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IMPLICIT DISCRETIZATION OF LAGRANGIAN GAS DYNAMICS

Alexiane Plessier1,2,*, Stéphane Del Pino1,3 and Bruno Després2,4

Abstract. We construct an original framework based on convex analysis to prove the existence and
uniqueness of a solution to a class of implicit numerical schemes. We propose an application of this
general framework in the case of a new non linear implicit scheme for the 1D Lagrangian gas dynamics
equations. We provide numerical illustrations that corroborate our proof of unconditional stability for
this non linear implicit scheme.
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1. Introduction

To approach equations traducing the movements of compressible fluids, explicit schemes are traditionally
used, see [17, 30]. Explicit schemes need to satisfy a stability CFL condition such as 𝑐∆𝑡 ≤ ∆𝑥, where 𝑐 is the
speed of sound, ∆𝑡 is the time step, and ∆𝑥 is the size of the discretization in space of the mesh. In some cases,
this CFL constraint contributes to have such small time steps that it becomes unfavourable to use explicit
methods.

An alternative is to use implicit in time schemes which have always aroused interest in the literature. In
particular, they are much less sensitive to the CFL number: for example a finite difference algorithm is proposed
in [2], implicit and semi-implicit schemes are investigated in [37] and an experimentation on implicit upwind
methods for Euler equations is done in [26]. Some other implicit algorithms are explained in the following
articles, see for example [10, 25, 29]. A large part of them use the method of predictor-corrector scheme like
in [21,27,39–41]. More recent works can be found in [7,28]. A major reference in the context of our work is [15]
where an implicit Lagrangian scheme for non viscous compressible gas dynamics is studied for astrophysical
purposes, but only by means of numerical experiments and without further theoretical foundation.

Nonetheless, major technical difficulties appear for the numerical resolution of fully implicit non linear
schemes. At a theoretical level, it is difficult to prove the existence and uniqueness of a solution to implicit
schemes. Currently, a powerful theory is the one developed in [16], for Navier-Stokes equations, using the topo-
logical degree. The existence of a solution is proved in details, but the uniqueness requires restrictive hypothesis.
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Another strategy is explained in [4] for piecewise linear functions in the case of a symmetrical structure of the
linear part of the system. The existence of a solution is proved, and the uniqueness is also studied in the case of
special hypothesis. The non-linear implicit-explicit strategy in [15] is second order in both space and time, but
there are no proof of existence or uniqueness even if the numerical results indicate good robustness. In some
sense, our work answers positively to the theoretical issue raised in [15] about the construction of fully justified
implicit solvers.

Our original contributions to this field in this work are, firstly the elaboration of a general framework which
allows to prove existence and uniqueness of implicit solution of some numerical schemes, and secondly the
application of the general framework in the case of a non linear implicit scheme for the 1D model problem (1)
written in semi-Lagrangian coordinates (semi-Lagrangian coordinates means Lagrange+update)⎧⎪⎨⎪⎩

𝜌𝐷𝑡𝜏 − 𝜕𝑥𝑢 = 0,
𝜌𝐷𝑡𝑢+ 𝜕𝑥𝑝 = 0,

𝜌𝐷𝑡𝐸 + 𝜕𝑥𝑝𝑢 = 0.
(1)

One has 𝜌 = 1
𝜏 > 0 the mass density, 𝑝 is the pressure, 𝑢 is the velocity and 𝐸 is the total energy density. The

variables 𝜏 and 𝑝 are taken positive to be physically admissible, see [34] or [13] for more details. The material
derivative used in (1) and afterwards is 𝐷𝑡 = 𝜕𝑡 + 𝑢𝜕𝑥. The following set of equations is the isentropic Euler
equations that is approximated by the prediction step of our implicit scheme⎧⎪⎨⎪⎩

𝜌𝐷𝑡𝜏 − 𝜕𝑥𝑢 = 0,
𝜌𝐷𝑡𝑢+ 𝜕𝑥𝑝 = 0,

𝜌𝐷𝑡𝑆 = 0.
(2)

The first two equations are identical to (1), only the last one is different, with 𝑆 denoting the physical entropy.
To simplify, these equations are equipped with a perfect gas equation of state⎧⎪⎪⎨⎪⎪⎩

𝑝 = (𝛾 − 1)
𝑒

𝜏
,

𝑒 = 𝐶𝑣𝑇,

𝑆 = 𝐶𝑣 log(𝑒𝜏𝛾−1),

(3)

where 𝐶𝑣 is the thermal capacity at constant volume, 𝛾 > 1 is the adiabatic index, 𝑒 = 𝐸 − 1
2𝑢

2 is the internal
energy density, 𝑇 is the temperature and 𝑐 is the speed of sound given by 𝑐2 = 𝜕𝑝

𝜕𝜌 .

The justification of using a prediction step based on the discretization of (2) comes from ideas in the work of
Chalons, Coquel and Marmignon [5]. It will be explained in details in this article.

Consider a mesh ℳ composed of 𝑁 cells noted 𝑗 ∈ {1, . . . , 𝑁}. The time 𝑡 is discretized with a time step ∆𝑡
that corresponds to one iteration. The mass of the cell 𝑗 is 𝑀𝑗 . The boundary conditions are supposed periodic,
and the fluxes are defined with the acoustic impedance 𝛼𝑗+ 1

2
> 0. The scheme has a predictor-corrector structure.

The prediction step is written as

Prediction step

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜏𝑗 = 𝜏𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑢𝑗+ 1
2
− 𝑢𝑗− 1

2
),

𝑢𝑗 = 𝑢𝑛
𝑗 −

∆𝑡
𝑀𝑗

(𝑝𝑗+ 1
2
− 𝑝𝑗− 1

2
),

𝑆𝑗 = 𝑆𝑛
𝑗 .

(4)
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The correction step is given by

Correction step

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜏𝑛+1
𝑗 = 𝜏𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑢𝑗+ 1
2
− 𝑢𝑗− 1

2
),

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 −
∆𝑡
𝑀𝑗

(𝑝𝑗+ 1
2
− 𝑝𝑗− 1

2
),

𝐸𝑛+1
𝑗 = 𝐸𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑝𝑗+ 1
2
𝑢𝑗+ 1

2
− 𝑝𝑗− 1

2
𝑢𝑗− 1

2
),

(5)

where only the total energy is modified. The correction step is explicit so the main difficulty is in the prediction
step.

In (4) and (5), the fluxes are defined by

𝑝𝑗 − 𝑝𝑗+ 1
2

= 𝛼𝑛
𝑗+ 1

2
(𝑢𝑗+ 1

2
− 𝑢𝑗), 𝑝𝑗 − 𝑝𝑗− 1

2
= 𝛼𝑛

𝑗− 1
2
(𝑢𝑗 − 𝑢𝑗− 1

2
),

where the coefficient 𝛼𝑛
𝑗+ 1

2
> 0 is for simplicity equal to a mean value of the acoustic impedance: 𝛼𝑗+ 1

2
=

1
2 (𝜌𝑗𝑐𝑗 + 𝜌𝑗+1𝑐𝑗+1). Another equivalent formula is⎧⎪⎪⎨⎪⎪⎩

𝑝𝑗+ 1
2

=
𝜌𝑗𝑐𝑗 + 𝜌𝑗+1𝑐𝑗+1

4
(𝑢𝑗 − 𝑢𝑗+1) +

1
2

(𝑝𝑗 + 𝑝𝑗+1),

𝑢𝑗+ 1
2

=
1

𝜌𝑗𝑐𝑗 + 𝜌𝑗+1𝑐𝑗+1
(𝑝𝑗 − 𝑝𝑗+1) +

1
2

(𝑢𝑗 + 𝑢𝑗+1).

In Lagrangian formalism, the mesh moves according to the velocity of the fluid: 𝑥𝑛+1
𝑗+ 1

2
= 𝑥𝑛

𝑗+ 1
2

+ ∆𝑡𝑢𝑛
𝑗+ 1

2
. The

predictor-corrector scheme (4–5) is naturally conservative since it is expressed in terms of fluxes. Such a scheme
can be proved to be weakly consistent as in Després [11, 12].

The predictor-corrector scheme is an adaptation of ideas from the article [5] which is dedicated to solve the
Euler equation (6) in Eulerian coordinates⎧⎪⎨⎪⎩

𝜕𝑡𝜌+ 𝜕𝑥𝜌𝑢 = 0,
𝜕𝑡𝜌𝑢+ 𝜕𝑥(𝜌𝑢2 + 𝑝) = 0,

𝜕𝑡𝜌𝐸 + 𝜕𝑥(𝜌𝐸𝑢+ 𝑝𝑢) = 0.
(6)

The authors explain that the difficulties of solving this system come from the flux terms in the second and third
equations. Indeed, there is a strong non linearity due in particular to the pressure. To overcome this complexity,
the authors propose a predictor-corrector strategy that we use also in this work. Firstly is to solve the isentropic
Euler equation (7) during the prediction step⎧⎪⎨⎪⎩

𝜕𝑡𝜌+ 𝜕𝑥𝜌𝑢 = 0,
𝜕𝑡𝜌𝑢+ 𝜕𝑥(𝜌𝑢2 + 𝑝) = 0,

𝜕𝑡𝜌𝑆 + 𝜕𝑥𝜌𝑆𝑢 = 0.
(7)

Secondly, the classical Euler equation (6) are solved in order to restore the conservation of the total energy.
At a discrete level, the fluxes are expressed thanks to an isentropic scheme, and then inserted in the scheme
associated to (6). For the prediction step, the authors use a relaxation scheme on the pressure. They prove the
existence of a solution to the relaxation implicit scheme. Nonetheless, the robustness of the scheme depends on
an extra equation as mentionned in a report, see [33].

Let us now describe our results. For physically admissible data, the system (4) will be said unconditionally
stable if there exists a unique solution to the implicit non-linear scheme. Our proof of the unconditional stability
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of (4) comes from a rewriting of the prediction step (4) under the form{︂
Find 𝑈 ∈ 𝒟 such that
∇𝐽(𝑈) = 𝐴𝑈,

(8)

where 𝑈 is a vector of real unknowns, 𝐽 is a functional defined on a domain 𝒟 and 𝐴 is a matrix of real
coefficients. In our case, 𝐽 is strictly convex over its domain and 𝐴 is skew-symmetric, so the transformation
𝑈 ↦→ ∇𝐽(𝑈)−𝐴𝑈 is a monotone operator, see Brézis [3].

The proof that (8) has a unique solution relies on Theorem 1.4 that seems to be new considering the classical
literature of convex analysis, see [1, 18,20]. The ingredients to establish Theorem 1.4 are the following.

Hypothesis 1.1. The open convex domain is 𝒟 =] −∞, 0[𝑛×R𝑚 ⊂ R𝑛 × R𝑚, where 𝑛 > 0 and 𝑚 ≥ 0 5. Its
boundary is 𝜕𝒟 = {𝑉 ∈ R𝑛+𝑚 : ∃ 𝑗* ∈ {1, . . . , 𝑛} 𝑉𝑗* = 0, ∀𝑗 ̸= 𝑗* ∈ {1, . . . , 𝑛}, 𝑉𝑗 ≤ 0}.

We made a slight abuse of notations by using the same letter 𝑛 in the Hypothesis 1.1 as the iteration index in
the scheme (4–5). We believe this does not interfere with the readability.

Hypothesis 1.2. The function 𝐽 : 𝑈 ∈ 𝒟 → 𝐽(𝑈) ∈ R is 𝒞3, strictly convex and coercive in the sense that

𝐽(𝑈) → +∞ for ||𝑈 || −−−→
𝑈∈𝒟

+∞. (9)

Moreover for all 𝑉 ∈ 𝜕𝒟 there exists a unit direction 𝑑 ∈ R𝑛+𝑚 which is outward from 𝒟 such that

(∇𝐽(𝑉 − 𝜀𝑑),𝑑) 𝜀→0+

−−−−−−→
𝑉−𝜀𝑑∈𝒟

+∞. (10)

Also for all 𝑉 ∈ 𝜕𝒟, one has
||∇𝐽(𝑊 )|| 𝑊→𝑉−−−−→

𝑊∈𝒟
+∞. (11)

The verification of (9), (10) and (11) will be obtained directly from the perfect gas law equations (3). For an
isentropic gas, it can be simplified.

Hypothesis 1.3. The matrix 𝐴 ∈ℳ𝑛+𝑚(R) is skew-symmetric and its kernel satisfies ker(𝐴) ∩ 𝒟 ≠ ∅.

Theorem 1.4. Under the Hypothesis 1.1, 1.2 and 1.3, the problem (8) has a unique solution.

Applying this Theorem, we show that (4) is well defined for all ∆𝑡 > 0.

Corollary 1.5. Considering physically admissible data (𝜏𝑛
𝑗 > 0 for all 𝑗), the prediction scheme (4) can be

written under the form (8). Therefore, it is unconditionally stable.

Moreover, the predictor-corrector scheme (4–5) satisfies two entropy inequalities.

Theorem 1.6. For all ∆𝑡 > 0, the solution of the prediction step (4) satisfies

∀𝑗,
𝐸𝑗 − 𝐸𝑛

𝑗

∆𝑡
+
𝑝𝑢𝑗+ 1

2
− 𝑝𝑢𝑗− 1

2

𝑀𝑗
≤ 0, with 𝑝𝑢𝑗+ 1

2
= 𝑝𝑗+ 1

2
𝑢𝑗+ 1

2
. (12)

The solution of the correction step (5) verifies the entropy inequality

∀𝑗,
𝑆𝑛+1

𝑗 − 𝑆𝑛
𝑗

∆𝑡
≥ 0. (13)

5The case 𝑚 = 0 corresponds to one unknown systems. For example the Traffic flow equations where the only unknown is the
density. Otherwise, 𝑚 > 0 and 𝑛 > 0.
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The organization of this article is as follows. In Section 2 we write the scheme (4) under the form (8). In Section 3,
we prove Theorem 1.4. The proof is split in several parts. On the one side we rapidly prove the uniqueness of a
solution, and on the other side we decompose the proof of the existence in different steps. In Section 4, we apply
Theorem 1.4 for the isentropic Euler equations, and prove Corollary 1.5. In Section 5, the correction step is
introduced and the complete scheme is fully justified. The proof of Theorem 1.6 concerning entropy inequalities
for both steps is detailed. In Section 6, we provide a few numerical illustrations. The Appendix contains a brief
description of the modification to treat an isothermal equation of state.

2. Formulation under the form (8)

The objective of this Section is to provide the details of the transformation from the implicit scheme (4) to
the form (8). The verification of Hypothesis 1.1, 1.2 and 1.3 will be performed in Section 4.

We consider Euler isentropic equations in one dimension (2) for compressible perfect gas with periodic bound-
ary conditions. As the physical entropy 𝑆 is constant during this prediction step, its equation is not necessary
for the proof. Replacing the fluxes and rearranging the terms in (4), one obtains

2𝑀𝑗

∆𝑡
(𝜏𝑗 − 𝜏𝑛

𝑗 ) +
1

𝛼𝑛
𝑗+ 1

2

(𝑝𝑗+1 − 𝑝𝑗) +
1

𝛼𝑛
𝑗− 1

2

(𝑝𝑗−1 − 𝑝𝑗) = 𝑢𝑗+1 − 𝑢𝑗−1,

2𝑀𝑗

∆𝑡
(𝑢𝑗 − 𝑢𝑛

𝑗 ) + 𝛼𝑛
𝑗+ 1

2
(𝑢𝑗 − 𝑢𝑗+1) + 𝛼𝑛

𝑗− 1
2
(𝑢𝑗 − 𝑢𝑗−1) = 𝑝𝑗−1 − 𝑝𝑗+1.

(14)

Let us define a vector of unknowns

𝑈 = ((−𝑝𝑗)𝑗∈{1,...,𝑁}, (𝑢𝑗)𝑗∈{1,...,𝑁}) ∈ 𝒟, (15)

where the domain 𝒟 is defined as

𝒟 = {𝑈 such that ∀𝑗 ∈ {1, . . . , 𝑁} − 𝑝𝑗 < 0, and 𝑢𝑗 ∈ R} . (16)

One then has 𝑚 = 𝑛 = 𝑁 using notations of Hypothesis 1.1. The matrix A is defined by

𝐴 =
[︂

0 B
B 0

]︂
with 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 0 1
1 0 · · · 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ℳ𝑁 (R). (17)

The functional 𝐽 : 𝒟 → R is defined as a sum of elementary functions

𝐽(𝑈) =
𝑁∑︁

𝑗=1

2𝑀𝑗

∆𝑡
[︀
𝐿1

𝑗 (−𝑝𝑗) + 𝐿2
𝑗 (𝑢𝑗)

]︀
+

𝑁∑︁
𝑗=1

[︀
𝑄1

𝑗 (−𝑝𝑗 ,−𝑝𝑗+1) +𝑄2
𝑗 (𝑢𝑗 , 𝑢𝑗+1)

]︀
, (18)

where the elementary functions are

𝐿1
𝑗 (−𝑝) = −𝐶𝑗𝑝

1− 1
𝛾 + 𝜏𝑛

𝑗 𝑝, where 𝐶𝑗 = 𝛾(𝛾 − 1)−1+ 1
𝛾 exp

(︂
𝑆𝑗

𝐶𝑣

)︂ 1
𝛾

> 0,

𝑄1
𝑗 (−𝑝,−𝑞) =

1
𝛼𝑗+ 1

2

(𝑞 − 𝑝)2

2
, 𝐿2

𝑗 (𝑢) =
𝑢2

2
− 𝑢𝑛

𝑗 𝑢, 𝑄
2
𝑗 (𝑢, 𝑣) = 𝛼𝑗+ 1

2

(𝑢− 𝑣)2

2
.

Replacing the equation of state (3) by another one leads to a new definition of the functions 𝐿1
𝑗 and 𝐿2

𝑗 . The
functions 𝑄1

𝑗 and 𝑄2
𝑗 depend only on the scheme and remain the same.
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Proposition 2.1. The calculation of a solution (𝜏𝑗 > 0, 𝑢𝑗)1≤𝑗≤𝑁 to the system (14) of scalar non-linear equa-
tions is equivalent to the calculation of a solution 𝑈 ∈ 𝒟 to the global non-linear equation ∇𝐽(𝑈) = 𝐴𝑈 .

Proof. For a perfect gas law, the correspondence between 𝜏 , 𝑝 and 𝑆 can be written as 𝜏 = (𝛾−1) exp ( 𝑆
𝐶𝑣

)
1
𝛾 𝑝−

1
𝛾 .

Therefore the equivalence between a solution of (14) and a solution (15) of ∇𝐽(𝑈) = 𝐴𝑈 is explicited by

𝜏𝑗 = (𝛾 − 1) exp
(︂
𝑆𝑗

𝐶𝑣

)︂ 1
𝛾

𝑝
− 1

𝛾

𝑗 and 𝑢𝑗 = 𝑢𝑗 . (19)

To finish the proof it is sufficient to calculate explicitly ∇𝐽(𝑈). The derivatives of 𝐿1
𝑗 , 𝐿2

𝑗 , 𝑄1
𝑗 and 𝑄2

𝑗 are

𝜕𝐿1
𝑗

𝜕(−𝑝𝑗)
= 𝐶𝑗

(︂
𝛾 − 1
𝛾

)︂
𝑝
− 1

𝛾

𝑗 − 𝜏𝑛
𝑗 = 𝜏𝑗 − 𝜏𝑛

𝑗 ,
𝜕𝐿2

𝑗

𝜕𝑢𝑗
= 𝑢𝑗 − 𝑢𝑛

𝑗 ,

𝜕𝑄1
𝑗

𝜕(−𝑝𝑗)
=

1
𝛼𝑗+ 1

2

(𝑝𝑗+1 − 𝑝𝑗) +
1

𝛼𝑗− 1
2

(𝑝𝑗−1 − 𝑝𝑗),

𝜕𝑄2
𝑗

𝜕𝑢𝑗
= 𝛼𝑗+ 1

2
(𝑢𝑗 − 𝑢𝑗+1) + 𝛼𝑗− 1

2
(𝑢𝑗 − 𝑢𝑗−1).

By (18), one calculates all the components of the vector ∇𝐽(𝑈) ∈ R2𝑁 . With the definition (17) of the matrix
𝐴, one obtains immediately that the first 𝑁 equations in the vectorial identity ∇𝐽(𝑈) = 𝐴𝑈 are

2𝑀𝑗

∆𝑡
(𝜏𝑗 − 𝜏𝑛

𝑗 ) +
1

𝛼𝑛
𝑗+ 1

2

(𝑝𝑗+1 − 𝑝𝑗) +
1

𝛼𝑛
𝑗− 1

2

(𝑝𝑗−1 − 𝑝𝑗) = 𝑢𝑗+1 − 𝑢𝑗−1, 1 ≤ 𝑗 ≤ 𝑁, (20)

while the last 𝑁 equations are

2𝑀𝑗

∆𝑡
(𝑢𝑗 − 𝑢𝑛

𝑗 ) + 𝛼𝑛
𝑗+ 1

2
(𝑢𝑗 − 𝑢𝑗+1) + 𝛼𝑛

𝑗− 1
2
(𝑢𝑗 − 𝑢𝑗−1) = 𝑝𝑗−1 − 𝑝𝑗+1, 1 ≤ 𝑗 ≤ 𝑁. (21)

With the correspondence (19), one finds that (20 -21) is equal to (14). �

3. Proof of Theorem 1.4

In this Section, we prove Theorem 1.4 stated in the introduction under the Hypothesis 1.1, 1.2 and 1.3. Each
Subsection corresponds to an intermediate result leading to the final outcome.
In convex analysis, see e.g. [Hirriart-Urruty and Lemarechal [19] Def. 3.2.5, p 19], the closure of the function 𝐽
is 𝐽 , defined as

𝐽 : R𝑛+𝑚 →R

𝑈 ↦→

{︃
lim

𝑉→𝑈
inf

𝑉 ∈𝒟
𝐽(𝑉 ) if 𝑈 ∈ 𝒟,

+∞ if not.

(22)

By construction, 𝐽 is lower semi-continuous because 𝐽 is continuous over 𝒟. For a function 𝐽 which is coercive
on its domain 𝒟 like in (9), the closure 𝐽 is also coercive in the sense of Hirriart-Urruty [18], [Chapter 2, p 41]

𝐽(𝑈) → +∞ for ||𝑈 || −−−−−−→
𝑈∈R𝑛+𝑚

+∞.



IMPLICIT DISCRETIZATION OF LAGRANGIAN GAS DYNAMICS 723

3.1. Uniqueness

It relies on elementary considerations which are classical for monotone operators [3].

Lemma 3.1. Assuming that the problem (8) admits a solution in 𝒟, then it is unique.

Proof. Let 𝑈1 ∈ 𝒟 and 𝑈2 ∈ 𝒟 be two solutions of the problem (8){︂∇𝐽(𝑈1) = 𝐴𝑈1,

∇𝐽(𝑈2) = 𝐴𝑈2.

One has
(∇𝐽(𝑈1)−∇𝐽(𝑈2), 𝑈1 − 𝑈2) = (𝐴(𝑈1 − 𝑈2), 𝑈1 − 𝑈2) .

Since 𝐴 is a skew-symmetric matrix therefore (𝐴(𝑈1 − 𝑈2), 𝑈1 − 𝑈2) = 0, that is

(∇𝐽(𝑈1)−∇𝐽(𝑈2), 𝑈1 − 𝑈2) = 0.

Since 𝐽 is strictly convex, this is only satisfied if 𝑈1 = 𝑈2. �

3.2. Existence

The existence of a solution relies on a few intermediate results which are convenient for our model problem.

3.2.1. Existence of a minimum for 𝐽

The first result to prove is the existence of a minimum point for the function 𝐽 , using a classical result from
convex analysis.

Lemma 3.2. The function 𝐽 admits a unique minimum 𝑈 ∈ 𝒟.

Proof. We use [Definition 3.2.6, p. 180] of Hirriart-Urruty and Lemarechal [19] to the function 𝑓 = 𝐽 . So there
exists 𝑈 ∈ R𝑛+𝑚 such that 𝐽(𝑈) ≤ 𝐽(𝑉 ) for all 𝑉 ∈ R𝑛+𝑚. Necessarily 𝐽(𝑈) <∞ is finite so 𝑈 ∈ 𝒟. It remains
to show that 𝑈 /∈ 𝜕𝒟.

Let us assume on the contrary that 𝑈 ∈ 𝜕𝒟. Thanks to the convexity of 𝐽 and inequality (10) in Hypothe-
sis 1.2, one can write

𝐽(𝑈) ≥ 𝐽(𝑈 − 𝜀𝑑) + 𝜀 (∇𝐽(𝑈 − 𝜀𝑑),𝑑) > 𝐽(𝑈 − 𝜀𝑑).

It is a contradiction. Therefore 𝑈 ∈ 𝒟 is a minimum and 𝑈 is unique thanks to the strict convexity of 𝐽
on 𝒟. �

Since 𝒟 is an open set, the unique minimum 𝑈 ∈ 𝒟 of 𝐽 satisfies the Euler equation, see Hirriart-Urruty [18],
[Chapter 2, p 41]

∇𝐽(𝑈) = 0.

3.2.2. A continuation method

We prove in this Section that the problem (23) admits a solution in the domain 𝒟 for all 0 ≤ 𝜀 ≤ 1{︂
Find 𝑈𝜀 ∈ 𝒟 such that
∇𝐽(𝑈𝜀) = 𝜀𝐴𝑈𝜀.

(23)

For 𝜀 = 0, the problem is treated in Section 3.2.1. This allows to write (23) with a continuation method under
the form of an initial value problem (24)⎧⎪⎨⎪⎩

∇2𝐽(𝑈𝜀)
𝑑𝑈𝜀

𝑑𝜀
= 𝐴𝑈𝜀 + 𝜀𝐴

𝑑𝑈𝜀

𝑑𝜀
,

𝑈0 = argmin
𝑈∈𝒟

𝐽(𝑈).
(24)
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A rearrangement yields (∇2𝐽(𝑈𝜀) − 𝜀𝐴)𝑑𝑈𝜀

𝑑𝜀 = 𝐴𝑈𝜀. For 𝑈 ∈ 𝒟, the matrix ∇2𝐽(𝑈) − 𝜀𝐴 is invertible thanks
to the following result.

Lemma 3.3. Let 𝐴 and 𝐵 be two matrices of ℳ𝑁,𝑁 (R), 𝑁 > 0 ∈ N, such that 𝐴 is skew symmetric and 𝐵 is
positive definite. Then the matrix 𝐶 = 𝐴+𝐵 ∈ℳ𝑁,𝑁 (R) is invertible.

The Lemma 3.3 is applied with −𝜀𝐴 ∈ ℳ𝑛+𝑚,𝑛+𝑚(R) as the skew symmetric matrix, and ∇2𝐽(𝑈𝜀) ∈
ℳ𝑛+𝑚,𝑛+𝑚(R) as the positive definite matrix. Thus (∇2𝐽(𝑈𝜀)− 𝜀𝐴)−1 exists. The initial value problem can
be rewritten as ⎧⎪⎨⎪⎩

𝑑𝑈𝜀

𝑑𝜀
= (∇2𝐽(𝑈𝜀)− 𝜀𝐴)

−1
𝐴𝑈𝜀,

𝑈0 = argmin
𝑈∈𝒟

𝐽(𝑈).

Let us define ℐ = [0,+∞[ and the function 𝐹 : ℐ×𝒟 → R𝑛+𝑚 by 𝐹 (𝜀, 𝑉 ) = (∇2𝐽(𝑉 )− 𝜀𝐴)−1
𝐴𝑉 . The problem

is rewritten as ⎧⎪⎨⎪⎩
𝑑𝑈𝜀

𝑑𝜀
= 𝐹 (𝜀, 𝑈𝜀),

𝑈0 = argmin
𝑈∈𝒟

𝐽(𝑈).
(25)

To obtain the existence of a maximal solution to (25), one can apply standard results from the theory of ODEs
that we recall now.

Definition 3.4 (see Coddington and Levinson [6], Chap. 1). Let 𝑁 ∈ N and 𝐹 : ℐ × R𝑁 → R𝑁 , let 𝜀0 ∈ ℐ,
and 𝑈𝜀 ∈ R𝑁 where ℐ is a non empty interval of R. A solution of the differential equation

𝑈 ′(𝜀) = 𝐹 (𝜀, 𝑈(𝜀)), (26)

is given by a non empty interval 𝐼 ⊂ ℐ and a differentiable function 𝑈 : 𝐼 → R𝑁 satisfying (26) for all 𝜀 ∈ 𝐼.
A solution of the initial value problem (or Cauchy problem) associated to (26) is a solution of (26) such that

𝜀0 ∈ 𝐼 and 𝑈(𝜀0) = 𝑈0.

Theorem 3.5 (Cauchy Lipschitz Theorem for locally Lipschitz functions [6], Th. 3.1, p 12). Let the function
𝐹 be a 𝒞1 function, then, for all initial data (𝜀0, 𝑈0) ∈ ℐ ×R𝑁 , there exists an interval 𝐼 ∈ ℐ containing 𝜀0 such
that there exists in 𝐼 a unique solution to the associated initial value problem.

In particular for all such data, there exists a unique maximal solution and all other solution verifying the
condition of Cauchy is a restriction of the maximal solution.

Lemma 3.6. There exists 0 < 𝜀max such that for all 𝜀 ∈ [0, 𝜀max[, the problem (25) admits a solution in 𝒟.
This solution satisfies (23).

Proof. One applies the Cauchy Lipschitz Theorem. The function 𝐹 is well defined, and differentiable in terms of
𝜀. The derivative is continuous because 𝐴 is a matrix of scalar coefficients, and 𝐽 is a function of class 𝒞2 thanks
to Hypothesis 1.2. In terms of the second variable, as ∇2𝐽 is locally Lipschitz, and the other terms are locally
bounded, 𝐹 is then of class 𝒞1. Thanks to Theorem 3.5, the problem (25) admits a unique maximal solution.
To prove the last part of the Lemma, one notes that

𝑑

𝑑𝜀
(∇𝐽(𝑈𝜀)− 𝜀𝐴𝑈𝜀) = (∇2𝐽(𝑈𝜀)− 𝜀𝐴)

𝑑

𝑑𝜀
𝑈𝜀 −𝐴𝑈𝜀 = 0.

Since ∇𝐽(𝑈0) = 0 it shows that ∇𝐽(𝑈𝜀)− 𝜀𝐴𝑈𝜀 = 0 on the maximal interval, (23) is satisfied. �

In the rest of this Section, we prove that 𝜀max > 1.
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3.2.3. Upper bound of 𝐽(𝑈𝜀)

In this Section, the objective is to prove that 𝐽(𝑈𝜀) is bounded, which is necessary to conclude that the
solution of the problem (23) stays in the domain 𝒟.

Lemma 3.7. There exists 𝑈 ∈ 𝒟 such that the following inequality is satisfied on the maximal interval

𝐽(𝑈𝜀) ≤ 𝐽(𝑈) < +∞.

Proof. Let us take 𝑈 ∈ ker(𝐴) ∩ 𝒟 that is non empty by Hypothesis 1.3. The convexity of 𝐽 implies that

𝐽(𝑈𝜀) + (∇𝐽(𝑈𝜀), 𝑈 − 𝑈𝜀) ≤ 𝐽(𝑈).

One finds
𝐽(𝑈𝜀) + (𝜀𝐴𝑈𝜀, 𝑈)− (𝜀𝐴𝑈𝜀, 𝑈𝜀) ≤ 𝐽(𝑈).

The matrix 𝐴 is skew symmetric, hence (𝐴𝑈𝜀, 𝑈𝜀) = 0. So

𝐽(𝑈𝜀) + 𝜀(𝐴𝑈𝜀, 𝑈) ≤ 𝐽(𝑈).

Using again the property of skew symmetry, one has 𝜀(𝐴𝑈𝜀, 𝑈) = −𝜀(𝐴𝑈,𝑈𝜀). As 𝑈 ∈ ker(𝐴) ∩ 𝒟, hence
(𝜀𝐴𝑈𝜀, 𝑈) = 0. So 𝐽(𝑈𝜀) ≤ 𝐽(𝑈) < +∞. �

In addition, since 𝐽 is a coercive function by Hypothesis 1.2, there exists 𝐾 < +∞ such that

||𝑈𝜀|| < 𝐾 (27)

for all 𝜀 in the maximal interval.

3.2.4. End of the proof of Theorem 1.4

The end of the proof of Theorem 1.4 is based on the following standard result.

Theorem 3.8 (see Demailly [9], Chap. 5, p 138). Let Ω be an open domain of R×R𝑚 and 𝑈 : 𝐼 = [𝑡0, 𝑏[→ R𝑚

a solution of the equation (𝐸) 𝑈 ′ = 𝐹 (𝑡, 𝑈) where 𝐹 is continuous on Ω. So 𝑈(𝑡) can be continuated further
than 𝑏 if and only if there exists a compact 𝐶 ⊂ Ω such that the curve 𝑡 ↦→ (𝑡, 𝑈(𝑡)), 𝑡 ∈ [𝑡0, 𝑏[, stays in 𝐶.

For our problem, one has the Property.

Proposition 3.9. There exists a compact 𝐶 ⊂ 𝒟 such that 𝑈𝜀 ∈ 𝐶 for all 𝜀 ∈ [0,min(𝜀max, 2)[.

Proof. Thanks to (27), 𝑈𝜀 is in 𝒟 ∩ 𝐵(0,𝐾). Moreover, ∇𝐽(𝑈𝜀) = 𝜀𝐴𝑈𝜀, so one has ||∇𝐽(𝑈𝜀)|| ≤ 2||𝐴||𝐾. Let
us consider

𝐶 = 𝒟 ∩𝐵(0,𝐾) ∩ {𝑉 ∈ 𝒟 such that ||∇𝐽(𝑉 )|| ≤ 2||𝐴||𝐾} .

It remains to prove that 𝐶 is a compact of 𝒟. Let us take a sequence 𝑉𝑛 ∈ 𝐶 for 𝑛 ∈ N. Since (𝑉𝑛) is bounded,
there exists 𝑉 ∈ 𝐵(0,𝐾) and a subsequence still denoted 𝑉𝑛 such that 𝑉𝑛 → 𝑉 . Necessarily 𝑉 ∈ 𝒟, so either
𝑉 ∈ 𝜕𝒟 or 𝑉 ∈ 𝒟.

Let us assume that 𝑉 ∈ 𝜕𝒟. Thanks to Hypothesis 1.2, inequality (11), one has ||∇𝐽(𝑉𝑛)|| → +∞. It is
a contradiction with the definition of 𝐶. Therefore 𝑉 ∈ 𝒟. Since 𝐽 is 𝐶2, ∇𝐽 is a continuous function and
||∇𝐽(𝑉 )|| ≤ 2||𝐴||𝐾. So 𝑉 ∈ 𝐶, which shows that 𝐶 is a compact of 𝒟. �

Proof of Theorem 1.4. Thanks to Proposition 3.9 and Theorem 3.8, one has that 𝜀max > 1. Therefore, one takes
𝜀 = 1 which concludes the proof of existence of the solution of (8). �
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4. Proof of the unconditional stability of Corollary 1.5

We prove the unconditional stability for the prediction step corresponding to the implicit discretization of
the isentropic Euler equations. In this purpose we apply Theorem 1.4 after a precise check of the hypothesis.
The definitions of 𝐽 , 𝐴 and 𝑈 are given in Section 2.

4.1. Properties of J

We verify the properties of Hypothesis 1.2, that is the strict convexity of 𝐽 , its coercivity and its limits at
the boundary of the domain 𝒟.

Property 4.1. The function 𝐽 (18) is continuous on 𝒟 (evident).

Property 4.2. The function 𝐽 (18) is strictly convex on 𝒟.

The proof is easily verified, but we detail the calculations.

Proof. The second derivatives, for all 𝑗 and 𝑘 ∈ {1, . . . , 𝑁} are

𝜕2𝐿1
𝑗

𝜕(−𝑝𝑗)2
= 𝐶𝑗

(︂
𝛾 − 1
𝛾2

)︂
𝑝
−1− 1

𝛾

𝑗 ,
𝜕2𝐿1

𝑗

𝜕(−𝑝𝑗)𝜕(−𝑝𝑘)
= 0,

𝜕2𝐿2
𝑗

𝜕𝑢2
𝑗

= 1,
𝜕2𝐿2

𝑗

𝜕𝑢𝑗𝜕𝑢𝑘
= 0.

𝜕2𝑄1
𝑗

𝜕(−𝑝𝑗)𝜕(−𝑝𝑘)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
𝛼𝑗+ 1

2

+
1

𝛼𝑗− 1
2

, if 𝑘 = 𝑗,

− 1
𝛼𝑗− 1

2

, if 𝑘 = 𝑗 − 1,

− 1
𝛼𝑗+ 1

2

, if 𝑘 = 𝑗 + 1,

0, otherwise.

,

𝜕2𝑄2
𝑗

𝜕(𝑢𝑗)𝜕(𝑢𝑘)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼𝑗+ 1

2
+ 𝛼𝑗− 1

2
, if 𝑘 = 𝑗,

−𝛼𝑗− 1
2
, if 𝑘 = 𝑗 − 1,

−𝛼𝑗+ 1
2
, if 𝑘 = 𝑗 + 1,

0, otherwise.

Hence, for all 𝑈 ∈ 𝒟, and for all 𝑍 ∈ R2𝑁 , one has

(∇2𝐽(𝑈)𝑍,𝑍) =

(︃
𝜕2𝐿1

𝑗

𝜕(−𝑝𝑗)2
+

1
2

𝜕2𝑄1
𝑗

𝜕(−𝑝𝑗)2

)︃
(−𝑝𝑍

𝑗 )
2

+

(︃
𝜕2𝐿2

𝑗

𝜕𝑢2
𝑗

+
1
2
𝜕2𝑄2

𝑗

𝜕𝑢2
𝑗

)︃
(𝑢𝑍

𝑗 )
2

+
𝑁∑︁

𝑗=1

1
2

(︃
1

𝛼𝑗+ 1
2

+
1

𝛼𝑗− 1
2

)︃
(𝑝𝑍

𝑗+1 − 𝑝𝑍
𝑗 )

2
+

𝑁∑︁
𝑗=1

1
2

(𝛼𝑗+ 1
2

+ 𝛼𝑗− 1
2
)(𝑢𝑍

𝑗 − 𝑢𝑍
𝑗+1)

2
.

For 𝑍 ̸= 0, one has (∇2𝐽(𝑈)𝑍,𝑍) > 0. Therefore the function 𝐽 is strictly convex on 𝒟. �

Property 4.3. The function 𝐽 is coercive on 𝒟.

Proof. The function 𝐽 (18) is the sum of elementary functions 𝐿1
𝑗 , 𝐿2

𝑗 , 𝑄1
𝑗 and 𝑄2

𝑗 . The quadratic functions 𝑄1
𝑗

and 𝑄2
𝑗 are clearly bounded from below, as well as 𝐿2

𝑗 . The function 𝐿1
𝑗 is also bounded from below because

𝐶𝑗 > 0, 𝜏𝑛
𝑗 > 0, 𝛾 > 1 and 𝑝1− 1

𝛾 is dominated by 𝑝 for 𝑝 → +∞. So 𝐿1
𝑗 is coercive. It is evident that 𝐿2

𝑗 is
coercive. Since 𝐽 is defined by a sum over all indices 1 ≤ 𝑗 ≤ 𝑁 , then 𝐽 is coercive. �
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Property 4.4. For all 𝑉 ∈ 𝜕𝒟, 𝐽 defined by (18) satisfies the limits (10) and (11).

Proof. The first derivative of 𝐽 with respect to −𝑝 is

𝜕𝐽

𝜕(−𝑝𝑗)
= 𝐶𝑗

(︂
𝛾 − 1
𝛾

)︂
𝑝
− 1

𝛾

𝑗 − 𝜏𝑛
𝑗 +

1
𝛼𝑗+ 1

2

(𝑝𝑗+1 − 𝑝𝑗) +
1

𝛼𝑗− 1
2

(𝑝𝑗−1 − 𝑝𝑗).

Let 𝑉 ∈ 𝜕𝒟. It means that there exists a non empty subset 𝐾 ⊂ {1, . . . , 𝑁} such that for all 𝑘 ∈ 𝐾, 𝑉𝑘 = 0.
One takes as the unit outward direction 𝑑 ∈ R𝑁+𝑁 , such that ∀𝑘 ∈ 𝐾, 𝑑𝑘 > 0 and for all 𝑗 ̸∈ 𝐾, 𝑑𝑗 = 0. The
limit of the first derivative of 𝐽 when 𝜀→ 0+ is ∀𝑘 ∈ 𝐾

lim
𝜀→0+

𝜕𝐽

𝜕(−𝑝𝑘)

⃒⃒⃒⃒
𝑉−𝜀𝑑

= lim
𝜀→0+

− 𝜏𝑛
𝑘 + 𝐶𝑘

(︂
𝛾 − 1
𝛾

)︂
1

𝜀
1
𝛾

+
1

𝛼𝑘+ 1
2

(𝑝𝑘+1 − 𝜀) +
1

𝛼𝑘− 1
2

(𝑝𝑘−1 − 𝜀),

= +∞.

Indeed, lim
𝜀→0+

1

𝜀
1
𝛾

= +∞, and all other limits are finite. By summation over 𝑘 ∈ 𝐾, and then over all indices for

which the value of 𝑑 is 0, one obtains (10). An evaluation of lim
𝑊→𝑉

𝜕𝐽
𝜕(−𝑝𝑘)

⃒⃒⃒
𝑊

easily gives (11). �

4.1.1. Properties of matrix A

Let us prove Hypothesis 1.3 holds.

Property 4.5. The matrix 𝐴 defined by (17) is skew-symmetric (by construction).

Property 4.6. The kernel of 𝐴 and the domain 𝒟 intersect.

Proof. We first evaluate the kernel of the matrix 𝐴. Let 𝑋 ∈ R2𝑁 satisfying 𝐴𝑋 = 0, so⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥𝑁+2 − 𝑥2𝑁 = 0,
−𝑥𝑁+1 + 𝑥𝑁+3 = 0,

...
−𝑥2𝑁−2 + 𝑥2𝑁 = 0,
𝑥𝑁+1 − 𝑥2𝑁−1 = 0,

𝑥2 − 𝑥𝑁 = 0,
−𝑥1 + 𝑥3 = 0,

...
−𝑥𝑁−2 + 𝑥𝑁 = 0,

𝑥1 − 𝑥𝑁−1 = 0.

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥𝑁+2 = 𝑥2𝑁 ,

𝑥𝑁+1 = 𝑥𝑁+3,

...
𝑥2𝑁−2 = 𝑥2𝑁 ,

𝑥𝑁+1 = 𝑥2𝑁−1,

𝑥2 = 𝑥𝑁 ,

𝑥1 = 𝑥3,

...
𝑥𝑁−2 = 𝑥𝑁 ,

𝑥1 = 𝑥𝑁−1.

One obtains

ker(𝐴) =

⎧⎪⎪⎨⎪⎪⎩
Vect

{︂(︂
10

0

)︂
,

(︂
10

0

)︂
,

(︂
0
10

)︂
,

(︂
0

10

)︂}︂
, if 𝑁 ∈ N even,

Vect
{︂(︂

1
0

)︂
,

(︂
0
1

)︂}︂
, if 𝑁 ∈ N odd,

where 10 =
(︀
1, 0, 1, . . . , 0, 1, 0

)︀
, 10 =

(︀
0, 1, 0, . . . , 1, 0, 1

)︀
, 1 =

(︀
1, 1, . . . , 1, 1

)︀
, and 0 =

(︀
0, 0, . . . , 0, 0

)︀
.

One takes 𝑈 =
(︀
−1, . . . ,−1, 0, . . . , 0

)︀
, then 𝑈 is in ker(𝐴) ∩ 𝒟. �
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4.2. Proof of Corollary 1.5

Corollary 4.7 (see Cor. 1.5). Considering physically admissible data (𝜏𝑗 > 0 and 𝑝𝑗 > 0), the prediction
scheme (4) can be written under the form (8). Therefore, it is unconditionally stable.

Proof. Let 𝑚 = 𝑛 = 𝑁 , 𝑈 = ((−𝑝𝑗)𝑗∈{1,...,𝑁}, (𝑢𝑗)𝑗∈{1,...,𝑁}), 𝐴 and 𝐽 as defined by (17) and (18). All the
hypothesis of Theorem 1.4 are satisfied. The existence and uniqueness of a solution to the implicit isentropic
Euler scheme for all time step is proved. �

5. Proof of the entropy inequalities (Thm. 1.6)

In this Section, we study the two steps of the predictor-corrector scheme, and prove the stability inequality
in each step.

We recall the complete scheme

Prediction step

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜏𝑗 = 𝜏𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑢𝑗+ 1
2
− 𝑢𝑗− 1

2
),

𝑢𝑗 = 𝑢𝑛
𝑗 −

∆𝑡
𝑀𝑗

(𝑝𝑗+ 1
2
− 𝑝𝑗− 1

2
),

𝑆𝑗 = 𝑆𝑛
𝑗 ,

Correction step

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜏𝑛+1
𝑗 = 𝜏𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑢𝑗+ 1
2
− 𝑢𝑗− 1

2
),

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 −
∆𝑡
𝑀𝑗

(𝑝𝑗+ 1
2
− 𝑝𝑗− 1

2
),

𝐸𝑛+1
𝑗 = 𝐸𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑝𝑗+ 1
2
𝑢𝑗+ 1

2
− 𝑝𝑗− 1

2
𝑢𝑗− 1

2
).

Each inequality is studied separately.

5.1. Proof of stability inequality (12)

Actually, inequality (12) is a mathematical entropy inequality. Usually, entropy stability is defined for con-
tinuous in time problems, or for explicit in time schemes. A continuous definition is found in [30], [Thm. 3.3,
p 27], and a discrete version of entropy stability is written in [12], [Prop. 2.25, p. 66].

Definition 5.1. The implicit conservative scheme (4) is said entropic if there exists a mathematical entropy
pair (𝜂, 𝜓) and a numerical entropy flux Φ(𝑈, 𝑉 ) (such that Φ(𝑈,𝑈) = 𝜓(𝑈)) such that the following inequality
holds for all 𝑗

𝜂(𝑈 𝑗)− 𝜂(𝑈𝑛
𝑗 )

∆𝑡
+

Φ(𝑈 𝑗 , 𝑈 𝑗+1)− Φ(𝑈 𝑗−1, 𝑈 𝑗)
𝑀𝑗

≤ 0. (28)

We use this definition onto the scheme of the prediction step (4) where the vector of unknowns is 𝑈 = (𝜏, 𝑢, 𝑆)𝑡.
The entropy corresponding to the isentropic system is 𝜂(𝑈) = 𝐸. As 𝜂 is convex, one gets 𝜂(𝑈𝑗) − 𝜂(𝑈𝑛

𝑗 ) ≤
∇𝜂(𝑈𝑗) · (𝑈𝑗 − 𝑈𝑛

𝑗 ), that is 𝜂(𝑈𝑗)− 𝜂(𝑈𝑛
𝑗 ) ≤ Δ𝑡

𝑀𝑗
∇𝜂(𝑈𝑗) · (𝑓𝑗+ 1

2
− 𝑓𝑗− 1

2
).

In Lagrangian formalism, the calculus can be performed easily. Thanks to Gibbs formula, see [30], [Chapter 4,
p. 318], one has

𝑑𝜂 = 𝑢𝑑𝑢− 𝑝𝑑𝜏 + 𝑇𝑑𝑆.

So
∇𝜂(𝑈𝑗) =

(︀
−𝑝𝑗 , 𝑢𝑗 , 𝑇𝑗

)︀𝑡
.
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For the flux, the one state solver is

𝑓𝑗+ 1
2

=

⎛⎝ 𝑢𝑗+ 1
2

−𝑝𝑗+ 1
2

0

⎞⎠ =

⎛⎜⎝
1

2𝛼
𝑗+ 1

2

(𝑝𝑗 − 𝑝𝑗+1) + 1
2 (𝑢𝑗 + 𝑢𝑗+1)

𝛼
𝑗+ 1

2
2 (𝑢𝑗+1 − 𝑢𝑗)− 1

2 (𝑝𝑗 + 𝑝𝑗+1)
0

⎞⎟⎠ ,

𝑓𝑗− 1
2

=

⎛⎝ 𝑢𝑗− 1
2

−𝑝𝑗− 1
2

0

⎞⎠ =

⎛⎜⎝
1

2𝛼
𝑗− 1

2

(𝑝𝑗−1 − 𝑝𝑗) + 1
2 (𝑢𝑗−1 + 𝑢𝑗)

𝛼
𝑗− 1

2
2 (𝑢𝑗 − 𝑢𝑗−1)− 1

2 (𝑝𝑗−1 + 𝑝𝑗)
0

⎞⎟⎠ .

End of the proof of inequality (12). First is the evaluation of ∇𝜂(𝑈𝑗) · 𝑓𝑗+ 1
2
, and second ∇𝜂(𝑈𝑗) · 𝑓𝑗− 1

2
. Then

the difference between the two expressions is performed. In the rest of the calculations, the time dependence
will be omitted to simplify the writing. One has

∇𝜂(𝑈𝑗) · 𝑓𝑗+ 1
2

= −𝑝𝑗

(︃
1

2𝛼𝑗+ 1
2

(𝑝𝑗 − 𝑝𝑗+1) +
1
2

(𝑢𝑗 + 𝑢𝑗+1)

)︃

+ 𝑢𝑗

(︂
𝛼𝑗+ 1

2

2
(𝑢𝑗+1 − 𝑢𝑗)− 1

2
(𝑝𝑗 + 𝑝𝑗+1)

)︂
,

= 𝑝𝑗
1

2𝛼𝑗+ 1
2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)− 𝑢𝑗

1
2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)

− 𝑝𝑗
1

2𝛼𝑗+ 1
2

(−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1) + 𝑢𝑗

1
2

(−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1),

= (𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)(𝑝𝑗 + 𝛼𝑗+ 1

2
𝑢𝑗)

−1
2𝛼𝑗+ 1

2

+ (−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1)(−𝑝𝑗 + 𝛼𝑗+ 1

2
𝑢𝑗)

1
2𝛼𝑗+ 1

2

,

= − 1
2𝛼𝑗+ 1

2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 +

1
2𝛼𝑗+ 1

2

(−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1)(−𝑝𝑗 + 𝛼𝑗+ 1

2
𝑢𝑗).

and with the same method of calculus

∇𝜂(𝑈𝑗) · 𝑓𝑗− 1
2

=
1

2𝛼𝑗− 1
2

(−𝑝𝑗 + 𝛼𝑗− 1
2
𝑢𝑗)2 − 1

2𝛼𝑗− 1
2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)(𝑝𝑗 + 𝛼𝑗− 1

2
𝑢𝑗).

The difference is

∇𝜂(𝑈𝑗) · (𝑓𝑗+ 1
2
− 𝑓𝑗− 1

2
) = ∇𝜂(𝑈𝑗) · 𝑓𝑗+ 1

2
−∇𝜂(𝑈𝑗) · 𝑓𝑗− 1

2
,

= − 1
2𝛼𝑗+ 1

2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 +

1
2𝛼𝑗+ 1

2

(−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1)(−𝑝𝑗 + 𝛼𝑗+ 1

2
𝑢𝑗)

− 1
2𝛼𝑗− 1

2

(−𝑝𝑗 + 𝛼𝑗− 1
2
𝑢𝑗)2 +

1
2𝛼𝑗− 1

2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)(𝑝𝑗 + 𝛼𝑗− 1

2
𝑢𝑗).
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One has 𝑎𝑏 ≤ 𝑎2

2 + 𝑏2

2 . So

∇𝜂(𝑈𝑗) · (𝑓𝑗+ 1
2
− 𝑓𝑗− 1

2
) ≤ − 1

2𝛼𝑗+ 1
2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 − 1

2𝛼𝑗− 1
2

(−𝑝𝑗 + 𝛼𝑗− 1
2
𝑢𝑗)2

+
1

2𝛼𝑗+ 1
2

[︂
1
2

(−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1)2 +

1
2

(−𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2

]︂
+

1
2𝛼𝑗− 1

2

[︂
1
2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)2 +

1
2

(𝑝𝑗 + 𝛼𝑗− 1
2
𝑢𝑗)2

]︂
,

≤ − 1
2𝛼𝑗+ 1

2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 +

1
4𝛼𝑗+ 1

2

(−𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2

+
1

4𝛼𝑗+ 1
2

(−𝑝𝑗+1 + 𝛼𝑗+ 1
2
𝑢𝑗+1)2

− 1
2𝛼𝑗− 1

2

(−𝑝𝑗 + 𝛼𝑗− 1
2
𝑢𝑗)2 +

1
4𝛼𝑗− 1

2

(𝑝𝑗 + 𝛼𝑗− 1
2
𝑢𝑗)2

+
1

4𝛼𝑗− 1
2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)2.

One has the equalities 1
2𝛼 (𝑝+ 𝛼𝑢)2 − 1

4𝛼 (𝑝− 𝛼𝑢)2 = 1
4𝛼 (𝑝+ 𝛼𝑢)2 + 𝑝𝑢 and 1

2𝛼 (𝑝− 𝛼𝑢)2 − 1
4𝛼 (𝑝+ 𝛼𝑢)2 =

1
4𝛼 (𝑝− 𝛼𝑢)2 − 𝑝𝑢. These results are injected in the previous inequality

∇𝜂(𝑈𝑗) · (𝑓𝑗+ 1
2
− 𝑓𝑗− 1

2
) ≤ − 1

4𝛼𝑗+ 1
2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 +

1
4𝛼𝑗+ 1

2

(𝑝𝑗+1 − 𝛼𝑗+ 1
2
𝑢𝑗+1)2 + 𝑝𝑗𝑢𝑗

− 1
4𝛼𝑗− 1

2

(𝑝𝑗 − 𝛼𝑗− 1
2
𝑢𝑗)2 +

1
4𝛼𝑗− 1

2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)2 − 𝑝𝑗𝑢𝑗 ,

≤ − 1
4𝛼𝑗+ 1

2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 +

1
4𝛼𝑗+ 1

2

(𝑝𝑗+1 − 𝛼𝑗+ 1
2
𝑢𝑗+1)2

− 1
4𝛼𝑗− 1

2

(𝑝𝑗 − 𝛼𝑗− 1
2
𝑢𝑗)2 +

1
4𝛼𝑗− 1

2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)2.

One then denotes

Φ(𝑈𝑗 , 𝑈𝑗+1) = Φ𝑗+ 1
2

=
1

4𝛼𝑗+ 1
2

(𝑝𝑗 + 𝛼𝑗+ 1
2
𝑢𝑗)2 − 1

4𝛼𝑗+ 1
2

(𝑝𝑗+1 − 𝛼𝑗+ 1
2
𝑢𝑗+1)2,

and

Φ(𝑈𝑗−1, 𝑈𝑗) = Φ𝑗− 1
2

=
1

4𝛼𝑗− 1
2

(𝑝𝑗−1 + 𝛼𝑗− 1
2
𝑢𝑗−1)2 − 1

4𝛼𝑗− 1
2

(𝑝𝑗 − 𝛼𝑗− 1
2
𝑢𝑗)2.

Hence

𝜂(𝑈𝑛+1
𝑗 )− 𝜂(𝑈𝑛

𝑗 ) ≤ −∆𝑡
𝑀𝑗

(Φ𝑛+1
𝑗+ 1

2
− Φ𝑛+1

𝑗− 1
2
),

also written differently as

𝜂(𝑈𝑛+1
𝑗 )− 𝜂(𝑈𝑛

𝑗 )
∆𝑡

+
Φ𝑛+1

𝑗+ 1
2
− Φ𝑛+1

𝑗− 1
2

𝑀𝑗
≤ 0. (29)
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This corresponds exactly to the entropy inequality because Φ is the entropic flux. As a matter of fact, one
remarks

Φ(𝑈,𝑈) = 𝜓(𝑈) =
1

4𝛼
(𝑝+ 𝛼𝑢)2 − 1

4𝛼
(𝑝− 𝛼𝑢)2,

=
1

4𝛼
(𝑝2 + 2𝛼𝑝𝑢+ 𝛼2𝑢2 − 𝑝2 + 2𝛼𝑝𝑢− 𝛼2𝑢2),

= 𝑝𝑢.

Therefore as 𝜂 = 𝐸 and Φ = 𝑝𝑢, one rewrites (29) as 𝐸𝑗−𝐸𝑛
𝑗

Δ𝑡 +
(𝑝𝑢)

𝑗+ 1
2
−(𝑝𝑢)

𝑗− 1
2

𝑀𝑗
≤ 0. �

5.2. Proof of entropy inequality (13)

To show (13), one starts with (12).

Proof of inequality (13). Let us denote 𝑟𝑛 = 𝐸𝑗−𝐸𝑛
𝑗

Δ𝑡 +
(𝑝𝑢)

𝑗+ 1
2
−(𝑝𝑢)

𝑗− 1
2

𝑀𝑗
≤ 0. During the correction step, the

discretization of the total energy 𝐸 is

𝐸𝑛+1
𝑗 − 𝐸𝑛

𝑗

∆𝑡
= −

((𝑝𝑢)𝑗+ 1
2
− (𝑝𝑢)𝑗− 1

2
)

𝑀𝑗
.

The variation of total energy is evaluated between the correction and the prediction step as

𝐸𝑛+1
𝑗 − 𝐸𝑗

∆𝑡
=
𝐸𝑛+1

𝑗 − 𝐸𝑛
𝑗 + 𝐸𝑛

𝑗 − 𝐸𝑗

∆𝑡

= −
((𝑝𝑢)𝑗+ 1

2
− (𝑝𝑢)𝑗− 1

2
)

𝑀𝑗
− 𝑟𝑛 +

((𝑝𝑢)𝑗+ 1
2
− (𝑝𝑢)𝑗− 1

2
)

𝑀𝑗

= −𝑟𝑛 ≥ 0.

Since 𝑢𝑛+1 = 𝑢, one has

𝐸𝑛+1
𝑗 − 𝐸𝑗

∆𝑡
=
𝑒𝑛+1
𝑗 − 𝑒𝑗

∆𝑡
= −𝑟𝑛 ≥ 0. (30)

To conclude, it is important to have in mind the Gibbs formula 𝑇𝑑𝑆 = 𝑑𝑒+ 𝑝𝑑𝜏 , where the variable 𝜏 is fixed
because 𝜏𝑛+1 = 𝜏 = 1

𝜌 . One has

𝑆𝑛+1
𝑗 − 𝑆𝑛

𝑗

∆𝑡
=
𝑆𝑛+1

𝑗 − 𝑆𝑗

∆𝑡
+
𝑆𝑗 − 𝑆𝑛

𝑗

∆𝑡
.

During the prediction step 𝑆𝑗 = 𝑆𝑛
𝑗 , so

𝑆𝑛+1
𝑗 − 𝑆𝑛

𝑗

∆𝑡
=
𝑆𝑛+1

𝑗 − 𝑆𝑗

∆𝑡
,

=
𝑆(𝑒𝑛+1

𝑗 , 𝜌𝑗)− 𝑆(𝑒𝑗 , 𝜌𝑗)
∆𝑡

.

Thus, thanks to (30), 𝑆(𝑒, 𝜌) is a growing function of 𝑒 for 𝜌 fixed. One concludes that
𝑆𝑛+1

𝑗 −𝑆𝑛
𝑗

Δ𝑡 ≥ 0. �
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6. Numerical illustrations

In this Section, we provide numerical illustrations which show that the theoretical properties of the numerical
methods are transferred to real calculations. The implicit scheme is solved using a Newton algorithm and the
final update of the solution is performed in a conservative way, so the scheme is implemented in a perfectly
conservative fashion, as for finite volume methods [14, 23, 36]. For all our test problems, we have observed that
the Newton algorithm converges without any difficulties in only few iterations (approximately 5) and we do not
comment this issue further.

The numerical illustrations can be divided between those related to robustness issues and those related to
accuracy issues. Robustness issues are illustrated in all numerical simulations, from reasonable CFL numbers
(CFL = 0.4) to huge ones (CFL = 537). Accuracy issues are illustrated in Section 6.1.1 (gas dynamics with
CFL = 0.4 to CFL = 537). The position of the contact discontinuity is discussed in Section 6.1.2. The authors
also provide a simulations performed on non uniform meshes, with stiffened gas in Section 6.2.1, and a perturbed
Sod shock tube in Section 6.2.2.

6.1. Fully implicit treatment

For each example, the implicit scheme is compared to the explicit acoustic scheme (31) which provides a
reference solution

Explicit scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜏𝑛+1
𝑗 = 𝜏𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑢𝑛
𝑗+ 1

2
− 𝑢𝑛

𝑗− 1
2
),

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 −
∆𝑡
𝑀𝑗

(𝑝𝑛
𝑗+ 1

2
− 𝑝𝑛

𝑗− 1
2
),

𝐸𝑛+1
𝑗 = 𝐸𝑛

𝑗 +
∆𝑡
𝑀𝑗

(𝑝𝑛
𝑗+ 1

2
𝑢𝑛

𝑗+ 1
2
− 𝑝𝑛

𝑗− 1
2
𝑢𝑛

𝑗− 1
2
).

(31)

where the fluxes are defined by

𝑝𝑛
𝑗 − 𝑝𝑛

𝑗+ 1
2

= 𝛼𝑛
𝑗 (𝑢𝑛

𝑗+ 1
2
− 𝑢𝑛

𝑗 ), 𝑝𝑛
𝑗 − 𝑝𝑛

𝑗− 1
2

= 𝛼𝑛
𝑗 (𝑢𝑛

𝑗 − 𝑢𝑛
𝑗− 1

2
).

6.1.1. Sod shock tube

For this problem, the initial conditions are

𝑝0(𝑥) =
{︂

1 𝑥 < 0.5
0.1 𝑥 > 0.5

, 𝜌0(𝑥) =
{︂

1 𝑥 < 0.5
0.125 𝑥 > 0.5

, 𝑢0(𝑥) = 0.

The boundary conditions are 𝑢𝑙𝑒𝑓𝑡 = 𝑢𝑟𝑖𝑔ℎ𝑡 = 0. The adiabatic index is 𝛾 = 1.4. The equation of state for the
gas is given by (3). The final time of the simulation is 𝑡 = 0.2. Several CFL (0.4, 40, 80, 537) are taken to
evaluate the robustness of the scheme. The number of cells is 100. To give an idea of the computational time,
the explicit solver is six times faster than the implicit solver for this test case.

For a CFL equal to 0.4 the curves are quasi identical in Figure 1. There are oscillations on the density
and the entropy curves near contact discontinuities. This is a classical phenomenon for explicit Lagrangian
schemes named wall heating. The implicit scheme does not correct these oscillations. Numerous papers have
been dedicated to the correction of these oscillations, the interested reader can see [31] or [38]. This phenomenon
is not discussed further in the rest of this paper.

For an implicit CFL 100 times larger, the numerical smearing is visible in Figure 2 for the rarefaction waves
as well as the shock. On the contrary, the contact discontinuity is still at the correct location.

As it can be seen in Figure 3, one observes that when the CFL tends to be very large, there is more numerical
dissipation on shocks and rarefaction waves but the contact discontinuity still seems to be at the right position.

The solution of Figure 4 shows the unconditional stability of the implicit scheme.
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Figure 1. Sod shock tube for Euler equations. The CFL are 𝐶𝐹𝐿explicit = 0.4 and
𝐶𝐹𝐿implicit = 0.4.

Figure 2. Sod shock tube for Euler equations. The CFL are 𝐶𝐹𝐿explicit = 0.4 and
𝐶𝐹𝐿implicit = 40.

A remark can be done on the position of the contact discontinuity that is slightly shifted. To explain the
origin of this misplacement, we can evoke the fact that the interaction with the boundaries of the domain is
very important. To validate this hypothesis, we performed another calculation (same initial conditions and final
time) on a domain 9 times larger. The results are visible in Figure 5, and the contact discontinuity is once again
well positioned.
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Figure 3. Sod shock tube for Euler equations. The CFL are 𝐶𝐹𝐿explicit = 0.4 and
𝐶𝐹𝐿implicit = 80.

Figure 4. Sod shock tube for Euler equations. The CFL are 𝐶𝐹𝐿explicit = 0.4 and
𝐶𝐹𝐿implicit = 537 (only one time step).

6.1.2. Position of the contact discontinuity

We develop hereafter a possible explanation for the precision of the position for the contact discontinuity in
Figure 5. It deals with the integration of the Riemann problem.

Indeed, consider the following initial conditions

𝜏0(𝑥) =
{︂
𝜏𝐿, 𝑥 < 0,
𝜏𝑅, 𝑥 > 0,

𝑢0(𝑥) =
{︂
𝑢𝐿, 𝑥 < 0,
𝑢𝑅, 𝑥 > 0,

𝑆0(𝑥) =
{︂
𝑆𝐿, 𝑥 < 0,
𝑆𝑅, 𝑥 > 0.
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Figure 5. Sod shock tube for Euler equations. Mesh of 9000 cells, domain between [−4, 5].
The CFL are 𝐶𝐹𝐿explicit = 0.4 and 𝐶𝐹𝐿implicit = 537.

Lagrangian isentropic equations are ⎧⎪⎨⎪⎩
𝜕𝑡𝜏(𝑥)− 𝜕𝑚𝑢(𝑥) = 0,

𝜕𝑡𝑢(𝑥) + 𝜕𝑚𝑝(𝜏(𝑥), 𝑆(𝑥)) = 0,
𝜕𝑡𝑆(𝑥) = 0.

(32)

where 𝑑𝑚 = 𝜌𝑑𝑥.
We are looking for a solution of class 𝒞0(R) ∩ (𝒞1(R+) ∩ 𝒞1(R−)), for the variables 𝜏 and 𝑢. The variable 𝑆

is discontinuous. The natural boundary conditions are

lim
𝑥→−∞

𝑝(𝑥) =
(𝛾 − 1)e𝑆𝐿

𝜏𝛾
𝐿

,

lim
𝑥→+∞

𝑝(𝑥) =
(𝛾 − 1)e𝑆𝑅

𝜏𝛾
𝑅

,

lim
𝑥→−∞

𝜕𝑥𝑝(𝑥) = 0,

lim
𝑥→+∞

𝜕𝑥𝑝(𝑥) = 0.

(33)

The equations (32) are discretized in time but the space part is left continuous, ∆𝑡 > 0, 𝑥 ∈ R. This mimics
the implicit scheme, indeed ∆𝑡 can be taken extremely big, but the space step ∆𝑥 is very small. This corresponds
of having a discrete ∆𝑡 compared to a small continuous ∆𝑥.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜏(𝑥)− 𝜏0(𝑥)
∆𝑡

− 𝜕𝑚𝑢(𝑥) = 0,

𝑢(𝑥)− 𝑢0(𝑥)
∆𝑡

+ 𝜕𝑚𝑝(𝑥) = 0,

𝑆(𝑥)− 𝑆0(𝑥)
∆𝑡

= 0.

(34)

Lemma 6.1. The system (34) is self similar in 𝑥
Δ𝑡 .

Proof. Writing 𝑦 = 𝑥
Δ𝑡 , then 𝑑𝑥 = ∆𝑡𝑑𝑦. One has

𝜏(𝑥) = 𝜏(
𝑥

∆𝑡
), so 𝜏(𝑦)− 𝜏0(𝑦)− 1

𝜌
𝜕𝑦𝑢̂(𝑦) = 0,

𝑢(𝑥) = 𝑢̂(
𝑥

∆𝑡
), so 𝑢̂(𝑦)− 𝑢0(𝑦) +

1
𝜌
𝜕𝑦𝑝(𝜏(𝑦), 𝑆(𝑦)) = 0,

𝑆(𝑥) = 𝑆(
𝑥

∆𝑡
), so 𝑆(𝑦)− 𝑆0(𝑦) = 0.
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�The method of calculation of a solution to (34) is detailed after.
For 𝑥 < 0 the solution satisfies the equations⎧⎪⎪⎨⎪⎪⎩

𝜏(𝑥)− 𝜏𝐿 −
1
𝜌𝐿
𝜕𝑥𝑢(𝑥) = 0,

𝑢(𝑥)− 𝑢𝐿 +
1
𝜌𝐿
𝜕𝑥𝑝(𝑥) = 0.

The variable 𝑢 is derived from the second equation and injected in the first equation to obtain

𝜏(𝑥)− 𝜏𝐿 +
1
𝜌2

𝐿

𝑝′′(𝑥) = 0.

Introducing the enthalpy 𝐻(𝑝, 𝑆) = 𝑒+ 𝑝𝜏 , one has 𝑑𝐻 = 𝑑𝑒+ 𝑝𝑑𝜏 + 𝜏𝑑𝑝 = 𝑇𝑑𝑆 + 𝜏𝑑𝑝, hence

𝜕𝐻

𝜕𝑝
(𝑝, 𝑆𝐿)− 𝜏𝐿 +

1
𝜌𝐿

2
𝑝′′(𝑥) = 0.

Factorizing, one gets
1
𝜌𝐿

2
𝑝′′(𝑥) +

𝜕

𝜕𝑝
(𝐻(𝑝, 𝑆𝐿)− 𝑝𝜏𝐿) = 0.

One obtains
𝜕

𝜕𝑥

(︃
1
𝜌𝐿

2

(𝑝′(𝑥))2

2
+𝐻(𝑝, 𝑆𝐿)− 𝑝𝜏𝐿

)︃
= 0.

Therefore
1
𝜌𝐿

2

(𝑝′(𝑥))2

2
+𝐻(𝑝, 𝑆𝐿)− 𝑝𝜏𝐿 = 𝐾𝐿.

Using the boundary conditions (33), the integration constant is 𝐾𝐿 = 𝑒𝐿.

1
𝜌𝐿

2

(𝑝′(𝑥))2

2
+𝐻(𝑝, 𝑆𝐿)− 𝑝𝜏𝐿 − 𝑒𝐿 = 0.

So
𝑝′(𝑥)2

2𝜌𝐿
2

= −𝐻(𝑝, 𝑆𝐿) + 𝑝𝜏𝐿 + 𝑒𝐿.

One finally obtains
𝑝′(𝑥) = ±𝜌𝐿

√︀
−2𝐻(𝑝, 𝑆𝐿) + 2𝑝𝜏𝐿 + 2𝑒𝐿. (35)

For 𝑥 > 0, the solution verifies the equations⎧⎪⎪⎨⎪⎪⎩
𝜏(𝑥)− 𝜏𝑅 −

1
𝜌𝑅
𝜕𝑥𝑢(𝑥) = 0,

𝑢(𝑥)− 𝑢𝑅 +
1
𝜌𝑅
𝜕𝑥𝑝(𝑥) = 0.

We apply the same method than in the case 𝑥 < 0, and check that the solution is of the same kind. One finally
finds an expression for 𝑝′

𝑝′(𝑥) = ±𝜌𝑅

√︀
−2𝐻(𝑝, 𝑆𝑅) + 𝑝𝜏𝑅 + 𝑒𝑅. (36)

At the interface, when 𝑥 = 0, the continuity conditions are

𝑝(0−) = 𝑝(0+) = 𝑝⋆, 𝑢(0−) = 𝑢(0+) = 𝑢⋆,
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with 𝑝⋆ ∈ R. One gets

𝑢⋆ = 𝑢𝐿 −
1
𝜌𝐿
𝑝′(0−) = 𝑢𝑅 −

1
𝜌𝑅
𝑝′(0+).

That is

−𝑢𝐿 +
1
𝜌𝐿
𝑝′(0−) = −𝑢𝑅 +

1
𝜌𝑅
𝑝′(0+).

Using (35) and (36), one finds the scalar equation

−𝑢𝐿 ±
√︀
−2𝐻(𝑝⋆, 𝑆𝐿) + 2𝑝⋆𝜏𝐿 + 2𝑒𝐿 = −𝑢𝑅 ±

√︀
−2𝐻(𝑝⋆, 𝑆𝑅) + 2𝑝⋆𝜏𝑅 + 2𝑒𝑅

where 𝑝⋆ is the unknown.
In the numerical examples, we took initial conditions of a Sod shock tube, that are recalled hereafter.

𝑢𝐿 = 𝑢𝑅 = 0, 𝜌𝐿 =
1
𝜏𝐿

= 1, 𝜌𝑅 =
1
𝜏𝑅

=
1
8
, 𝑝𝐿 = 1, 𝑝𝑅 = 0.1, 𝛾 = 1, 4,

e𝑆𝐿 =
10
4
, e𝑆𝑅 =

81.4

4
.

As 𝑢𝐿 = 𝑢𝑅 = 0, one has

−𝐻(𝑝⋆, 𝑆𝐿) + 𝑝⋆𝜏𝐿 + 𝑒𝐿 = −𝐻(𝑝⋆, 𝑆𝑅) + 𝑝⋆𝜏𝑅 + 𝑒𝑅. (37)

Using the perfect gas law, one can rewrite the equation in terms of 𝑝 and 𝑆.

𝜏 =
((𝛾 − 1)e𝑆)

1
𝛾

𝑝
1
𝛾

, 𝑒 =
𝑝𝜏

𝛾 − 1
= (𝛾 − 1)

1
𝛾−1e

𝑆
𝛾 𝑝1− 1

𝛾 .

One obtains

e
𝑆𝐿
𝛾

⎡⎣− 𝛾

𝛾 − 1
𝑝⋆1− 1

𝛾 + 𝑝
− 1

𝛾

𝐿 𝑝⋆ +
𝑝
1− 1

𝛾

𝐿

𝛾 − 1

⎤⎦ = e
𝑆𝑅
𝛾

⎡⎣− 𝛾

𝛾 − 1
𝑝⋆1− 1

𝛾 + 𝑝
− 1

𝛾

𝑅 𝑝⋆ +
𝑝
1− 1

𝛾

𝑅

𝛾 − 1

⎤⎦ .

Lemma 6.2. The equation (37) admits a unique positive solution 𝑝⋆ ∈ [𝑝𝑅, 𝑝𝐿].

Proof. Let us denote 𝑓𝐿(𝑝) = −𝐻(𝑝, 𝑆𝐿)+𝑝𝜏𝐿 +𝑒𝐿, and 𝑓𝑅(𝑝) = −𝐻(𝑝, 𝑆𝑅)+𝑝𝜏𝑅 +𝑒𝑅, so that (37) is rewritten
as 𝑓𝐿(𝑝⋆)− 𝑓𝑅(𝑝⋆) = 0.

The properties of the function 𝑓𝐿 are the following. One has 𝑓𝐿(𝑝𝐿) = 0, 𝑓 ′𝐿(𝑝𝐿) = −𝜕𝐻(𝑝𝐿,𝑆𝐿)
𝜕𝑝 + 𝜏𝐿 =

−𝜏𝐿 + 𝜏𝐿 = 0, and 𝑓 ′′𝐿(𝑝) = −𝜕2𝐻(𝑝,𝑆)
𝜕𝑝2 = −𝜕𝜏

𝜕𝑝 = 1
𝜌2𝑐2 > 0. With the same calculations, one finds 𝑓𝑅(𝑝𝑅) = 0,

𝑓 ′𝑅(𝑝𝑅) = 0 and 𝑓 ′′𝑅(𝑝) > 0. The two functions 𝑓𝐿 and 𝑓𝑅 are strictly convex, with a minimum value equal to 0,
obtained respectively for 𝑝𝐿 and 𝑝𝑅.

Let us denote 𝑓(𝑝) = 𝑓𝐿(𝑝) − 𝑓𝑅(𝑝). One analyzes the function 𝑓 in the case of the Sod shock tube, that is
for 𝑝𝑅 ≤ 𝑝 ≤ 𝑝𝐿. One obtains 𝑓(𝑝𝑅) = 𝑓𝐿(𝑝𝑅) > 0, and 𝑓(𝑝𝐿) = −𝑓𝑅(𝑝𝐿) < 0. The function 𝑓 changes sign,
so it takes at least once the value 0 in between 𝑝𝑅 and 𝑝𝐿, which validates the existence of a solution. To have
the uniqueness, one needs to prove the monotonicity of 𝑓 . One has 𝑓 ′(𝑝) = 𝑓 ′𝐿(𝑝)− 𝑓 ′𝑅(𝑝). For all 𝑝𝑅 < 𝑝 < 𝑝𝐿,
one finds 𝑓 ′𝐿(𝑝) < 0 and 𝑓 ′𝑅(𝑝) > 0, so 𝑓 ′(𝑝) < 0 which concludes to the monotonicity of 𝑓 , and the uniqueness
of the solution to (37). �
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Figure 6. Blast waves for Euler equations. The CFL is 𝐶𝐹𝐿 = 0.4.

Numerically, we calculated with a Newton method that the solution to (37) is approximately equal to 𝑝⋆ =
0.2559. It corresponds to a velocity of 𝑢⋆ = 0.8789. The exact value of the velocity for the Riemann problem at
the contact discontinuity is 𝑢𝑒𝑥𝑎𝑐𝑡 = 0.9275. This value is found in Toro [36], [Table 4.3, p 131]. The difference
between 𝑢⋆ and 𝑢𝑒𝑥𝑎𝑐𝑡 is equal to 5.2%, which is a satisfying accuracy considering that the implicit simulation
performs with only one time step. This small relative error of 5.2% is the reason why the contact discontinuity
of the implicit solver is approximately superimposed with the reference one in Figure 5.We observed a similar
behavior for all the other test problems and we believe it is a strong asset of this family of implicit Lagrangian
schemes.

6.1.3. Blast wave problem

To give the reader an idea of how the implicit scheme behaves in other configurations, we present here a more
severe test case called the blast wave problem. It is also known as the Woodward and Colella problem, see [42].
This test case involves multiple interactions. Indeed, two strong blast waves develop right after the beginning
of the simulation, then collide at 𝑡 = 0.028 s, inducing a decrease of the time step for explicit schemes, and at
the final time 𝑡 = 0.038 s, a new contact discontinuity can be observed.

For this example, the initial conditions consist in three constant states of perfect gas at very different pressures.

𝑝0(𝑥) =

⎧⎪⎨⎪⎩
1000 𝑥 < 0.1
0.01 0.1 < 𝑥 < 0.9
100 𝑥 > 0.9

, 𝜌0(𝑥) = 1, 𝛾0(𝑥) = 1.4, 𝑢0(𝑥) = 0.

The simulation is performed on a mesh of 400 cells between [0, 1], following the article [43], and there are reflexive
boundary conditions on both sides of the domain. As the shocks are very strong, it would not be relevant to
take large time steps. In Figure 6, the precision of the implicit scheme is visible for a same CFL than the explicit
scheme. In Figure 7, we increase the CFL of the implicit scheme and we observe some oscillations in the density
curve for 𝐶𝐹𝐿 = 5. The wall heating is visible in the density curve for both the explicit and the implicit scheme
at the location of the contact discontinuity. For strong shocks, it seems that the numerical dispersion is sensible
to the CFL number. We do not comment this result further as we do not know if it comes from a numerical
artifact.

6.2. Implicit-Explicit coupling

When more than one fluid is represented, it is interesting to have a cell size appropriated to each fluid. It can
lead to great disparities in the dimension of the cells and hence an implicit-explicit coupling is a solution. The
mesh is separated into subdomains. Each one is treated using either the acoustic explicit solver, or the implicit
prediction-correction scheme developed in this work. The mesh is considered as described in Figure 8, namely
the implicit part of the mesh contains the smaller cells.
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Figure 7. Blast waves for Euler equations. Comparison between the explicit acoustic solver
scheme and the implicit scheme with multiple CFL.

Figure 8. Example of a mesh divided into several subdomains.

At each interface between an explicit and an implicit cell, the values of the fluxes must be the same. Consider
there is an interface between cell 𝑗 and cell 𝑗 + 1 of a mesh ℳ, the problem at the interface is the following{︃

𝑝𝑛
𝑗 − 𝑝*𝑗+ 1

2
= 𝛼𝑗(𝑢*𝑗+ 1

2
− 𝑢𝑛

𝑗 ),

𝑝𝑗+1 − 𝑝*𝑗+ 1
2

= 𝛼𝑗+1(𝑢𝑗+1 − 𝑢*𝑗+ 1
2
),

where 𝑝𝑛
𝑗 and 𝑢𝑛

𝑗 are respectively the values of the pressure and the velocity in cell 𝑗 at time 𝑡𝑛. The values
obtained by the prediction step of the implicit scheme in cell 𝑗+1 are 𝑝𝑗+1 for the pressure 𝑢𝑗+1 for the velocity.
The fluxes at the interface are 𝑝*

𝑗+ 1
2

and 𝑢*
𝑗+ 1

2
.

Theorem 1.4 states that there exists a unique solution for the prediction step into the implicit zone of the
mesh. The values at the interface are treated as boundary conditions.

For the computation, the implicit part of the mesh ℳimp is treated first using a Newton algorithm to obtain
(𝑝𝑗)𝑗∈ℳimp and (𝑢𝑗)𝑗∈ℳimp . At the end of this step, the values of the fluxes are evaluated on the implicit and
explicit part of the mesh then used to update 𝑢, 𝐸 and 𝜌 at time 𝑡𝑛+1 in each cell of ℳ.

Let us emphasize that the implicit-explicit coupling described in this Section is not an IMEX method. Indeed,
the IMEX strategy consists in a numerical methods which contain an implicit part, but as far as we know, the
non linear global part is always treated in an explicit manner as in [35] and references therein. In our case,
the strategy differs in the sense that the scheme used is totally implicit or totally explicit depending on the
subdomains treated.

6.2.1. Water-gas simulation

To validate this coupling, we present a water-gas simulation and compare the results to the solution obtained
with a total explicit solving. For this example, one considers the case of a stiffened gas provided with the
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Figure 9. Two-phase shock tube for Euler equations.

following equation of state ⎧⎪⎪⎨⎪⎪⎩
𝑝 =

𝛾 − 1
𝜏

𝑒− 𝛾𝜋,

𝑒 = 𝐶𝑣𝑇 + 𝜋𝜏,

𝑆 = 𝐶𝑣 log((𝑒− 𝜋𝜏)𝜏𝛾−1).

The coefficient 𝜋 describes the attractive effects that lead to a cohesion in the matter, it is also called the
reference pressure and must satisfies 𝜋 > 0. A modified expression of 𝜏 is thus evaluated and implemented

𝜏 =
(︂

(𝛾 − 1) exp(
𝑆

𝐶𝑣
)
)︂ 1

𝛾

(𝑝+ 𝜋)−
1
𝛾 .

Theorem 1.4 still applies on the variable 𝑈 = (−(𝜋𝑗 + 𝑝𝑗)𝑗∈ℳimp , (𝑢𝑗)𝑗∈ℳimp). The two-phase shock test case
presented originates from [32]. It considers having two materials with all the variables strongly discontinuous.
On the left part of the tube there is water (high pressure) and on the right part air (low pressure). The initial
conditions are

𝑝0(𝑥) =

{︃
109 𝑥 < 0.7
105 𝑥 > 0.7

, 𝜌0(𝑥) =
{︂

1000 𝑥 < 0.7
50 𝑥 > 0.7

, 𝛾0(𝑥) =
{︂

4.4 𝑥 < 0.7
1.4 𝑥 > 0.7

, 𝑢0(𝑥) = 0.

The variable 𝜋 is set to 𝜋0(𝑥) = 6× 108 for 𝑥 < 0.7.
The simulation is performed on a mesh of 1000 cells. There are 950 cells between [0,0.7] and 50 cells between

[0.7, 1]. The smaller cells lie in the left region that is thus solved using the implicit scheme, and the right part
is solved with the explicit acoustic solver. The explicit solver reaches the final time 𝑡 = 240 × 10−6 in 2160
iterations and a time step of 𝑑𝑡 = 1.11 × 10−7 s. The implicit-explicit solver runs during 585 iterations and a
time step of 𝑑𝑡 = 3.9× 10−7 s. The computational time is approximately the same. In Figure 9 one notices that
the rarefaction wave is more dissipated with the implicit-explicit treatment. The contact discontinuity and the
shock are well placed. This validates the implicit-explicit coupling.
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Figure 10. Sod shock tube perturbed by a water drop.

6.2.2. Sod shock tube perturbed with a water drop

We present here an original test case where the implicit-explicit coupling algorithm is more efficient than the
explicit acoustic solver of reference. It consists of a Sod shock tube perturbed by a water drop. The final time
of the simulation is 𝑡 = 1.6× 10−4. The water drop is located between [0.65, 0.6501]. The initial conditions are

𝑝0(𝑥) =

{︃
107 𝑥 < 0.5
106 𝑥 > 0.5

, 𝜌0(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5 𝑥 < 0.5
1 0.5 < 𝑥 < 0.65

1000 0.65 < 𝑥 < 6.6501
1 𝑥 > 0.6501

, 𝛾0(𝑥) =

⎧⎪⎨⎪⎩
1.4 𝑥 < 0.65
4.4 0.65 < 𝑥 < 0.6501
1.4 𝑥 > 0.6501

.

The initial velocity is set to 𝑢0(𝑥) = 0. The reference pressure into the water, for 𝑥 ∈ [0.65, 0.6501], is
𝜋0(𝑥) = 6×108. One uses a two states solver flux for this simulation. A reference solution is computed first on a
uniform mesh of 10000 cells. The solutions for the explicit and the implicit-explicit schemes are obtained using
a mesh composed of 110 cells distributed as follows: 65 cells between [0,0.65], 10 cells between [0.65,0.6501] and
35 cells between [0.6501,1]. Only the 10 cells representing the water drop are treated implicitly for the implicit-
explicit coupling. The water drop is represented by a characteristic function multiplied by an appropriate scaling
factor.

In Figure 10, the explicit curve and the implicit-explicit one are similar in shape with the reference solution.
The gas hits the water drop from the left side, creating an important reflexive pressure wave as can be seen
in Figure 10. It is well modeled by both of the methods. The explicit solution is evaluated in 65161 iterations
in time, corresponding to a 𝑑𝑡 = 2.45 × 10−9. The time of computation is around 76.5 s. The implicit-explicit
solution is obtained in 158 iterations in time, with a time step dictated by the size of the bigger explicit cells,
corresponding to 𝑑𝑡 = 2.58 × 10−7, and a computational time of about 4.5 s. For this type of test case, the
implicit-explicit coupling performs well.

7. Conclusions

We have used a strategy of predictor-corrector scheme, based on the previous work [5] in Eulerian coordinates,
to solve numerically the Euler equations. We have defined an abstract frame in order to analyze a family of
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implicit schemes written under the peculiar form (8). We have proved the existence and uniqueness of a solution
to the prediction step of our implicit scheme. We provided examples using this result and led numerical tests
that have indeed corroborated the theoretical statements of stability. The numerical illustrations compare the
implicit scheme to an explicit scheme of reference, and show the precision of this new algorithm in these cases.
It also provides examples in the case of an implicit-explicit coupling for stiffened gas.

In a future work, it would be interesting to generalize this method to the case of thin elasto-plastic structures
using Kluth and Després [22] or Maire et al. [24]. We could also try to improve this work by using a more
elaborate flux or increase the scheme order at the order 2. It will probably ameliorate the precision, but it stays
to evaluate the cost of simulation that it would generate. The multi-dimensional version would need a more
advanced management for the displacement of the mesh, but the principal ingredients of Theorem 1.4 remain
similar.

Other numerical examples that are more realistic have to be performed to evaluate the pertinence of this
algorithm. Theoretically as well, it would be great to have an explanation on the rapid convergence of the
Newton algorithm for the prediction step, and to have a more elegant proof of the entropy inequalities using
the frame (8).

Finally our approach can be the basis of a fully implicit Lagrange+remap strategy for the development of
implicit solvers for the non viscous Euler system, where it is sufficient to treat the linear remap stage in an
implicit fashion to obtain a fully implicit Eulerian numerical scheme. The evaluation of such approaches in
particular in the context of low-Mach flows will be the topic of further examination.

Appendix A. Isothermal equation of state

We briefly describe the modification of the method to treat an isothermal equation of state. An isothermal
equation of state 𝑝 = 𝐶𝑇

𝜏 can be analyzed by letting 𝛾 → 1 in the perfect gaz equation of state (3). Nevertheless
since this method is singular, it is simpler to directly perform the required modification. Actually, we only need
to modify the function 𝐿1

𝑗 in the definition of 𝐽 (18).

The function 𝐿1
𝑗 is designed to verify the equation 𝜕𝐿1

𝑗

𝜕(−𝑝𝑗)
= 𝜏𝑗−𝜏𝑛

𝑗 , see the proof of Proposition 2.1. With the
isothermal equation of state, one takes 𝐿1

𝑗 (−𝑝𝑗) = −𝐶𝑇 log(𝑝𝑗) + 𝑝𝑗𝜏
𝑛
𝑗 . Because of the logarithmic term in 𝐿1

𝑗 ,

the hypothesis 1.2 of the Theorem 1.4 is satisfied in a stronger form. For 𝑉 ∈ 𝜕𝒟, one has 𝐽(𝑊 ) 𝑊→𝑉−−−−→
𝑊∈𝒟

+∞.
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