τw is the wall’s shear stress and v̄ is the mean velocity. Since we have the expression
of the velocity distribution for the fractal case (28), we can easily obtain τw and v̄ for
such a case:

τw = −µ
dvx(r)

dr
|r=re (38)

v̄ =
1
Sd

∫ re

0
vx(r)ddr, (39)

where Sd is the surface in a d = D− 1 dimensional cross section with radius re, with

Sd =
∫ re

0
dD−1r =

2π(D−1)/2

Γ((D− 1)/2)
rD−1

e
(D− 1)

. (40)

The final expressions of τw and v̄ are as follows:

τw =
∆p

(D− 1)c
r1−γ

e (41)

v̄ =
∆p

cµΓ((D− 1)/2)(D + 1)(D− 1)
r2−γ

e . (42)

Replacing Equations (41) and (42) in Equation (37), we get the following for the Darcy
friction factor:

f =
8[Γ((D− 1)/2)(D + 1)]2(D− 1)µ2c

ρ∆p
rγ−3

e . (43)

If we set D = 3 and Ds3 = 2, we get the standard equation for the Darcy friction factor
for the laminar flow of a viscous fluid:

f =
64
<e

, (44)

where <e is the Reynolds number.
The new expression of the friction factor (43) contains fractal dimension D describing

the self-similarity of the fluid and surface fractal dimension Ds3 describing the roughness of
the surface, that is, even the self-similarity of the fluid has an influence on how the surface
affects the flow dynamics.



Fractal Fract. 2023, 7, 61 11 of 17

The different formulas found in this section are plotted numerically, and fully dis-
cussed in what comes next.

4. Results and Discussion

To describe the fractal structure of the tube surface, it is critical to understand the tube
length–radius relationship discussed in earlier sections. The relationship L ∝ rγ

e describes
the roughness of the surface for anisotropic and isotropic media. To simplify the analysis,
an isotropic case is assumed, where only the dimension Ds3 is required to determine the
roughness of the tube’s surface. In this case we get 3−Ds3

2Ds3−3 . When the medium is anisotropic,
modern approaches such as 3-D image analysis should be used to determine the roughness
parameters (e.g., Ds2 and Ds3). The range of values of Ds3 (2 ≤ Ds3 < 3) yields that γ
varies between 1 and 0. A value of Ds3 = 2(γ = 1) represents a smooth surface, and a
value of Ds3 = 3 (γ = 0) corresponds to an extremely rough surface, which completely
blocks the flow of the fluid. The velocity distribution (28) is proportional to the power
2αr, which means that the flow dynamics are strongly influenced by the fractal nature of
the fluid. The fractal dimensions αr and dx reflect the self-similarity present in the fluid,
and the fluid is fractal when αr < 1 and dx < 1. Additionally, Equation (28) shows that
to have zero viscous shear effects at the center of the tube, the velocity gradient must be
zero at r = 0, which places a limit on the values of the radial dimension αr and gives us
0.5 < αr ≤ 1.

A very important aspect to point out is that the velocity distribution (28), the fluid dis-
charge (35), and the friction factor (43) are new expressions that contain fractal dimensions,
which are theoretically based. These new expressions are very interesting because they can
prove useful in the prediction of the behavior of complex fluids that are in contact with a
surface that present an irregular pattern. A very good example of application would be the
human bone, which is saturated by interstitial fluid and blood. The latter is considered to
be a self-similar fluid, and the human bone is a porous medium, where the pores does not
have a regular shape, nor a smooth solid–fluid interface. Likewise, the models that exist
today do not consider the roughness of the solid–fluid interface.

Figures 6 and 7 plot the velocity profile defined by Equation (28) and demonstrate
some interesting results. For instance, in Figure 6, it appears that the fractal nature of
the fluid plays a significant role in the flow dynamics. By comparing (a) αr = 1 to (b)
αr = 0.55, we see that the velocity profile becomes narrower and has a higher amplitude.
This is because a fluid with a higher degree of self-similarity becomes thicker near the
walls, leading to a narrower velocity distribution and an increase in the velocity profile’s
amplitude in the center of the tube due to the conservation of momentum. In contrast,
Figure 7 shows that when the surface becomes rougher (from (a) a smooth surface (Ds3 = 2)
to (b) a rough surface (Ds3 = 2.9)), the velocity profile’s amplitude decreases by a factor
of 102. This is expected because Ds3 is a measure of surface roughness and an increase
in Ds3 leads to an increase in friction losses. However, unlike the fractal nature of the
fluid, surface roughness does not affect the velocity profile’s shape. Therefore, it is safe to
conclude that the effect of the self-similarity of the fluid is dominant compared to that of the
surface roughness. Another interesting result, is that the behavior of self-similar fluids is
very similar to that of non-Newtonian fluids, more specifically, shear-thickening (dilatant)
fluids. The similarity between the two is highlighted in Figure 8, which plots the velocity
profile defined by Equation (28) for αr = 0.9 and Ds3 = 2.223 , compared with the velocity
distribution of a shear-thickening fluid modeled by the Ostwald–de Waele relationship
(power-law model) with n = 1.5. The number n is called the power-law index, which is an
empirical number specific to the type of the fluid. A fluid is classified as pseudoplastic or
shear-thinning when the power n is less than one, as Newtonian when n is equal to one, and
as dilatant or shear-thickening when n is greater than one. As the figure illustrates, it is very
clear that shear-thickening fluids and self-similar fluids have the same behavior. We assume
that the new expression of the velocity profile we found can also predict the rheological
behavior of shear-thickening fluids. This is interesting because the models that describe
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these fluids are, generally speaking, empirical or semi-empirical models (e.g., a power-law
model), on the other hand, Equation (28) is a theory-based formula. Nevertheless, the
exact interpretation of these results need further extensive experimental and theoretical
investigations, which will be considered for future studies.
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Figure 6. Plots of velocity profiles defined by Equation (28), with r∗ = r/re, dx = 0.9, ∆p = 25 Pa,
µ = 10−3 Pa.s, and c = 100 m1−γ.
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Figure 7. Plots of velocity profiles defined by Equation (28), with r∗ = r/re, dx = 0.9, ∆p = 25 Pa,
µ = 10−3 Pa.s, and c = 100 m1−γ.
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Figure 8. Plots of the velocity profile defined by Equation (28) for αr = 0.9 and Ds3 = 2.223,
compared with the velocity distribution of a dilatant fluid with index n = 1.5, with r∗ = r/re,
dx = 0.9, ∆p = 25 Pa, µ = 10−3 Pa.s, and c = 100 m1−γ.

Figure 9 plots the fractal fluid discharge with radial dimension αr = 1 with respect
to the surface fractal dimension Ds3 for (a) 1 < D ≤ 3 and (b) 0 < D < 1. Figure 9a
illustrates that the flow decreases as the surface fractal dimension increases, which is
obvious and already discussed earlier in this section. In contrast, Figure 9b demonstrates a
very interesting result for fluids with mass dimension D < 1. We can see that the fractal
fluid discharge Q is negative. The same thing can be observed in Figure 10, which plots the
friction factor with respect to the surface fractal dimension Ss3 for different values of the
mass dimension D. We can see that for D < 1, the friction factor is negative. Keep in mind
that D < 1 corresponds to a very high degree of self-similarity present in the fluid. The
negative values of the fluid discharge and the friction factor is due to the effective viscosity
being negative for values of D < 1, which is shown in Figure 11. Experiments have shown
that it is possible to achieve negative viscosity, and that this can have significant effects.
Researchers from Paris-Sud University found that certain types of bacteria can change
the viscosity of a liquid by altering the fluid’s hydrodynamic properties through their
swimming motion. It was predicted that these microorganisms could reduce the viscosity
of a fluid to zero under certain conditions, resulting in a superfluid. By providing the
bacteria with extra nutrients, the researchers observed not only a viscosity of zero, but also
negative values of viscosity, as measured by a rheometer (for more details see ref. [48]).
Interestingly enough, based on the definition of self-similarity, bacteria suspensions can
also exhibit some characteristics of a fractal distribution similar to self-similar fluids.
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Figure 9. Plots of the fractal fluid discharge Q defined by Equation (35) with respect to the sur-
face fractal dimension Ds3 for different values of the mass dimension D, for (a) 1 < D ≤ 3, and
(b) 0 < D < 1. ∆p = 25 Pa, µ = 10−3 Pa.s, and c = 100 m1−γ.
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Figure 10. Plots of the Darcy friction factor defined by Equation (43) with respect to the surface fractal
dimension Ds3 for different values of the mass dimension D, with ∆p = 25 Pa, µ = 10−3 Pa.s, and
c = 100 m1−γ.
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Figure 11. Plots of the effective viscosity defined by Equation (34) with respect to the mass dimen-
sion D.

5. Concluding Remarks

To conclude, the use of fractal dimensions to describe the fractal structures of fluids and
surfaces was presented. The main objective of this study was to combine and compare the
effects of the fractal nature of the fluid and the tube surface, which had not been considered
before. By using a fractal approach, we found new expressions for the velocity profile, the
fluid discharge, and the friction factor. Our findings showed some very interesting results.
The fractal dimensions describing a self-similar fluid and those describing the pipe’s surface
roughness affected differently the flow of the fluid. The fractal structure of a fluid affected
both the shape and the amplitude of the velocity profile. On the other hand, the surface
roughness using fractal dimensions affected only the amplitude, meaning that the effect of
the fractality of the fluid was dominant compared to that of the surface roughness. It is
also important to mention that this study qualitatively demonstrated that self-similar fluids
and shear-thickening fluids had the same rheological behavior. Nevertheless, the exact
interpretations need further studies. We anticipate that this approach will spur further
theoretical and experimental investigations on the study of the flow dynamics of fractal
fluids through a rough surface, for instance, a fractal fluid flow through a porous medium
(e.g., bones saturated by blood), where the pores are considered to be rough-walled tubes.
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