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Abstract This paper focuses on the description and computation of the B-differential of the com-
ponentwise minimum of two affine vector functions. This issue arises in the reformulation of the
linear complementarity problem with the Min C-function. The question has many equivalent for-
mulations and we identify some of them in linear algebra, convex analysis and discrete geometry.
These formulations are used to state some properties of the B-differential, like its symmetry, con-
dition for its completeness, its connectivity, bounds on its cardinality, etc. The set to specify has
a finite number of elements, which may grow exponentially with the range space dimension of the
functions, so that its description is most often algorithmic. We first present an incremental-recursive
approach avoiding to solve any optimization subproblem, unlike several previous approaches. It is
based on the notion of matroid circuit and the related introduced concept of stem vector. Next, we
propose modifications, adapted to the problem at stake, of an algorithm introduced by Rada and
Černý in 2018 to determine the cells of an arrangement in the space of hyperplanes having a point
in common. Measured in CPU time on the considered test-problems, the mean acceleration ratios
of the proposed algorithms, with respect to the one of Rada and Černý, are in the range 15..31,
and this speed-up can exceed 100, depending on the problem, the approach and the chosen linear
optimization and matroid solvers.
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1 Introduction

Let E and F be two real vector spaces of finite dimensions n := dimE and m := dimF. The B-

differential (B for Bouligand [67]) at x ∈ E of a function H : E → F is the set denoted and defined
by

∂BH(x) := {J ∈ L(E,F) : H ′(xk) → J for a sequence {xk} ⊆ DH converging to x}, (1.1)

where L(E,F) is the set of linear (continuous) maps from E to F and DH is the set of points
at which H is (Fréchet) differentiable (its derivative at x is denoted by H ′(x)). Recall that a
locally Lipschitz continuous function is differentiable almost everywhere in the sense of the Lebesgue
measure (Rademacher’s theorem [64]) and this property has the consequence that the B-differential
of a locally Lipschitz function is nonempty and bounded everywhere [20]. The B-differential is an
intermediate set used to define the C-differential (C for Clarke [20]) of H at x, which is denoted
and defined by

∂CH(x) := co ∂BH(x), (1.2)

where coS denotes the convex hull of a set S [68,45,16]. Both intervene in the specification of
conditions ensuring the local convergence of the semismooth Newton algorithm [62,61,73], which
can be a motivation for being interested in that concept.

In this paper, we focus on the description of the B-differential of H at x when H : Rn → Rm

is the componentwise minimum of two affine functions x 7→ Ax + a and x 7→ Bx + b, where A,
B ∈ Rm×n and a, b ∈ Rm. Hence, H is defined at x by

H(x) = min(Ax+ a,Bx+ b), (1.3)

where the minimum operator “min” acts componentwise (for two vectors u, v ∈ Rm and i ∈ [1 :m] :=
{1, . . . ,m}: [min(u, v)]i := min(ui, vi)). This function is usually nonsmooth. A motivation to look
at the B-differential of that function H comes from the fact that, when m = n and H is given by
(1.3), as explained below, the equation

H(x) = 0 (1.4)

is a reformulation of the balanced [29] Linear Complementarity Problem (LCP)

0 6 (Ax+ a) ⊥ (Bx+ b) > 0. (1.5)

This system expresses the fact that a point x ∈ Rn is sought such that Ax + a > 0, Bx + b > 0
and (Ax+ a)T(Bx+ b) = 0 (the superscript “T” is used here and below to denote vector or matrix
transposition). Problem (1.5) is a special case of the so-called (extended) vertical LCP, which uses
more than two matrices and vectors in its formulation [22,76,82]. In the standard LCP, A is the
identity matrix and a = 0 [54,23].

The reformulation (1.4) of (1.5) is based on the fact that, for two real numbers α and β,
min(α, β) = 0 if and only if α > 0, β > 0 and αβ = 0 [1,57]. This reformulation serves as the
basis for a number of solving methods and investigations [1,49,56,57,58,37,8,9,46,10,27,28,29]. If
(1.5) stands alone, it is appropriate to have m = n, but (1.5) may be part of a system with other
constraints to satisfy [51,52,11], in which case m 6 n. In the computation of the B-differential
of the Min function (1.3), m and n may be unrelated. Note that there are many other ways of
reformulating problem (1.5) as a nonsmooth system of equations. It is frequent to use the Fischer

function, whose B-differential is computed in [38]. The function H in (1.3) has been less studied and
used than the Fischer function, although it has various advantages: it is piecewise affine (but has
more nondifferentiability kinks), the local convergence of a semi-smooth Newton algorithm using
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it can be established under weaker assumptions and may be finitely locally convergent for linear
complementarity problems [37; § 9.2].

Occasionally, we shall refer to the nonlinear version of the above problem, in which a function
H̃ : E → Rm is defined at x ∈ E by

H̃(x) := min(F (x),G(x)), (1.6)

where F and G : E → Rm are two functions and the “min” operator still acts componentwise. The
equation H̃(x) = 0 is then a reformulation of the complementarity problem “0 6 F (x) ⊥ G(x) > 0”.

As a first general remark, let us quote the fact that the B-differential of H cannot be deduced
from the knowledge of the B-differential of its scalar components Hi : x ∈ E → Hi(x) ∈ R, for
i ∈ [1 :m], which is trivial in the present context. Indeed, it is known that [20; proposition 2.6.2(e)]

∂BH(x) ⊆ ∂×BH(x) := ∂BH1(x)× · · · × ∂BHm(x), (1.7)

but equality in this inclusion may not hold (see [37; § 7.1.15], counter-example 2.3 and almost all
the examples and test-cases below). Therefore, all the components of H must be taken into account
simultaneously.

The B-differential of H at x is a finite set, made of Jacobians whose ith row is Ai, : or Bi, :

(proposition 2.2). Consequently, its cardinality can be exponential in m and it occurs that its
full mathematical description is a tricky task, essentially when there are many indices i for which
(Ax+ a)i = (Bx+ b)i and Ai, : 6= Bi, : , a situation that makes H nondifferentiable (lemma 2.1).
Then, a rich panorama of configurations appears, which is barely glimpsed in this contribution.
Note that the proposed computation methods do not require any assumptions on A or B.

The paper starts with a background section (section 2), which recalls a basic property of the
minimum of two functions (lemma 2.1) and gives us a first perception of the structure of the B-
differential of the function H , in particular its finite nature (proposition 2.2). A useful technical
lemma is also presented (lemma 2.6).

In section 3, it is shown that the problem of computing ∂BH(x) has a rich panel of equivalent
formulations, related to various areas of mathematics. We have quoted two forms of the problem in
linear algebra, which are dual to each other (section 3.2), two equivalent problems in convex analysis

(section 3.3) and a last equivalent problem, which arises in computational discrete geometry and
deals with the arrangement of hyperplanes having the origin in common (section 3.4).

Section 4 gives some properties of the B-differential of H , recalls Winder’s formula of its cardi-
nality, provides some lower and upper bounds on this one, proves necessary and sufficient conditions
so that two extreme configurations occur and highlights two links between the B-differential and
C-differential.

Section 5 presents algorithms for computing one (section 5.1) or all (section 5.2) the Jacobians
of ∂BH(x). In the latter case, the algorithms construct a tree incrementally and recursively (sec-
tion 5.2.1), as proposed by Rada and Černý [63]. On the one hand (section 5.2.2), an algorithm
based on the notion of matroid circuit of the matrix V expressing the “derivative gap” is proposed; it
has the nice feature of requiring no linear optimization problem (LOP) to solve. On the other hand
(section 5.2.4), various modifications of the algorithm of Rada and Černý [63] are proposed with the
goal of decreasing the number of LOPs to solve. Numerical experiments are reported (section 5.2.6),
showing that the proposed algorithms significantly improve the performance of the Rada and Černý
method, with mean (resp. median) acceleration ratios in the range 15..31 (resp. 5..20), measured
by the computing time. This speed-up exceeds 100, for some algorithms and test-problems.

This paper is an abridged version of the more detailed report [30].
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Notation. We denote by |S| the number of elements of a set S (i.e., its cardinality). The power

set of a set S is denoted by P(S). The set of bipartitions (I, J) of a set K is denoted by B(K):
I ∪J = K and I ∩J = ∅. The sets of nonzero natural and real numbers are denoted by N∗ and R∗,
respectively. The sign of a real number is the multifunction sgn : R ⊸ R defined by sgn(t) = {1}
if t > 0, sgn(t) = {−1} if t < 0 and sgn(0) = [−1,1]. We note Rn

+ := {x ∈ Rn : x > 0} and
Rn

++ := {x ∈ Rn : x > 0} (strict inequalities must also be understood componentwise; hence x > 0
means xi > 0 for all indices i). For a subset S of a vector space, we denote by vect(S) the subspace
spanned by S. The vector of all one’s, in a real space whose dimension is given by the context, is
denoted by e. The Hadamard product of u and v ∈ Rn is the vector u qv ∈ Rn whose ith component
is uivi. The range space of an m×n matrix A is denoted by R(A), its null space by N (A), its rank

is rank(A) := dimR(A) and its nullity is null(A) := dimN (A) = n− rank(A) by the rank-nullity
theorem. The ith row (resp. column) of A is denoted by Ai, : (resp. A : ,i). Transposition operates
after a row/column selection: AT

i, : is a short notation for the column vector (Ai, : )
T and AT

: ,i is a

short notation for the row vector (A : ,i)
T. For a vector α, Diag(α) is the square diagonal matrix

with the αi’s on its diagonal.

2 Background

Recall that F : E → F is said to be (Fréchet) differentiable at x if F (x+d) = F (x)+Ld+o(‖d‖) for
some L ∈ L(E,F), in which case one denotes by F ′(x) = L the derivative of F at x. We say below
that F is continuously differentiable at x if it is differentiable near x (like in [20], “near” means here
and below “in a neighborhood of” in the topological sense) and if its derivative is continuous at x.

The next famous lemma recalls a necessary and sufficient condition guaranteeing the differ-
entiability of the minimum of two scalar functions (see [61; 1993, final remarks (1)], [80; 2011,
theorem 2.1] and [30]).

Lemma 2.1 (differentiability of the Min function) Let f and g : E → R be two functions

and h : E → R be defined by h(·) := min(f(·), g(·)). Suppose that f and g are differentiable at a

point x ∈ E.

1) If f(x) < g(x), then h is differentiable at x and h′(x) = f ′(x).
2) If f(x) > g(x), then h is differentiable at x and h′(x) = g′(x).
3) If f(x) = g(x), then h is differentiable at x if and only if f ′(x) = g′(x). In this case, h′(x) =

f ′(x) = g′(x).

The previous lemma shows the relevance of the following index sets:

A(x) := {i ∈ [1 :m] : (Ax+ a)i < (Bx+ b)i}, (2.1a)

B(x) := {i ∈ [1 :m] : (Ax+ a)i > (Bx+ b)i}, (2.1b)

E(x) := {i ∈ [1 :m] : (Ax+ a)i = (Bx+ b)i}, (2.1c)

E=(x) := {i ∈ E(x) : Ai, : = Bi, : }, (2.1d)

E 6=(x) := {i ∈ E(x) : Ai, : 6= Bi, : }. (2.1e)

To simplify the presentation, we assume in the sequel that

E 6=(x) = [1 :p], (2.2)

for some p ∈ [0 :m] (p = 0 if and only if E 6=(x) = ∅).
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The next proposition describes the superset ∂×BH(x) of ∂BH(x) given in the right-hand side
of (1.7) (see [47; 1998, § 2] in a somehow different context, [25; 2000, before (8)] and [30] for a
meticulous proof). This Cartesian product actually reads

∂×BH(x) := {J ∈ L(E,Rm) : Ji, : = Ai, : , if i ∈ A(x),
Ji, : = Bi, : , if i ∈ B(x),
Ji, : = Ai, : = Bi, : , if i ∈ E=(x),
Ji, : ∈ {Ai, : , Bi, : }, if i ∈ E 6=(x)}.

(2.3)

Proposition 2.2 (superset of ∂BH(x)) One has ∂BH(x) ⊆ ∂×BH(x) = ∂BH1(x) × · · · ×

∂BHm(x). In particular, |∂BH(x)| 6 2p.

The following counter-example shows that one can have ∂BH(x) 6= ∂×BH(x) and highlights the
interest of the B-differential for the convergence of the semismooth Newton algorithm on (1.4).

Counter-examples 2.3 Let n = 2, m = 2, A = (−1 1
−1 −1), B = (1 1

1 −1) and a = b = (00). One has

A(0) = B(0) = ∅, E(0) = E 6=(0) = {1, 2}, ∂BH(0) = {A,B}, while ∂×BH(0) = {A,B, (−1 1
1 −1),

( 1 1
−1 −1)}. This example also shows that all the Jacobians of ∂BH(0) can be nonsingular, while

the Jacobian ( 1 1
−1 −1) of ∂×BH(0) is singular and the central Jacobian (4.11), namely 1

2 (A + B)

= (0 1
0 −1) ∈ ∂CH(0), is also singular. Therefore, in this case, H is BD-regular at 0 in the sense

of [59,46] (this notion is named strong BD-regularity in [61; p. 233]) and the conditions ensuring
the local convergence of the semismooth Newton algorithm are satisfied [61; theorem 3.1]. ⊓⊔

The previous proposition shows that ∂BH(x) is a finite set. It also naturally leads to the next
definition.

Definition 2.4 (complete B-differential) We say that the B-differential of H at x ∈ Rn is
complete if ∂BH(x) = ∂×BH(x) or, equivalently, if |∂BH(x)|= 2p. ⊓⊔

Definitions 2.5 (symmetry in ∂BH(x)) For x ∈ E, we say that the Jacobian J̃ ∈ ∂×BH(x) is
symmetric to the Jacobian J ∈ ∂×BH(x) if

J̃i, : =

{
Ai, : if i ∈ E 6=(x) and Ji, : = Bi, : ,
Bi, : if i ∈ E 6=(x) and Ji, : = Ai, : .

The B-differential ∂BH(x) itself is said to be symmetric if each Jacobian J ∈ ∂BH(x) has its
symmetric Jacobian J̃ in ∂BH(x). ⊓⊔

We shall use several times the following lemma, which, for the sake of generality, is written in a
slightly more abstract formalism than the one we need below (one could take for E a subspace of Rq,
for some q ∈ N∗, and the Euclidean scalar product for 〈·, ·〉). It is a refinement of [80; lemma 2.1].

Lemma 2.6 (discriminating covectors) Suppose that (E, 〈·, ·〉) is a Euclidean vector space, p ∈
N∗ and v1, . . . , vp are p distinct vectors of E. Then, the set of vectors ξ ∈ E such that |{〈ξ, vi〉 :
i ∈ [1 :p]}| = p is dense in E.

Proof Denote by Ξ the set of vectors ξ ∈ E such that |{〈ξ, vi〉 : i ∈ [1 :p]}| = p (i.e., {〈ξ, vi〉 : i ∈
[1 :p]} has p distinct values in R). We have to show that Ξ is dense in E.

Take ξ0 /∈ Ξ, so that 〈ξ0, vi〉 = 〈ξ0, vj〉 for some i 6= j in [1 :p]. By continuity of the scalar
product, for any ε0 > 0 sufficiently small, the vector ξ1 := ξ0 − ε0(vi − vj) guarantees

〈ξ1, vi1 〉 < 〈ξ1, vi2 〉
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for all i1 and i2 ∈ [1 :p] such that 〈ξ0, vi1 〉 < 〈ξ0, vi2 〉 (in other words, ξ1 maintains strict the
inequalities that are strict with ξ0). In addition

〈ξ1, vi〉 − 〈ξ1, vj〉 = 〈ξ0, vi − vj〉
︸ ︷︷ ︸

=0

− ε0‖vi − vj‖
2

︸ ︷︷ ︸
>0

< 0.

Therefore, one gets one more strict inequality with ξ1 than with ξ0. Pursuing like this, one can
finally obtain a vector ξ in Ξ. This vector is arbitrarily close to ξ0 by taking the εi’s positive and
sufficienty small. ⊓⊔

3 Equivalent problems

The problem of determining the B-differential of the piecewise affine function, that is the minimum
(1.3) of two affine functions, appears in various contexts, sometimes with non straightforward
connections with it (this one is recalled in section 3.1). We review some equivalent formulations
in this section (see also [79,5,7] and the references therein) and give a few properties of the B-
differential in this piecewise affine case. As suggested by proposition 2.2, these problems have an
enumeration nature, since a finite list of mathematical objects has to be determined. This list
may have a number of elements exponential in p, which makes its content difficult to specify (in
this respect, the particular case where the B-differential is complete is a trivial exception). Some
formulations, such as the one related to the arrangement of hyperplanes containing the origin
(section 3.4), have been extensively explored, others much less. Each formulation sheds a particular
light on the problem and is therefore interesting to mention and keep in mind. They also offer the
possibility of introducing new algorithmic approaches to describe the B-differential.

3.1 B-differential of the minimum of two affine functions

The problem of this section was already presented in the introduction and is sometimes referred to,
in this paper, as the original problem.

Problem 3.1 (B-differential of the minimum of two affine functions) Let be given two
positive integers n and m ∈ N∗, two matrices A, B ∈ Rm×n and two vectors a, b ∈ Rm. It is
requested to compute the B-differential at some x ∈ Rn of the function H : Rn → Rm defined
by (1.3). ⊓⊔

When E 6=(x) 6= ∅, the rows of B − A with indices in E 6=(x) will play a key role below. We
denote its transpose by

V := (B − A)TE 6=(x), : ∈ Rn×p. (3.1)

Note that, due to their indices in E 6=(x) = [1 :p] and the definition of this index set, the columns
of V are nonzero. This matrix may not always have full rank, however.

The following example will accompany us throughout this section.

Example 3.2 (a simple example) Consider the trivial linear complementarity problem 0 6 x ⊥
(Mx+ q) > 0 defined by

M =





2 0 0
−α 1+β 0
−α −β 1



 and q = 0,
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where α := − cos(2π/3) = 1/2 > 0 and β := sin(2π/3) ∈ (α, 2α). Note that, at the unique solution
x = 0 to the problem, one has A(x) = B(x) = E=(x) = ∅ and E(x) = E 6=(x) = [1 : 3], so that
p = 3 and

V =





1 −α −α

0 β −β

0 0 0



 .

⊓⊔

3.2 Linear algebra problems

3.2.1 Signed feasibility of strict inequality systems

We call sign vector a vector whose components are +1 or -1. Many proofs below leverage the
equivalence between the original problem 3.1 and the following one. The reason is that working on
problem 3.3 often allows us to propose shorter proofs. In addition, the algorithms of section 5 all
focus on the generation of the sign vectors s forming the set S in (3.2) below. Recall the definition
of the Hadamard product: (u q v)i = uivi.

Problem 3.3 (signed feasibility of strict inequality systems) Let be given two positive
integers n and p ∈ N∗ and a matrix V in Rn×p with nonzero columns. It is requested to determine
the set

S := {s ∈ {±1}p : s q (V Td) > 0 holds for some d ∈ Rn}. (3.2)

⊓⊔

By routine verification, one can see that the sign vectors s in S for example 3.2 are given by
the columns of the matrix S below and possible associated directions d such that s q(V Td) > 0 are
given by the corresponding columns of the matrix D:

S =





1 1 1 −1 −1 −1
1 −1 −1 −1 1 1

−1 −1 1 1 1 −1



 and D =





2 2 2 −2 −2 −2
2 1 −2 −2 −1 2
0 0 0 0 0 0



 . (3.3)

The sign vectors ±e := ±(1,1, 1) are not in S since V e = 0 (there is not d± such that (±e) q

(V Td±) > 0, since this would imply that 0 < ±eTV Td± = 0, a contradiction). Therefore, there are
only 6 sign vectors in S instead of the 8 sign vectors in {±1}3.

The link between problems 3.1 and 3.3 is established by the following map:

σ : J ∈ ∂×BH(x) 7→ s ∈ {±1}p, where si =

{
+1 if i ∈ E 6=(x), Ji, : = Ai, : ,
−1 if i ∈ E 6=(x), Ji, : = Bi, : ,

(3.4a)

where we have used the definition (2.2) of p. The map is well defined since Ai, : 6= Bi, : when
i ∈ E 6=(x). Furthermore, σ is bijective since two Jacobians in ∂×BH(x) only differ by their rows with
index in E 6=(x) and that these rows can take any of the values Ai, : or Bi, : . Actually, its reverse
map is

σ−1 : s ∈ {±1}p 7→ J ∈ ∂×BH(x), where Ji, : =

{
Ai, : if i ∈ E 6=(x), si = +1,
Bi, : if i ∈ E 6=(x), si = −1.

(3.4b)

The question that arises is whether σ is also a bijection between ∂BH(x) and S .
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Proposition 3.4 (bijection ∂BH(x) ↔ S) Let H : Rn → Rm be given by (1.3), x be a point

in Rn such that p 6= 0 and V be given by (3.1). Then, the map σ is a bijection from ∂BH(x) onto

S. In particular, the following properties hold.

1) If J ∈ ∂BH(x), then ∃ d ∈ Rn such that σ(J) q (V Td) > 0.
2) If s ∈ {±1}p and ∃ d ∈ Rn such that s q (V Td) > 0, then σ−1(s) ∈ ∂BH(x).
3) Let J ∈ ∂×BH(x). Then, J ∈ ∂BH(x) ⇐⇒ σ(J) q (V Td) > 0 holds for some d ∈ Rn.

Proof The properties 1, 2 and 3 in the statement of the proposition are straightforward consequences
of the bijectivity of σ : ∂BH(x) → S . Now, the discussion before the proposition has shown that
σ : ∂×BH(x) 7→ {±1}p is a bijection. Therefore, σ : ∂BH(x) 7→ {±1}p is injective and it suffices to
prove that

σ(∂BH(x)) = S . (3.5a)

[⊆ or point 1] Let J ∈ ∂BH(x). We have to show that s := σ(J) ∈ S , which means that one
can find a d ∈ Rn such that s q (V Td) > 0. By J ∈ ∂BH(x), there exists a sequence {xk} ⊆ DH

converging to x such that
H ′(xk) → J. (3.5b)

For i ∈ E 6=(x), one cannot have (Axk + a)i = (Bxk + b)i, since Ai, : 6= Bi, : would imply that
xk /∈ DH (lemma 2.1). Therefore, one can find a subsequence K of indices k and a partition
(A0,B0) of E 6=(x) such that for all k ∈ K:

(Axk + a)A0
< (Bxk + b)A0

and (Axk + a)B0
> (Bxk + b)B0

. (3.5c)

Now, fix k ∈ K and set d := xk − x. Since (Ax+ a)i = (Bx+ b)i for i ∈ E 6=(x), one deduces from
(3.5c) that

(B − A)A0, :d > 0 and (B − A)B0, :d < 0.

Recalling the definitions of V in (3.1) and S in (3.2), we see that, to conclude the proof of the
membership σ(J) ∈ S , it suffices to show that [σ(J)]A0

= +1 and [σ(J)]B0
= −1 or, equivalently,

by the definition of σ, (Ji, : = Ai, : for i ∈ A0) and (Ji, : = Bi, : for i ∈ B0). This is indeed the case,
since by (3.5c), for all k ∈ K, one has (H ′

i(xk) = Ai, : for i ∈ A0) and (H ′
i(xk) = Bi, : for i ∈ B0);

now, use the convergence (3.5b) to conclude.
[⊇ or point 2] Let s ∈ S . We have to find a J ∈ ∂BH(x) such that σ(J) = s, that is, which

satisfies for i ∈ [1 :p]:

(Ji, : = Ai, : if si = +1) and (Ji, : = Bi, : if si = −1). (3.5d)

Since s ∈ S , there is a d ∈ Rn such that

s q (V Td) > 0. (3.5e)

Take a real sequence {tk} ↓ 0 and define the sequence {xk} ⊆ Rn by

xk := x+ tkd.

Then, xk → x. We claim that, for k sufficiently large, xk ∈ DH and H ′(xk) is a constant matrix J

satisfying (3.5d), which will conclude the proof. Let i ∈ [1 :m].
r If i ∈ A(x), (Axk + a)i < (Bxk + b)i for k large, so that xk ∈ DH and H ′

i(xk) = Ai, : .
r If i ∈ B(x), (Axk + a)i > (Bxk + b)i for k large, so that xk ∈ DH and H ′

i(xk) = Bi, : .
r If i ∈ E=(x), then Ai, : = Bi, : , so that xk ∈ DH and H ′

i(xk) = Ai, : = Bi, : .
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r If i ∈ E 6=(x), subtract side by side (Axk + a)i = (Ax + a)i + tkAi, :d and (Bxk + b)i =
(Bx+ b)i + tkBi, :d, use (Ax+ a)i = (Bx+ b)i and next (3.5e) to get

(Bxk + b)i − (Axk + b)i = tk(Bi, : − Ai, : )d = tkV
T

i, :d

{
> 0 if si = +1,
< 0 if si = −1.

Hence, xk ∈ DH , (H ′
i(xk) = Ai, : if si = +1) and (H ′

i(xk) = Bi, : if si = −1). ⊓⊔

Equivalence 3.5 (B-differential ↔ signed feasibility of strict inequality systems) The
equivalence between the original problem 3.1 and the signed feasibility of strict inequality system
problem 3.3 is a consequence of the previous proposition with V given by (3.1), which shows the
bijectivity of the map σ : ∂BH(x) → S defined by (3.4a). Therefore, knowing σ by its definition
(3.4), determining ∂BH(x) or S are equivalent problems. ⊓⊔

3.2.2 Orthants encountered by the null space of a matrix

Recall the definition of S in (3.2), which is associated with some matrix V ∈ Rn×p with nonzero
columns, which may or not come from (3.1). The equivalent form of problem 3.3 (hence of prob-
lem 3.1 when V is defined by (3.1)) introduced in this section is based on a bijection between the
complementary set of S in {±1}p, denoted Sc := {±1}p \ S , and a collection I of subsets of [1 : p]
(i.e., I ⊆ P([1 :p])), which refers to a collection of orthants of Rp, those encountered by the null
space of V . This equivalence will play a major part in the conception of the algorithms in section 5.2,
in particular, but not only, in an algorithm describing the complementary set of ∂BH(x), which is
interesting when |∂×BH(x) \ ∂BH(x)| is small. The concept of stem vector, defined in the second
part of this section, has proven useful in this regard. The equivalence rests on a duality concept
through Gordan’s alternative.

Problem 3.6 (orthants encountered by the null space of a matrix) Let be given two
positive integers n and p ∈ N∗ and a matrix V in Rn×p with nonzero columns. Associate with
I ⊆ [1 : p] the following orthant of Rp:

Op
I := {y ∈ Rp : yI > 0, yIc 6 0},

where Ic := [1 :p] \ I . It is requested to determine the set

I := {I ⊆ [1 :p] : N (V ) ∩ Op
I 6= {0}}. ⊓⊔

Note that, if I ∈ I, then Ic ∈ I (because y ∈ (N (V ) ∩ Op
I ) \ {0} implies that −y ∈ (N (V ) ∩

Op
Ic) \ {0}), so that |I| is even (just like |S| and |Sc|, see proposition 4.1).

The equivalence between problems 3.3 and 3.6 is obtained thanks to the following bijection

ı : s ∈ {±1}p → ı(s) := {i ∈ [1 :p] : si = +1} ∈ P([1 :p]), (3.6)

whose reverse map is ı−1 : I ∈ P([1 :p]) → s ∈ {±1}p, where si = +1 if i ∈ I and si = −1 if i /∈ I .
As announced above, this equivalence relies on Gordan’s theorem of the alternative [41; 1873]: for
a matrix A ∈ Rm×n,

∃x ∈ Rn : Ax > 0 ⇐⇒ ∄α ∈ Rm
+ \ {0} : ATα = 0. (3.7)

Proposition 3.7 (bijection Sc ↔ I) The map ı defined by (3.6) is a bijection from Sc onto I.
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Proof Let s ∈ {±1}p and set I := ı(s) = {i ∈ [1 :p] : si = +1}. Define A := Diag(s)V T to make
the link with Gordan’s alternative (3.7). One has the equivalences

s ∈ Sc ⇐⇒ ∄ x ∈ Rn : Ax > 0 [definition of S in (3.2)]

⇐⇒ ∃α ∈ Rm
+ \ {0} : ATα = 0 [Gordan’s alternative (3.7)]

⇐⇒ ∃α ∈ Rm
+ \ {0} : s qα ∈ N (V )

⇐⇒ N (V ) ∩Op
I 6= {0} [see below] (3.8)

⇐⇒ I ∈ I [definition of I].

The implication “⇒” in (3.8) is due to the fact that s qα is nonzero and belongs to both N (V ) and
Op

I . The reverse implication “⇐” in (3.8) is due to the fact that there is a nonzero y ∈ N (V )∩Op
I ,

implying that α := s q y is nonzero and > 0 and is such that s qα = y ∈ N (V ).
Since ı : {±1}p → P([1 :p]) is a bijection, the above equivalences show that ı is also a bijection

from Sc onto I. ⊓⊔

Equivalence 3.8 (Sc ↔ I) The equivalence between problems 3.3 and 3.6 is a consequence of
the bijectivity of ı : Sc → I, established in proposition 3.7: to determine S , it suffices to determine
Sc = ı−1(I), hence to determine I, and vice versa. ⊓⊔

In example 3.2, one has N (V ) = Re, which only encounters the orthants O3
∅ and O3

[1 : 3] outside
the origin; hence I = {∅, [1 : 3]}. We have seen that Sc = {±(1, 1,1)} for this problem. Clearly, ı
maps Sc onto I bijectively, as claimed in proposition 3.7.

Recall that the nullity of a matrix A, denoted by null(A), is the dimension of its null space. Let
us introduce the following collection of index sets (from now on, J usually denotes a set of indices
rather than a Jacobian matrix):

C := {J ⊆ [1 : p] : J 6= ∅, null(V : ,J) = 1, V : ,J0
is injective if J0 ( J}, (3.9)

where “(” is used to denote strict inclusion. In the terminology of the vector matroid formed by
the columns of V and its subsets made of linearly independent columns [55; proposition 1.1.1],
the elements of C are called the circuits of the matroid [55; proposition 1.3.5(iii)]. The particular
expression (3.9) of the circuit set is interesting in the present context, since it readily yields the
following implication:

J ∈ C =⇒ any nonzero α ∈ N (V : ,J) has none zero component. (3.10)

From (3.9) and (3.10), one can associate with J ∈ C a pair of sign vectors ±s̃ ∈ {±1}J by s̃ := sgn(α)
for some nonzero α ∈ N (V : ,J); the sign vectors ±s̃ do not depend on the chosen α ∈ N (V : ,J) \ {0}
since null(V : ,J) = 1. We call such a sign vector a stem vector, because of proposition 3.10 below,
which shows that any s ∈ Sc can be generated from such a stem vector.

Definition 3.9 (stem vector) A stem vector is a sign vector s̃ = sgn(α), where α ∈ N (V :,J) for
some J ∈ C. ⊓⊔

Note that there are twice as many stem vectors as circuits and that the stem vectors do not have
all the same size.

The matrix V in example 3.2 has J = [1 : 3] as single circuit. Since V e = 0, the associated
stem vectors are ±e = ±(1,1, 1). The next proposition now confirms that ±(1,1, 1) are the only
elements of Sc.
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Proposition 3.10 (generating Sc from the stem vectors) For s ∈ {±1}p,

s ∈ Sc ⇐⇒ sJ = s̃ for some J ⊆ [1 :p] and some stem vector s̃. (3.11)

Proof [⇒] The index set J ⊆ [1 :p] in the right-hand side of (3.11) can be determined as one
satisfying the following two properties:

{d ∈ Rn : sjv
T

j d > 0 for all j ∈ J} = ∅, (3.12a)

∀ J0 ( J, {d ∈ Rn : sjv
T

j d > 0 for all j ∈ J0} 6= ∅. (3.12b)

To determine such a J , start with J = [1 :p], which verifies (3.12a), since s ∈ Sc. Next, remove
an index j from [1 :p] if (3.12a) holds for J = [1 :p] \ {j}. Pursuing the elimination of indices j

in this way, one arrives to an index set J satisfying (3.12a) and {d ∈ Rn : sjv
T

j d > 0 for all
j ∈ J \ {j0}} 6= ∅ for all j0 ∈ J . Then, (3.12b) clearly holds. We claim that, for a J satisfying
(3.12a) and (3.12b), sJ is a stem vector, which will conclude the proof of the implication.

To stick to definition 3.9, we start by showing that J is a matroid circuit. By (3.12a), J 6= ∅.
By Gordan’s alternative (3.7), (3.12a) and (3.12b) read

∃α ∈ RJ
+ \ {0} such that

∑

j∈J sjvjαj = 0, (3.12c)

∀J0 ( J , ∄α′ ∈ RJ0
+ \ {0} such that

∑

j∈J0
sjvjα

′
j = 0. (3.12d)

From these properties, one deduces that α > 0 and that null(V : ,J) > 1. To show that null(V : ,J) =

1, we proceed by contradiction. Suppose that there is a nonzero α′′ ∈ RJ that is not colinear with α

and that verifies
∑

j∈J sjvjα
′′
j = 0. One can assume that t := max{α′′

j /αj : j ∈ J} is > 0 (take −α′′

otherwise). Set J0 := {j ∈ J : α′′
j /αj < t}. By the non-colinearity of α and α′′, on the one hand,

and the definition of t, on the other hand, one has ∅ ( J0 ( J . Furthermore, α′ := α− α′′/t > 0,
α′
j > 0 for j ∈ J0 and α′

j = 0 for j ∈ J \J0. Therefore,
∑

j∈J0
sjvjα

′
j =

∑

j∈J sjvjα
′
j = 0, yielding

a contradiction with (3.12d).
To show that J ∈ C, we still have to prove that V : ,J0

is injective when J0 ( J . Equivalently,
it suffices to show that any β ∈ N (V : ,J) with some zero component vanishes. We proceed by
contradiction. If there is a β ∈ N (V : ,J) \ {0} with a zero component, sJ q α and β would be
two linearly independent vectors in N (V : ,J) (since sJ q α has no zero component), contradicting
null(V : ,J) = 1.

Now, since sJ = sgn(sJ qα), since sJ qα ∈ N (V :,J ) by (3.12c) and since J is a matroid circuit
of V , sJ is a stem vector.

[⇐] Since sJ is a stem vector, it follows that sJ := sgn(α) for some α ∈ RJ with nonzero
components that satisfies V : ,Jα = 0. Then, there is no d ∈ Rn such that sJ q(V T

:,Jd) > 0 (otherwise,

(sJ qα qsJ) q (V
T

: ,Jd) > 0, because sJ qα > 0, or α q(V T

: ,Jd) > 0, implying that 0 = αT(V T

: ,Jd) > 0,

a contradiction). Hence, there exists certainly no d ∈ Rn such that s q(V Td) > 0. This implies that
s ∈ Sc. ⊓⊔

To determine the stem vectors, which are based on the matroid circuits of V defined by (3.9),
one has to select subsets of columns of V forming a rank one matrix, whose strict subsets form
injective matrices. Actually, this last condition can be simplified by the following property.

Proposition 3.11 (matroid circuit detection) Suppose that I ⊆ [1 : p] is such that null(V : ,I) =
1 and that α ∈ N (V : ,I) \ {0}. Then, J := {i ∈ I : αi 6= 0} is a matroid circuit of V and the unique

one included in I.
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Proof 1) Let us show that J is a matroid circuit.
Since α 6= 0, one has J 6= ∅.
Let us show that null(V : ,J) = 1. Since J ⊆ I , one has null(V : ,J) 6 null(V : ,I) = 1. Furthermore,

αJ ∈ N (V : ,J) \ {0} implies that null(V : ,J) > 1.
Now, let J0 ( J and suppose that V : ,J0

β = 0. We have to show that β = 0. Since V : ,J(β, 0J\J0
) =

0, it follows that (β, 0J\J0
) ∈ N (V : ,J), which is of dimension 1, so that (β, 0J\J0

) is colinear to α.
Since the components of α are 6= 0, we get that β = 0.

2) Let us now show that J is the unique matroid circuit of V included in I .
Let J ′ be a matroid circuit of V included in I . Then null(V :,J′) = 1 and there is a nonzero

α′ ∈ N (V : ,J′). By (3.10), α′ has nonzero components. Furthermore, (α′, 0I\J′) ∈ N (V : ,I), which
has unit dimension and contains α. Therefore, α and (α′, 0I\J′) are colinear. Since the components
of α are 6= 0, we get that J ′ = J . ⊓⊔

3.3 Convex analysis problems

The formulation of the original problem 3.1 in the form of the convex analysis problems 3.12 and 3.15
below may be useful to highlight some properties of ∂BH(x), thanks to the tools of that discipline.

3.3.1 Pointed cones by vector inversions

Recall that a convex cone K of Rn is a convex set verifying R++K ⊆ K (or, more explicitly, tx ∈ K

when t > 0 and x ∈ K). A closed convex cone K is said to be pointed if K ∩ (−K) = {0} [16; p. 54],
which amounts to saying that K does not contain a line (i.e., an affine subspace of dimension one)
or that K has no nonzero direction z such that −z ∈ K. For P ⊆ Rn, we also denote by “coneP ”
the smallest convex cone containing P .

Problem 3.12 (pointed cones by vector inversions) Let be given two positive integers n and
p ∈ N∗ and p vectors v1, . . . , vp ∈ Rn \ {0}. It is requested to determine all the sign vectors
s ∈ {±1}p such that cone{sivi : i ∈ [1 : p]} is pointed. ⊓⊔

The equivalence between the original problem 3.1 and problem 3.12 is obtained thanks to the
next proposition, which gives another property (“cone pointedness”) that is equivalent to those in
(3.7) and that is adapted to the present concern. For a proof, see [42; theorem 2.3.29] or [30].

Proposition 3.13 (pointed polyhedral cone) For a finite collection of nonzero vectors {wi :
i ∈ [1 :p]} ⊆ Rn, the following properties are equivalent:

(i) cone{wi : i ∈ [1 :p]} is pointed,

(ii) ∄α ∈ Rp
+ \ {0} :

∑

i∈[1 : p] αiwi = 0,

(iii) ∃ d ∈ Rn, ∀ i ∈ [1 :p] : wT

i d > 0.

Equivalence 3.14 (signed linear system feasibility ↔ pointed cone by vector inversion)

The equivalence (i) ⇔ (iii) of the previous proposition shows that the set S defined by (3.2) is also
given by

S = {s ∈ {±1}p : cone{sivi : i ∈ [1 :p]} is pointed}. (3.13)

To put it in words, denoting by v1, . . . , vp the columns of the matrix V defined by (3.1), the signed
feasibility problem 3.3 is equivalent to problem 3.12. ⊓⊔
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Fig. 3.1 The figure is related to the linear complementarity problem defined by example 3.2: the vi’s are
the columns of the matrix V (their third zero components are not represented). Each of the 6 sets of vectors
plots the 3 vectors {sivi : i ∈ [1 : 3]}, for each of the 6 sign vectors s ∈ S (given by the columns of the matrix
S in (3.3)), as well as a direction d (given by the columns of D in (3.3), dashed lines) such that siv

T

i d > 0
for all i ∈ [1 : 3]. Each conic hull of these vectors, namely cone{sivi : i ∈ [1 : 3]}, is pointed. The conic hulls
of {v1, v2, v3} and {−v1,−v2,−v3} are both the space of dimension 2, hence there are not pointed, which
confirms the fact that (1, 1, 1) and (−1,−1,−1) are not in S.

3.3.2 Linearly separable bipartitions of a finite set

This section extends section 3.3.1 and adopts its concepts and notation. The point of view presented
in this section was also shortly considered by Zaslavsky [81; 1975, § 6A]. This enumeration problem
appears in the study of neural networks [78]. Baldi and Vershynin [7] make the connection with
homogeneous linear threshold functions and highlight its impact in deep learning [70,6].

Problem 3.15 (linearly separable bipartitioning) Let be given an affine space A and p ∈ N∗

vectors v̄1, . . . , v̄p ∈ A. Let A0 := A − A be the vector space parallel to A, endowed with a scalar
product 〈·, ·〉. It is requested to find all the ordered bipartitions (i.e., the partitions made of two
subsets) (I, J) of [1 :p] for which there exists a vector ξ ∈ A0 (also called separating covector below)
such that

∀ i ∈ I, ∀ j ∈ J : 〈ξ, v̄i〉 < 〈ξ, v̄j〉. ⊓⊔

Of course, if (I, J) is an appropriate ordered bipartition to which a separating covector ξ corre-
sponds, then (J, I) is also an appropriate ordered bipartition with separating covector −ξ. Therefore,
only half of the appropriate ordered bipartitions (I, J) must be identified, a fact that is related to
the symmetry of ∂BH(x) (proposition 4.1). Figure 3.2 shows the solution to this problem by draw-

r = 2, |S| = 8

r = 3, |S| = 12
r = 3, |S| = 14

Fig. 3.2 Linearly separable bipartitions of a set of p = 4 points v̄i in R2 (the dots in the figure). Possible
separating hyperplanes are the drawn lines. We have not represented any separating line associated with the
partition (∅, [1 : p]) or ([1 : p],∅), so that |S| = 2(ns + 1), where ns is the number of represented separating
lines. We have set r := dim(vect{v̄1, . . . , v̄p}) + 1.

ing the separating hyperplanes {v̄ ∈ A : ξTv̄ = t} corresponding to some separating covector ξ and
some t ∈ R, for three examples with p = 4. Since it will be shown that |S| is the number of these
searched linearly separable bipartitions, this one is denoted that way in the figure. Obviously, |S| not
only depends on p and r := dim(vect{v̄1, . . . , v̄p}) + 1, but it also depends on the arrangement of
the v̄i’s in the affine space A. We also see that |S| cannot take all the even values (proposition 4.1)
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between its lower bound 2p = 8 and its upper bounds 8 (if r = 2) and 14 (if r = 3) given by
propositions 4.7 and 4.10.

The equivalence between the linearly separable bipartitioning problem 3.15 of this section and
the vector inversion problem 3.12 (hence, with the original problem 3.1) is grounded on the following
construction and proposition.

Construction 3.16 1) Let be given two integers n and p ∈ N∗ and p nonzero vectors v1, . . . ,
vp ∈ Rn such that K := cone{vk : k ∈ [1 :p]} is a pointed cone. From proposition ??, there is a
direction d ∈ Rn such that

‖d‖ = 1 and
(
∀ k ∈ [1 : p] : vTk d > 0

)
.

Define

A := {v̄ ∈ Rn : dTv̄ = 1}, A0 := A− A = {v ∈ Rn : dTv = 0},

∀ k ∈ [1 :p] : v̄k := vk/(v
T

k d) ∈ A.

2) For a given bipartition (I, J) of [1 :p], define

KI := cone{vi : i ∈ I} and KJ := cone{vj : j ∈ J}, (3.14a)

CI := KI ∩A and CJ := KJ ∩ A, (3.14b)

with the convention K∅ = {0} and C∅ = ∅. ⊓⊔

Proposition 3.17 (pointed cone after vector inversions) Adopt the construction 3.16 and

take a partition (I, J) of [1 :p]. Then, the following properties are equivalent:

(i) cone((−KI) ∪KJ ) is pointed,

(ii) KI ∩KJ = {0},
(iii) CI ∩ CJ = ∅,

(iv) there exists a vector ξ ∈ A0 such that maxi∈I ξTv̄i < minj∈J ξTv̄j .

Proof [(i) ⇒ (ii)] We show the contrapositive. If there is v ∈ (KI ∩KJ) \{0}, then −v ∈ (−KI) ⊆
cone((−KI)∪KJ ) and v ∈ KJ ⊆ cone((−KI)∪KJ). Therefore, cone((−KI)∪KJ ) is not pointed.

[(ii) ⇒ (iii)] ∅ = A ∩ {0} = A ∩KI ∩KJ [(ii)] = (A ∩KI) ∩ (A ∩KJ ) = CI ∩ CJ .
[(iii) ⇒ (iv)] We claim that

CI is nonempty, convex and compact.

Indeed, since CI is nonempty (it contains the vectors v̄i for i ∈ I 6= ∅), convex (because KI and A
are convex) and closed (because KI and A are closed), it suffices to show that CI is bounded or
that its asymptotic cone (or recession cone in [68; p. 61]), namely C∞

I = KI ∩A0, is reduced to {0}
[68; theorem 8.4]. This is indeed the case since vTd > 0 for all v ∈ KI \ {0}. For the same reason,

CJ is nonempty, convex and compact.

Now, since CI ∩ CJ = ∅ by (iii), one can strictly separate the convex sets CI and CJ in A [68;
corollary 11.4.2]: there exists ξ ∈ A0 such that ξTv < ξTw, for all v ∈ CI and all w ∈ CJ . This
shows that (iv) holds.

[(iv) ⇒ (i)] Since cone((−KI) ∪KJ) = cone({−vi : i ∈ I} ∪ {vj : j ∈ J}), by proposition ??,
it suffices to find d(I,J) ∈ Rn such that

(

−vTi d(I,J) > 0, ∀ i ∈ I
)

and
(

vTj d(I,J) > 0, ∀ j ∈ J
)

. (3.15)
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By (iv) and the fact that θ ∈ (0, π) → cot θ ∈ R is surjective, one can determine θ ∈ (0, π) such
that

max
i∈I

ξTvi

vTi d
< − cot θ < min

j∈J

ξTvj

vTj d
. (3.16)

Since sin θ > 0 for θ ∈ (0, π) and since vTk d > 0 for all k ∈ [1 :p], this is equivalent to

max
i∈I

vTi [(cos θ)d+ (sin θ)ξ] < 0 < min
j∈J

vTj [(cos θ)d+ (sin θ)ξ].

Therefore, (3.15) is satisfied with d(I,J) := (cos θ)d+ (sin θ)ξ. ⊓⊔

One can now establish the link between the pointed cone problem of section 3.3.1 (problem 3.12)
and the linearly separable bipartitioning problem (problem 3.15).

Equivalence 3.18 (pointed cone ↔ linearly separable bipartitioning) Let be given a matrix
V ∈ Rn×p with nonzero columns denoted by v1, . . . , vp and take s ∈ S , which is nonempty. By
(3.13), cone{sivi : i ∈ [1 : p]} is pointed. Use the construction 3.16(1) with vi y sivi.

For s̃ ∈ {±1}p, define a partition (I, J) of [1 :p] by

I := {i ∈ [1 :p] : s̃isi = −1} and J := {i ∈ [1 :p] : s̃isi = +1}.

Define also KI and KJ by (3.14a) with vi y sivi. We claim that

cone{s̃ivi : i ∈ [1 : p]} is pointed ⇐⇒ ∃ ξ ∈ A0 : max
i∈I

ξTv̄i < min
j∈J

ξTv̄j . (3.17)

Indeed, one has

cone{s̃ivi : i ∈ [1 :p]} is pointed

⇐⇒ cone{s̃isi(sivi) : i ∈ [1 :p]} is pointed

⇐⇒ cone((−KI) ∪KJ) is pointed

⇐⇒ ∃ ξ ∈ A0 : max
i∈I

ξTv̄i < min
j∈J

ξTv̄j ,

where we have used the equivalence (i) ⇔ (iv) of proposition 3.17 (vi y sivi).
The equivalence (3.17) establishes the expected equivalence between the pointed cone prob-

lem 3.12 (in which one looks for all the s̃ ∈ {±1}p such that cone{s̃ivi : i ∈ [1 :p]} is pointed)
and the linearly separable bipartitioning problem 3.15 of the vectors v̄i = sivi/(siv

T

i d) = vi/(v
T

i d),
i ∈ [1 :p], where d is associated with the pointed cone cone{sivi : i ∈ [1 :p]} by the equivalence (i)
⇔ (iii) of proposition ??. ⊓⊔

3.4 Discrete geometry: hyperplane arrangements

The equivalent problem examined in this section has a long history, going back at least to the XIXth
century [75,66]. More recently, it appears in Computational Discrete Geometry (the discipline has
many other names), under the name of hyperplane arrangements. Contributions to this problem, or
a more general version of it, with a discrete mathematics point of view, have been reviewed in [43,
35,74,2,44]. It has many applications [36,72,18]. From an algorithmic point of view, the algorithms
developed in this domain can immediately be used to compute S defined by (3.2) or ∂BH(x) defined
by (1.1) and (1.3).
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Problem 3.19 (arrangement of hyperplanes containing the origin) Let be given two pos-
itive integers n and p ∈ N∗ and p nonzero vectors v1, . . . , vp ∈ Rn. Consider the hyperplanes
containing the origin:

Hi := {d ∈ Rn : vTi d = 0}. (3.18)

Figure 3.3 illustrates problem 3.19 for the linear complementarity problem 3.2. It is requested to
list the regions of Rn that are separated by these hyperplanes, which are the connected components
of Rn \ (

⋃

i∈[1 : p] Hi). Such a region is called a cell or a chamber, depending on the authors [5,71,
2]. More specifically, let us define the half-spaces

H+
i := {d ∈ Rn : vTi d > 0} and H−

i := {d ∈ Rn : vTi d < 0}.

The problem is to determine the following set of open sectors or cells of Rn, indexed by the bipar-
titions (I+, I−) of [1 :p]:

C :=
{

(I+, I−) ∈ B([1 :p]) : (∩i∈I+ H+
i ) ∩ (∩i∈I− H−

i ) 6= ∅
}

, (3.19)

where B([1 :p]) denotes the set of bipartitions of [1 :p]. ⊓⊔

v1

v2

v3

H1

H2 H3

(+−−)(−++)

(−+−)

(+−+)(−−+)

(++−)

Fig. 3.3 Illustration of problem 3.19 (arrangement of hyperplanes containing the origin) for the 3 vectors
that are the columns on the matrix V in example 3.2 (since the last components of these vi’s vanish, only the
first two ones are represented above). The hyperplanes Hi are defined by (3.18). The regions to determine are
represented by the sign vectors here denoted (s1s2s3) with si = ±: if d ∈ R2 belongs to the region (s1s2s3),
then si = + if vTi d > 0 and si = − if vTi d < 0. We see that there are only 6 = 2p regions among the 8 = 2p

possible ones; the regions (+++) and (−−−) are missing, which reflects the fact that + v1 + v2 + v3 = 0
and −v1 − v2 − v3 = 0 (see problem 3.6).

The link between problem 3.19 and the signed feasibility of strict linear inequality systems of
section 3.2.1 is obtained from the bijection

η : (I+, I−) ∈ B([1 :p]) 7→ s ∈ {±1}p, where si =

{
+1 if i ∈ I+,
−1 if i ∈ I−

(3.20)

and the setting V =
(
v1 · · · vp

)
, whose columns are nonzero by assumption, here and in section 3.2.1.

Recall the definition (3.2) of the set of sign vectors S .

Proposition 3.20 (bijection C ↔ S) For the matrix V ∈ Rn×p, with nonzero columns vi’s, the

map η given by (3.20) is a bijection from C onto S.
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Proof Let (I+, I−) ∈ B([1 :p]) and s := η((I+, I−)). Then,

(I+, I−) ∈ C ⇐⇒ ∃ d ∈ (∩i∈I+ H+
i ) ∩ (∩i∈I− H−

i )

⇐⇒ ∃ d ∈ Rn : (vTi d > 0 for i ∈ I+) and (vTi d < 0 for i ∈ I−)

⇐⇒ ∃ d ∈ Rn : s q (V Td) > 0

⇐⇒ s ∈ S .

These equivalences show the bijectivity of η from C onto S . ⊓⊔

Equivalence 3.21 (signed linear system feasibility ↔ hyperplane arrangement) The
equivalence between problems 3.3 and 3.19 follows from the bijection of the map η : C → S claimed
in proposition 3.20. ⊓⊔

4 Description of the B-differential

This section gives some elements of description of the B-differential ∂BH(x), when H is the piecewise
affine function given by (1.3) and x ∈ Rn. This description is often carried out in terms of the
matrix V defined by (3.1), whose p columns are denoted by v1, . . . , vp ∈ Rn and are nonzero by
construction. When the properties are given for S , one may have p > n and the referenced matrix
V ∈ Rn×p is assumed to have nonzero columns, which implies that S 6= ∅. Some properties of
∂BH(x) are given in section 4.1, including those that are useful in [32]. Section 4.2 deals with
the cardinality |∂BH(x)| of the B-differential. Section 4.3 analyzes more precisely two particular
configurations. Section 4.4 highlights two links between the B-differential and the C-differential
of H .

Besides their theoretical relevance, the properties of the B-differential of H given in this section
will also be useful to design the algorithms presented in section 5 and to check the correctness of
their implementation.

As a preliminary remark, let us mention a way of proceeding that seems to us to be a dead end
when one focuses on the B-differential ∂BH(x) and that does not make possible the description of
a hyperplane arrangement governed by a matrix V ∈ Rn×p with p > n. Therefore, this approach is
not followed below. If ∂BH(x) is the main concern, one can write H(x) = Ax+ a −K(x), where
K(x) := PR

n
+
[Mx+ q], PR

n
+

is the orthogonal projector on the positive orthant, M = A − B and
q = a − b, so that ∂BH(x) = A − ∂BK(x). To take advantage of the explicit formula of ∂B PR

n
+
,

one can look for conditions ensuring that the chain rule applies for the composition defining the
map K : Rn → Rn. It can be shown, however, that, when the chain rule applies, the B-differential
∂BH(x) is complete in the sense of definition 2.4, which is a very particular case; see [30] for more
details. Therefore, this approach is of too limited an interest.

4.1 Some properties of the B-differential

Let us start with a basic property of ∂BH(x), which is its symmetry in the sense of definitions 2.5.
This property has been observed by many in other contexts [2; § 1.1.4], so that we leave its short
proof, based on the equivalence 3.5, to [30]. It is useful for the algorithms since it implies that only
half of the B-differential has to be computed.

Proposition 4.1 (symmetry of ∂BH(x)) Suppose that p > 0. Then, the B-differential ∂BH(x)
is symmetric and |∂BH(x)| is even.
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We now give a necessary and sufficient condition ensuring the completeness of ∂BH(x) in the
sense of definition 2.4. The condition was shown to be sufficient in [80; corollary 2.1(i)] for the
nonlinear case (1.6), using a different proof, but we shall see in [32] that it is an easy consequence
of that property in the affine case (1.3). Thanks to the equivalence 3.5, the present proof is short.
This property is also useful in the development of algorithms, as a test that these must pass:
|∂BH(x)|= 2p if and only if V ∈ Rn×p is injective.

Proposition 4.2 (completeness of the B-differential) The B-differential ∂BH(x) of H at x

is complete if and only if the matrix V ∈ Rn×p in (3.1) is injective. Hence, this property can hold

only if p 6 n.

Proof [⇒] We show the contrapositive. Assume that V is not injective, so that V α = 0 for some
nonzero α ∈ Rp. With s ∈ sgn(α), one can write

∑

i∈[1 : p]

|αi|sivi = 0.

By Gordan’s alternative (3.7), it follows that there is no d ∈ Rn such that s q (V Td) > 0. By (3.2),
this implies that s /∈ S . According to the equivalence 3.5, σ−1(s) /∈ ∂BH(x), showing that the
B-differential is not complete.

[⇐] Assume the injectivity of V . Let s ∈ {±1}p. Since V T is surjective, the system V Td = s

holds for some d ∈ Rn. For this d, s q(V Td) = e, so that s q(V Td) > 0 holds for some d ∈ Rn, which
implies that the selected s is in S . We have shown that S = {±1}p or that ∂BH(x) = σ−1({±1}p)
(σ−1 is defined by (3.4b)) is complete. ⊓⊔

We focus now on the connectivity of ∂BH(x), a notion that is more easily presented in terms
of S ⊆ {±1}p but that can be transferred straightforwardly to ∂BH(x) by the bijection σ defined
in (3.4). This property was implicitly used, for instance, in the algorithms proposed by Avis, Fukuda
and Sleumer [5,71] for hyperplane arrangements.

Definition 4.3 (adjacency in {±1}p) Two sign vectors s1 and s2 ∈ {±1}p are said to be
adjacent if they differ by a single component (i.e., the vertices s1 and s2 of the cube co{±1}p can
be joined by a single edge). ⊓⊔

Definitions 4.4 (connectivity in {±1}p) A path of length l in a subset S of {±1}p is a finite
set of sign vectors s0, . . . , sl ∈ S such that si and si+1 are adjacent for all i ∈ [0 : l − 1]; in which
case the path is said to be joining s0 to sl. One says that a subset S of {±1}p is connected if any
pair of points of S can be joined by a path in S. ⊓⊔

Proposition 4.5 (connectivity of the B-differential) The set S defined by (3.2) is connected

if and only if V has no colinear columns. In this case, any points s and s̃ of S can be joined by a

path of length l :=
∑

i∈[1 : p] |s̃i − si|/2 6 p in S.

Proof [⇒] We prove the contrapositive. Suppose that the columns vi and vj of V are colinear:
vj = αvi, for some α ∈ R∗. Assume that α > 0 (resp. α < 0). By (3.2), for any s ∈ S 6= ∅, one can
find d ∈ Rn such that s q(V Td) > 0, implying that si = sj (resp. si = −sj). Therefore, one cannot
find a path in S joining s ∈ S and −s ∈ S (proposition 4.1), since one would have to change the
two components with index in {i, j} and that these components must be changed simultaneously
for the sign vectors in S , while the adjacency property along a path prevents from changing more
than one sign at a time.
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[⇐] We leave to [30] the proof of this implication and of the last claim of the proposition, since
the conclusion of the implication is given in [2; section 1.10.4] as a simple observation with a very
different point of view, related to graph theory. ⊓⊔

For k ∈ [1 :p], we introduce

Sk := {s ∈ {±1}k : ∃ d ∈ Rn such that siv
T

i d > 0 for i ∈ [1 :k]}. (4.3)

We also note Sc
k := {±1}k \ Sk. Hence S = Sp and Sc = Sc

p. Point 1 of the next proposition will
be used to motivate an improvement of algorithm 5.5 in section 5.2.4 and its points 2 and 3 will be
used to get the equivalence in proposition 4.13, related to a fan arrangement.

Proposition 4.6 (incrementation)

1) If s ∈ Sc
k, then (s,±1) ∈ Sc

k+1. In particular, |Sc
k+1| > 2|Sc

k|.
2) If vk+1 /∈ vect{v1, . . . , vk}, then, (s,±1) ∈ Sk+1 for all s ∈ Sk. In particular, |Sk+1| = 2|Sk|

and |Sc
k+1| = 2|Sc

k|.
3) If vk+1 is not colinear to any of the vectors v1, . . . , vk, then, [(s,±1) and (−s,±1) ∈ Sk+1 for

one s ∈ Sk] and [(s′,+1) or (s′,−1) ∈ Sk+1 for any s′ ∈ Sk]. In particular, |Sk+1| > |Sk|+ 2.

Proof 1) If s ∈ Sc
k, there is no d ∈ Rn such that siv

T

i d > 0 for i ∈ [1 :k]. Therefore, there is no
d ∈ Rn such that (siv

T

i d > 0 for i ∈ [1 :k]) and ±vTk+1d > 0. Therefore, (s,±1) ∈ Sc
k+1. This

implies that |Sc
k+1| > 2|Sc

k|.
2) Let P be the orthogonal projector on vect{v1, . . . , vk}

⊥ for the Euclidean scalar product. By
assumption, P vk+1 6= 0. Let s ∈ Sk, so that there is a direction d ∈ Rn such that siv

T

i d > 0 for
i ∈ [1 :k]. For any t ∈ R and i ∈ [1 :k], the directions d± := d± tP vk+1 verify siv

T

i d± = siv
T

i d > 0
(because vTi P vk+1 = 0). In addition, for t > 0 sufficiently large, one has ±vTk+1d± = ±vTk+1d +

t‖P vk+1‖
2 > 0 (because P2 = P and PT = P). We have shown that both (s,+1) and (s,−1) are

in Sk+1. Therefore, |Sk+1| > 2|Sk|.
Now, |Sk|+ |Sc

k| = 2k, |Sk+1|+ |Sc
k+1| = 2k+1 and |Sc

k+1| > 2|Sc
k| by point 1. Therefore, one

must have |Sk+1| = 2|Sk| and |Sc
k+1| = 2|Sc

k|.
3) We claim that one can find a direction d ∈ Rn such that

(

∀ i ∈ [1 :k] : vTi d 6= 0
)

and vTk+1d = 0. (4.4)

Indeed, let E := {d ∈ Rn : vTk+1d = 0} and P be the orthogonal projector on E for the Eu-
clidean scalar product. By lemma 2.6, one can find a direction d ∈ E (hence vTk+1d = 0) such
that |{(P vi)

Td : i ∈ [1 :k + 1]}| = |{P vi : i ∈ [1 :k + 1]}|. Since P vk+1 = 0 and P vi 6= 0 for
i ∈ [1 :k] (because the vi’s are not colinear with vk+1), one has (P vi)

Td 6= 0 for i ∈ [1 :k]. Since,
0 6= (P vi)

Td = vTi P d = vTi d, (4.4) follows.
Taking si := sgn(vTi d) for i ∈ [1 :k], one deduces from (4.4) that there is a direction d ∈ Rn

such that (

∀ i ∈ [1 :k] : siv
T

i d > 0
)

and vTk+1d = 0.

It follows that, for ε > 0 sufficiently small, the directions d± := d± εvk+1 satisfy
(

∀ i ∈ [1 :k] : siv
T

i d± > 0
)

and ± vTk+1d± > 0.

This means that (s,±1) ∈ Sk+1. By symmetry (proposition 4.1), one also has (−s,±1) ∈ Sk+1,
so that we have found 4 vectors in Sk+1. Now, since, for any s′ ∈ Sk \ {±s} (in number |Sk| − 2),
either (s′,+1) ∈ Sk+1 or (s′,−1) ∈ Sk+1, it follows that |Sk+1| > 4 + (|Sk| − 2) = |Sk|+ 2. ⊓⊔
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4.2 Cardinality of the B-differential

Information on the cardinality of ∂BH(x) can be useful to check the correctness of the number of
elements computed by the algorithms presented in section 5.2.

4.2.1 Winder’s formula

Giving the exact number of elements in ∂BH(x), that is |∂BH(x)| = |S| = |C| = 2p−|Sc| = 2p−|I|,
with the notation (3.2), (3.19) and (3.6), is a tricky task, even in the present affine case, since it subtly
depends on the arrangement of the vectors vi’s in the space (see figure 3.2). Many contributions
have been done on this subject; the earliest we cite dates from 1826 [75,66,43,81,77,3,4,35,21,74,
2]. The formula (4.5) for |∂BH(x)| is due to Winder [79; 1966] and reads for the matrix V with
nonzero columns given by (3.1)

|∂BH(x)| =
∑

I⊆[1 : p]

(−1)null(V : ,I), (4.5)

where null(V : ,I) is the nullity of V : ,I and the term in the right-hand side corresponding to I = ∅
is 1 (one takes the convention that null(V : ,∅) = 0). Note that, in this formula, the columns of V
can be colinear with each other. This amazing expression, with its only algebraic nature, potentially
made of positive and negative terms, is explicit but, to our knowledge, has not been at the origin
of a method to list the elements of ∂BH(x). We give in [30] a proof of (4.5) that follows the same
line of reasoning as the one of Winder [79], but that is more analytic in that it uses the sign vectors
introduced in section 3.2.1 rather than geometric arguments (i.e., the hyperplane arrangements of
section 3.4).

4.2.2 Bounds

When p is large, computing the cardinality |∂BH(x)| from (4.5) by evaluating the 2p ranks rank(V : ,I)
for I ⊆ [1 :p] could be excessively expensive. Therefore, having simple-to-compute lower and upper
bounds on |∂BH(x)|may be useful in some circumstances, including theoretical ones. Proposition 4.7
gives elementary lower and upper bounds, while proposition 4.10 reinforces the upper bound, thanks
to a lower semicontinuity argument (proposition 4.8). Necessary and sufficient conditions ensuring
equality in the left-hand side or right-hand side inequalities in the next proposition are given in
section 4.3.

Proposition 4.7 (lower and upper bounds on |∂BH(x)|) Let V ∈ Rn×p given by (3.1) and

r := rank(V ). Then,

2r 6 |∂BH(x)| 6 2p. (4.6a)

If V has no colinear columns, then,

max(2p,2r) 6 2r + 2(p− r) 6 |∂BH(x)|. (4.6b)

Proof [(4.6a)] One can assume that the first r columns of V are linearly independent, so that
|Sr| = 2r (notation (4.3) and proposition 4.6(2)). Since a sign vector has at least one descendant,
|Sk+1| > |Sk|, for k ∈ [r : p], which proves the lower bound. The upper bound was already mentioned
in proposition 2.2.

[(4.6b)] The first inequality is clear since p > r > 1 and 2r 6 2r. Consider now the second
inequality. Like above, one can assume that the first r columns of V are linearly independent, so that
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|Sr| = 2r. Next, by proposition 4.6(3) and the non-colinearity of the columns of V , |Sr+1| > 2r+2.
By induction, The inequality follows. ⊓⊔

Proposition 4.10 below provides a refinement of the upper bound given by (4.6a). The next
proposition will be useful for this purpose. Recall that a function ϕ : x ∈ T → ϕ(x) ∈ R, defined
on a topological space T, is said to be lower semicontinuous if, for any x ∈ T and any ε > 0, there
is a neighborhood V of x such that, for all x̃ ∈ V, one has ϕ(x̃) 6 ϕ(x) + ε. It is known that the
rank of a matrix can only increase in the neighborhood of a given matrix, which implies its lower
semicontinuity. The next lemma shows that the same property holds for |S| ∈ N∗, viewed as a
function of V . Recall that the bijection σ is defined by (3.4).

Proposition 4.8 (lower semicontinuity of |∂BH(x)|) Suppose that the set S, defined by (3.2),
is viewed as a function of V ∈ Rn×p. Then, S(V ) ⊆ S(Ṽ ) for Ṽ near V in Rn×p. In particular,

V ∈ Rn×p 7→ |S(V )| ∈ N∗ is lower semicontinuous.

Proof By the definition (3.2) of S(V ), for all s ∈ S(V ), there is a ds ∈ Rn such that s q(V Tds) > 0.
Clearly, one still has s q (Ṽ Tds) > 0, for Ṽ near V . Since S(V ) is finite, there is a neighborhood V

of V , such that, for Ṽ ∈ V and s ∈ S(V ), there is a d ∈ Rn such that s q (Ṽ Td) > 0 or s ∈ S(Ṽ ).
We have shown that S(V ) ⊆ S(Ṽ ) for Ṽ near V .

As a direct consequence of this inclusion, we have that |S(V )| 6 |S(Ṽ )| for Ṽ near V . The lower
semicontinuity of V 7→ |S(V )| follows. ⊓⊔

Proposition 4.2 establishes a necessary and sufficient condition to have completeness of ∂BH(x).
Here follows a less restrictive assumption, called general position, which is equivalent to have equality
in (4.9) below. In connection with this assumption, it is worth noting that, for a matrix V ∈ Rn×p

of rank r, one has
∀ I ⊆ [1 :p] : rank(V :,I) 6 min(|I |, r). (4.7)

Definition 4.9 (general position) The vectors v1, . . . , vp ∈ Rn are said to be in general position,
if the matrix V :=

(
v1 · · · vp

)
verifies

∀ I ⊆ [1 : p] : rank(V : ,I) = min(|I |, r), (4.8)

where r := rank(V ). ⊓⊔

In the matroid terminology, the vector matroid formed by the columns of V in general position is
said to be uniform [55; example 1.2.7]. The general position notion is used by Winder [79] when
r = n. Example of vectors in general position are those in the left-hand side and right-hand side
panes in figure 3.2 (the points are the normalized vectors v̄i’s so that the vi’s are actually in R3);
note that in the first case 2 = r < n = 3. Those in the middle pane are not in general position.
This is due to the fact that r := rank(V ) = 3 while for the 3 bottom vectors, with indices in I say,
one has min(|I |, r)− rank(V : ,I) = 3− 2 6= 0.

Equality in the upper estimate (4.9) of the next proposition was shown by Winder [79; 1966,
corollary] when the columns of V are in general position and r = n, thanks to the identity (4.5).
Long before him, the Swiss mathematician Ludwig Schläfli [69; p. 211] established the identity under
the same assumptions, before 1852 [69; p. 174], without reference to (4.5), which was probably not
known at that time. Note that equality does not hold in (4.9) for the middle configuration in
figure 3.2 since |∂BH(x)| = 12, while the right-hand side of (4.9) reads 2[(30) + (31) + (32)] = 14 (we
have seen that the vectors in this pane are not in general position). The bound (4.9) is also useful
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to check the behavior of the algorithms for test-cases in which the columns of V are in general
position. This is likely to be so for randomly generated V , and it was verified by all our random
test-cases in section 5.2.6(B.1).

Proposition 4.10 (upper bound on |∂BH(x)|) For V given by (3.1) and r := rank(V ), one

has

|∂BH(x)| 6 2
∑

i∈[0 : r−1]

(

p− 1

i

)

, (4.9)

with equality if and only if (4.8) holds.

Proof 1) The proof of the implication “(4.8) ⇒ (4.9) with equality” is established in [79; corollary],
using the identity (4.5). See also [30].

2) Let us now show that (4.9) holds. Below, we systematically identify ∂BH(x) and S , thanks
to the equivalence 3.5. We also note S ≡ S(V ) to stress the dependence of S on V . Let β be the
right-hand side of (4.9). We proceed by contradiction, assuming that there is a matrix V ∈ Rn×p

of rank r such that
|S(V )| > β. (4.10a)

It certainly suffices to show that one can find a matrice Ṽ ⊆ Rn×p of rank r arbitrarily close to V

that satisfies
|S(Ṽ )| = β, (4.10b)

since then one would have the expected contradiction with the lower semicontinuity of V 7→ |S(V )|
ensured by proposition 4.8:

|S(Ṽ )| = β < |S(V )|.

To find Ṽ of rank r arbitrarily close to V verifying (4.10b), we proceed as follows. Since (4.10a)
holds, the first part of the proof implies that V does not satify (4.8). Our goal is to construct
from V a matrix Ṽ of rank r arbitrarily close to V with columns in general position. Then, Ṽ

satisfies (4.10b) by the first part of the proof.
In view of (4.7) and since V does not satisfy (4.8), there is some I ⊆ [1 :p] such that rank(V : ,I) <

min(|I |, r). By linear algebra arguments (see [30] for more details), one can get an arbitrarily small
perturbation Ṽ : ,I of V : ,I , such that rank(Ṽ :,I) = min(|I |, r) and R(Ṽ : ,I) ⊆ R(V ). Next, one forms
Ṽ ∈ Rn×p by setting Ṽ : ,Ic = Ṽ : ,Ic , so that Ṽ is as close to V as desired and verifies R(Ṽ ) ⊆ R(V ).
The perturbation Ṽ : ,I of V : ,I can also perturb V : ,I′ for other index sets I ′ ⊆ [1 :p]. However, one
has rank(Ṽ : ,I′) 6 min(|I ′|, r) by (4.7). Now, by the property of the rank, which can only increase
in a neighborhood of a given matrix, if the perturbation taken above is sufficiently small, one has
rank(V : ,I′) 6 rank(Ṽ : ,I′) 6 min(|I ′|, r) for any I ′ ⊆ [1 : p]. Therefore, rank(V : ,I′) = min(|I ′|, r)
implies that rank(Ṽ : ,I′) = min(|I ′|, r). As a result, the modification of V into Ṽ described above
increases by at least one the number of intervals I ′ ⊆ [1 :p] such that rank(Ṽ : ,I′) = min(|I ′|, r).
Since the number of such intervals is finite, proceeding similarly with all the nonempty index sets
I ′′ ⊆ [1 :p] such that rank(Ṽ : ,I′′) < min(|I ′′|, r), one finally obtains a matrix Ṽ , arbitrarily close
to V , such that (4.8) holds: rank((Ṽ ) : ,I) = min(|I |, r) for all I ⊆ [1 :p].

3) One still has to show that “(4.9) with equality ⇒ (4.8)”. We proceed by contradiction,
assuming that (4.9) holds with equality for ∂BH(x) ≡ S(V ), but that (4.8) does not hold. By (4.7),
there exists I ⊆ [1 :p] such that

rank(V :,I) < min(|I |, r). (4.10c)

Let β = |S(V )| be the right-hand side of (4.9). It certainly suffices to show that, thanks to (4.10c),
one can find a matrix Ṽ ∈ Rn×p such that rank(Ṽ ) 6 r and |S(Ṽ )| > β, since this would be
in contradiction with what has been shown in part 2 of the proof. This matrix Ṽ is obtained by
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perturbing V . By proposition 4.8, if the perturbation is sufficiently small, one has S(V ) ⊆ S(Ṽ ),
so that it suffices to show that S(Ṽ ) contains a sign vector s that is not in S(V ).

We claim that (4.10c) implies that one can find an index set J ⊆ I such that

V : ,J is not injective and |J | 6 r. (4.10d)

Indeed, if |I | 6 r, one can take J = I to satisfy (4.10d), since rank(V : ,I) < |I | by (4.10c), so
that V : ,I is not injective. If |I | > r, then rank(V : ,I) < r by (4.10c), which implies that any J ⊆ I

such that |J | = r satisfies (4.10d).
Since V : ,J is not injective, one can find αJ ∈ RJ \ {0} such that

0 =
∑

j∈J

αjvj =
∑

j∈J

s̃j |αj |vj ,

for some s̃J ∈ {±1}J satisfying s̃j ∈ sgn(αj) for all j ∈ J . Then, by Gordan’s alternative (3.7),

∄ d ∈ Rn : s̃jvjd > 0, for all j ∈ J .

This implies that there is no s ∈ S(V ) such that sJ = s̃J . To conclude the proof, it suffices now
to show that one can construct an arbitrarily small perturbation Ṽ of V , such that R(Ṽ ) ⊆ R(V )
and with an s ∈ S(Ṽ ) satisfying sJ = s̃J .

Let Jc := [1 :p] \ J . By (4.10d), |J | 6 r 6 n so that one can find vectors {ṽj : j ∈ [1 :p]}, such
that ṽj = vj for j ∈ Jc, the vectors {ṽj : j ∈ J} are linearly independent, ṽj − vj is arbitrarily
small and {ṽj : j ∈ [1 :p]} ⊆ R(V ). Since the vectors {ṽj : j ∈ J} are linearly independent, one can
find a direction d0 ∈ Rn such that ṽTj d0 = s̃j for j ∈ J , hence

s̃j ṽ
T

j d0 > 0, ∀ j ∈ J. (4.10e)

Set s̃j = 1 for j ∈ Jc. Let d be a discriminating covector given by lemma 2.6 (there denoted ξ) for
the vectors {0} ∪ {s̃ivi : i ∈ [1 : p]} sufficiently close to d0. It results that s̃j ṽ

T

j d > 0 for j ∈ J (by

(4.10e)) and that s̃j ṽ
T

j d 6= 0 for j ∈ Jc. Finally, we see that the sign vector s ∈ {±1}p defined by

si = sgn(ṽTi d) for all i ∈ [1 :p] is in S(Ṽ ) and satisfies sJ = s̃J , as desired. ⊓⊔

Corollary 4.11 (stability of the sign vector set) The sign vector set S ⊆ {±1}p defined by

(3.2) is unchanged by small variations of the matrix V ∈ Rn×p preserving its rank, provided the

columns v1, . . . , vp ∈ Rn of V are in general position in the sense of definition 4.9.

Proof If Ṽ is near V , S(V ) ⊆ S(Ṽ ) by proposition 4.8. If the columns of V are in general position,
proposition 4.10 tells us that |S(V )| = β, where β is the right-hand side of Schläfli’s bound (4.9)
with r = rank(V ). Now, by the fact that rank(Ṽ ) = r, proposition 4.10 ensures that |S(Ṽ )| 6 β.
Therefore, one must have S(Ṽ ) = S(V ). ⊓⊔
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4.3 Particular configurations

We consider in this section some particular matrices V ∈ Rn×p given by (3.1), which may be useful
to get familiar with the B-differential of H . For these V ’s, |∂BH(x)| can be computed easily. We
consider two matrices V with the property that r := rank(V ) takes the value 2 or p; they yield
the lower and upper bounds on |∂BH(x)| given by proposition 4.7. The lower bound 2p applies
to the left-hand side pane of figure 3.2. As shown by the intermediate pane in figure 3.2, however,
|∂BH(x)| does not only depend on r.

Proposition 4.12 (injective matrix) The matrix V ∈ Rn×p given by (3.1) is injective if and

only if |∂BH(x)|= 2p.

Proof Indeed, by proposition 4.2, the B-differential ∂BH(x) is complete (meaning that it is equal
to ∂×BH(x), given by (2.3)) if and only if V is injective. Clearly, the completeness of ∂BH(x) is
equivalent to |∂BH(x)| = 2p. ⊓⊔

Proposition 4.13 (fan arrangement) If p > 2 and the vectors vi’s are not two by two colinear,

one has rank(V ) = 2 if and only if |∂BH(x)| = 2p.

Proof [⇒] A short proof leverages Schläfli’s bound (4.9) with equality. Since the vi’s are not two
by two colinear, one has for any I ⊆ [1 :p]:

rank(V : ,I) =

{
|I | if |I | 6 2
2 if |I | > 2.

Therefore (4.8) holds. By proposition 4.10, this implies that equality holds in (4.9), that is, with
r := rank(V ) = 2: |∂BH(x)| = 2

∑

i∈[0 : 1] (
p−1
i ) = 2p.

[⇐] If |∂BH(x)| = 2p, (4.6b) yields 2p 6 max(2p,2r) 6 2r + 2(p− r) 6 2p, so that equality
holds in these inequalities. By the last one, 2r = 2r, which only occurs for r ∈ {1, 2}. Since p > 2
and the vectors are not colinear, one has r = 2. ⊓⊔

4.4 A glance at the C-differential

The section presents two links between the B-differential and the C-differential of the function H

given by (1.3). The first proposition tells us that, whilst ∂CH(x) can be obtained from ∂BH(x)
by taking its convex hull (it is its definition (1.2)), the latter can be obtained from the former by
taking its extreme points. For a proof, see [30].

Proposition 4.14 (a link with the C-differential) ∂BH(x) = ext ∂CH(x).

The second proposition restates theorem 2.2 of Xiang and Chen [80; 2011], which applies to
the more general nonlinear function (1.6). The interest of this restatement comes from its proof
that is short, thanks to the use of the symmetry of the B-differential (proposition 4.1), and from
the fact that proposition 4.15 can be used, straightforwardly, to recover Xiang and Chen’s central
C-Jacobian of H̃ , given by (1.6); see [32]. Recall the notation (2.1) of the index sets.
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Proposition 4.15 (the central C-Jacobian) One has J ∈ ∂CH(x) for the Jacobian whose ith

row, i ∈ [1 :m], is defined by

Ji, : =







Ai, : if i ∈ A(x),
1
2 [Ai, : +Bi, : ] if i ∈ E(x),
Bi, : if i ∈ B(x).

(4.11)

Proof Let M ∈ ∂BH(x), which is known to be nonempty. By proposition 2.2, Mi, : = Ai, : for
i ∈ A(x), Mi, : = Bi, : for i ∈ B(x) and Mi, : = Ai, : = Bi, : for i ∈ E=(x). By the symmetry of
∂BH(x) (proposition 4.1), M ′ defined by M ′

: ,i = M : ,i if i ∈ A(x) ∪ E=(x) ∪ B(x) and by

M ′
i, : =

{
Bi, : if i ∈ E 6=(x) and Mi, : = Ai, :

Ai, : if i ∈ E 6=(x) and Mi, : = Bi, :

is also in ∂BH(x). Therefore, J = (M +M ′)/2 is in co ∂BH(x) = ∂CH(x), by (1.2). This is the
formula of J given in the statement of the proposition. ⊓⊔

Instead of taking J1/2 := 1
2(M + M ′) in the preceeding proof, one could also have taken

Jt := (1− t)M + tM ′, which is also in co ∂BH(x) = ∂CH(x) for any t ∈ [0, 1]. The inconvenient of
this latter choice, when t 6= 1/2, is that M is usually not known. In particular, it is not necessarily
known whether Mi, : may be Ai, : or Bi, : , for a particular i ∈ E 6=(x), while Jt depends on this value
when t 6= 1/2. In contrast, J1/2 has an explicit formula that does not require the knowledge of the

value of Mi, : for i ∈ E 6=(x).

5 Computation of the B-differential

This section describes techniques for computing a single Jacobian (section 5.1) or all the Jacobians
(section 5.2) of the B-differential ∂BH(x), in exact arithmetic, when H is the piecewise affine
function given by (1.3). The algorithms are presented as tools for computing the sign vector set S ≡

S(V ), defined by (3.2) from a matrix V ∈ Rn×p, which makes them appropriate, even when p > n.
When V is defined by (3.1), one has p 6 n and the equivalence 3.5 tells us that S is then in bijection
with ∂BH(x), so that the algorithms actually compute Jacobians of the B-differential ∂BH(x). The
piece of software isf has been written to test the algorithms [33,34].

5.1 Computation of a single Jacobian

An interest of the problem equivalence highlighted in proposition 3.4(3) is to provide a method
to find rapidly an element of ∂BH(x), which complements Qi’s [61; 1993, final remarks (1)]. It is
shown in [32], that this method extends to the computation of an element of the B-differential in
the nonlinear case, i.e., when H is the function H̃ given by (1.6). The method is based on the
following algorithm, which associates with p nonzero vectors v1, . . . , vp, which may be identical or
colinear, a direction d such that vTi d 6= 0 for all i ∈ [1 : p]; it is a variant of the technique used in
the proof of [80; lemma 2.1]. When the vi’s are also distinct, the direction d can also be derived
from lemma 2.6, by adding the vector v0 = 0.

Algorithm 5.1 (computes d ∈ Rn such that vT

i d 6= 0 for all i)

Let be given p nonzero vectors v1, . . . , vp in Rn and take d ∈ Rn \ {0}.
Repeat:
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1. If I := {i ∈ [1 : p] : vTi d = 0} = ∅, exit.
2. Let i ∈ I .
3. Take t > 0 sufficiently small such that, for all j /∈ I , (vTj d)(v

T

j [d+ tvi]) > 0.
4. Update d := d+ tvi.

Explanation. In step 3, any sufficiently small t > 0 is appropriate (the proof of [80; lemma 2.1]
computes bounds explicitely), since (vTj d)(v

T

j [d+ tvi]) is positive for t = 0. The new direction d set

in step 4 is such that vTi (d+ tvi) = t‖vi‖
2 > 0, so that this direction makes at least one more vTj d

nonzero than the previous one. This implies that the algorithm finds an appropriate direction in at
most p loops. ⊓⊔

The next procedure uses a direction d computed by algorithm 5.1 to obtain a single element of
∂BH(x). Recall that the map σ is defined by (3.4a) and is a bijection from ∂BH(x) onto S , defined
by (3.2) (proposition 3.4).

Algorithm 5.2 (computes a single Jacobian in ∂BH(x))

Let H be given by (1.3), x ∈ Rn and suppose that p 6= 0.

1. Compute V ∈ Rn×p by (3.1) and denote its columns by v1, . . . , vp ∈ Rn.
2. By algorithm 5.1, compute d ∈ Rn such that vTi d 6= 0 for all i ∈ [1 : p].
3. Define s ∈ S by si := sgn(vTi d), for i ∈ [1 :p].
4. Then, σ−1(s) ∈ ∂BH(x).

Explanation. When p = 0, ∂BH(x) = ∂×BH(x) contains a single Jacobian that is given by (2.3),
which explains why algorithm 5.2 focuses on the case when p > 0. The sign vector s computed in
step 3 is such that siv

T

i d > 0 for all i ∈ [1 :p], so that it is indeed in S and, by proposition 3.4,
σ−1(s) is a Jacobian in ∂BH(x). ⊓⊔

5.2 Computation of all the Jacobians

This section presents two basic algorithms, and some more efficient variants, for computing all the
B-differential of H . They use the notion of S-tree presented in section 5.2.1(A). The first algorithm
is grounded on the notion of stem vector (section 3.2.2) and is described in section 5.2.2. The
second algorithm is the outcome of a series of improvements brought to an algorithm by Rada and
Černý [63; 2018] (section 5.2.1(B)) for computing the cells of a hyperplane arrangement, which
is known to be an equivalent problem to the one of computing the B-differential of H when the
hyperplanes contain zero (see section 3.4). The improvements are detailed in section 5.2.4 and the
resulting algorithm is described in section 5.2.5. Finally, numerical experiments are presented in
section 5.2.6 to compare the efficiency of the algorithms.

Algorithms for listing the elements of the finite set ∂BH(x) can be designed by looking at one
of the various forms of the problem, those described in section 3 and others [5]; this is what we shall
do. Most algorithms we have found in the scientific literature take the point of view of hyperplane
arrangements of section 3.4 and can be used for more general arrangements than those needed
to describe ∂BH(x) (i.e., in which case the hyperplanes pass through zero). One can quote the
contributions by Bieri and Nef [13; 1982], Edelsbrunner, O’Rourke and Seidel [36; 1986], Avis and
Fukuda [5; 1996], improved by Sleumer [71; 1998], and, more recently, Rada and Černý [63; 2018],
which is described in section 5.2.1(B). See also [31].
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5.2.1 Incremental-recursive algorithms

The algorithms described in this section are incremental in the sense that the considered sign
vectors have their length increased by one at each step. Furthermore, the algorithms explore the
S-tree described in subsection A below by recursive procedures, whose names are recognizable by
their suffix “-rec”. All the procedures end by returning to their calling program.

A. The S-tree. A common feature of the algorithms considered in this paper is the construction
of the S-tree described below, incrementally and recursively. This idea was probably introduced by
Rada and Černý [63; 2018].

The level k of the S-tree is formed of a set of sign vectors denoted by

S1
k := {s ∈ Sk : s1 = +1}, (5.1)

where Sk is the subset of {±1}k defined by (4.3). In particular, the level 1 or root of the S-tree
contains the unique sign vector +1 ∈ {±1}1. The S-tree has p levels, where p is the number of
vectors vi, or columns of the given matrix V ∈ Rn×p. Note that there is no reason to compute
{s ∈ S : s1 = −1} since this part of S is equal to −{s ∈ S : s1 = 1} by the symmetry property
of S (proposition 4.1). In order to avoid the memorization of the elements of S1

k , the S-tree is
constructed by a depth-first search, which can be schematized as follows.

Algorithm 5.3 (stree (V )) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns.

1. Execute the recursive procedure stree-rec(V,+1).

Algorithm 5.4 (stree-rec (V, s)) Let be given V ∈ Rn×p, with n and p ∈ N∗, having
nonzero columns, and a sign vector s ∈ S1

k for some k ∈ [1 :p].

1. If k = p, print s and return.
2. If (s,+1) ∈ S1

k+1, execute stree-rec(V, (s,+1)).
3. If (s,−1) ∈ S1

k+1, execute stree-rec(V, (s,−1)).

The method used to determine whether (s,±1) is in S1
k+1 depends on the specific algorithm and

may or may not use a direction d intervening in (4.3). Note that, as emphasized in proposition 4.6(3),
at least one of the sign vectors (s,+1) and (s,−1) belongs to S1

k+1 (maybe both). It is justified
not to explore the S-tree below an (s,±1) that is not in S1

k+1, since then (s,±1, s′) /∈ S for any
s′ ∈ {±1}p−k−1. By construction, the algorithm stree prints all the elements of S1

p ≡ S1 := {s ∈

S : s1 = +1} in step 1 of the stree-rec procedure.

B. Rada and Černý’s algorithm. The algorithm proposed by Rada and Černý [63; 2018], which
is referenced below as the rc algorithm, deals with the determination of the cells associated with a
general hyperplane arrangement. We describe it below for an arrangement of hyperplanes containing
all zero (see section 3.4), which is the case when V result from (3.1) in the computation of the B-
differential ∂BH(x). We also use the linear algebra language of section 3.2.1, viewing the problem
as the one of determining the set S defined by (3.1)); in contrast, the language used in [63] is more
geometric. The algorithm builds the S-tree of the previous section A and, for each s ∈ S1

k , it solves
a single problem (LOP) to determine whether (s,+1) or (s,−1) is in S1

k+1.
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+−−

←− S12

←− S11+

+−++

←− S13 = S1++− +−+

Fig. 5.1 Half of the S-tree for example 3.2 (the other half is obtained by swapping the +’s and the −’s).
Top-down arrows indicate descendence; the sign sets S1

k
are defined by (5.1).

The rc algorithm succeeds in solving only one LOP to determine whether (s,+1) and (s,−1)
are in S1

k+1, at the node s ∈ S1
k , thanks to the memorization of a direction d such that s q(V T

k d) > 0
(we note Vk := V : ,[1 : k]). Indeed, one has

vTk+1d < 0 =⇒ (s,−1) ∈ S1
k+1,

vTk+1d > 0 =⇒ (s,+1) ∈ S1
k+1,

and one of these two cases takes place if we exclude the case where vTk+1d = 0. In [63; Algorithm 1],
the case where vTk+1d = 0 is not dealt with completely since (s,+1) is declared to belong to S1

k+1

in that case, while it is clear that (s,−1) is also in S1
k+1. Indeed, in our implementation of the

rc algorithm, we modify slightly d by adding a small positive or negative multiple of vk+1 to d

when vTk+1d ≃ 0, so that both (s,±1) are accepted in S1
k+1 in that case. This choice may be at the

origin of the differences that one observes in table 5.1 below between the statistics of the original
rc algorithm in [63] and those of our implementation.

Next, when (s, sk+1) ∈ {±1}k+1 is observed to belong to S1
k+1, the question of whether

(s,−sk+1) also belongs to S1
k+1 arises. In the rc algorithm, the answer to this question is ob-

tained by solving a LOP similar to






min(d,t)∈Rn×R t

siv
T

i d > 1, ∀ i ∈ [1 :k]

−sk+1v
T

k+1d > −t

t > −1.

(5.2)

When s ∈ S1
k , this problem is feasible (take d satisfying siv

T

i d > 1, for all i ∈ [1 :k], and t sufficiently
large) and bounded (its optimal value is > −1), so that it has a solution [19,14,15,40]. Solving these
LOPs is a time consuming part of the algorithms and in the numerical experiments of section 5.2.6,
in particular in table 5.2, following [63], we measure the efficiency of the algorithms by the number
of LOPs they solve.

One can now formally describe our version of the rc algorithm (the change is in step 2 of the
rc-rec algorithm, which is not considered in the original rc algorithm).

Algorithm 5.5 (rc (V )) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns.

1. Execute the recursive procedure rc-rec(V, v1,+1).

Algorithm 5.6 (rc-rec (V, d, s)) Let be given V ∈ Rn×p, with n and p ∈ N∗, having
nonzero columns, a direction d ∈ Rn and a sign vector s ∈ {±1}k for some k ∈ [1 :p], such
that siv

T

i d > 0 for all i ∈ [1 :k].
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1. If k = p, print s and return.
2. If vTk+1d ≃ 0, then

2.1. Execute rc-rec(V, d+, (s,+1)), where d+ := d + t+vk+1 with t+ > 0 chosen in
the nonempty open interval




0, min

i∈[1 : k]

siv
T

i vk+1<0

−vTi d

vTi vk+1




 .

2.2. Execute rc-rec(V, d−, (s,−1)), where d− := d + t−vk+1 with t− < 0 chosen in
the nonempty open interval




 max

i∈[1 : k]

siv
T

i vk+1>0

−vTi d

vTi vk+1

, 0




 .

3. Else sk+1 := sgn(vTk+1d).

3.1. Execute rc-rec(V, d, (s, sk+1)).
3.2. Solve the LOP (5.2) and denote by (d, t) a solution.

If t = −1, execute rc-rec(V, d, (s,−sk+1)).

In steps 2.1 and 2.2, the minimum and maximum are supposed to be infinite if their feasible set is
empty. One can check that the directions d± computed in steps 2.1 and 2.2 are such that siv

T

i d± > 0
for i ∈ [1 :k+1] and sk+1 = ±1, provided |vTk+1d| is sufficiently small, which justifies the recursive
call to rc-rec with the given arguments. The test vTk+1d ≃ 0 done at the beginning of step 2 is
supposed to take into account floating point arithmetic; admittedly it is not very rigorous, but the
algorithm is designed to be as close as possible to the original rc algorithm in [63]; a more careful
treatment of this situation is presented in section 5.2.4(B). The most time-consuming part of the
rc algorithm comes from the possible numerous LOPs to solve in step 3.2 of rc-rec.

5.2.2 An algorithm using stem vectors

When s ∈ Sk, it is conceptually easy to check whether (s,±1) is in Sk+1, provided a list of
all the stem vectors associated with V is known. Indeed, by proposition 3.10, if no subvector of
(s,+1) (resp. (s,−1)) is a stem vector, then (s,+1) (resp. (s,−1)) belongs to Sk+1. Note also that,
because any s ∈ Sk has at least one descendant in the S-tree (proposition 4.6(3)), if it is observed
that (s,+1) /∈ Sk+1, then, necessarily, (s,−1) ∈ Sk+1. This observation prevents the algorithm
from checking whether (s,−1) contains a stem vector, which is a time consuming operation when
the list of stem vectors is large. For future reference, we formalize this algorithm below.

Algorithm 5.7 (stem (V )) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns.

1. Compute all the stem vectors associated with V .
2. Execute the recursive procedure stem-rec(V,+1).

Algorithm 5.8 (stem-rec (V, s)) Let be given V ∈ Rn×p, with n and p ∈ N∗, having
nonzero columns and a sign vector s ∈ {±1}k for some k ∈ [1 :p].

29



1. If k = p, print s and return.
2. If no subvector of (s,+1) is a stem vector, execute stem-rec(V, (s,+1)).
3. If (s,+1) /∈ Sk+1 or no subvector of (s,−1) is a stem vector, execute stem-rec(V, (s,−1)).

This algorithm is improved below, as the option AD4 of the isf algorithm (see paragraphs A and D
of section 5.2.4).

Note that, this algorithm need not generate directions d satisfying s q (V T

k d) > 0, like the
rc algorithm and need not solve any linear optimization problem. Nevertheless, regarding the
computation time, the algorithm has two bottlenecks that we now describe.

The first bottleneck comes from the fact that the algorithm must compute all the stem vectors (or
the set C of matroid circuits in (3.9)) associated with V . This is usually an expensive operation [48,
53,65]. For example, if V is randomly generated and of rank r, like in the test-cases data_rand_*

in the experiments of section 5.2.6, any selection of r columns of V is likely to form an independent
set of vectors, so that C is likely to be the sets of column indices of size r + 1. In this case,
the number of circuits is likely to be the combination ( p

r+1) (and it is actually that number, see

section 5.2.6(B.1)), which can be exponential in p (this number is bounded below by 2p/2/(p+ 1)
if p is even and r + 1 = p/2 [24; (11.52)]). In the implemented isf code, numerically tested in
section 5.2.6, only the sets of columns whose cardinality is in [3 : r + 1] are examined (since any
group of two columns of V is supposed to be linearly independent and a group of r+2 columns or
more is of nullity > 2, hence such group cannot form a matroid circuit; see (3.9)).

The second bottleneck is linked to the detection of a stem vector is the current sign vectors
(s,±1). This operation requires to examine the long list of stem vectors, which is a time consuming
operation.

We shall see in the numerical experiments of section 5.2.6 that algorithm 5.7 is generally the
fastest, provided the number of stem vectors is not too large.

5.2.3 Linear optimization problem and stem vector

The property described in this section will be useful for the improvement D2 of the isf algorithm,
described in section 5.2.4(D). It shows that a stem vector can be obtained easily from the dual
solution of the linear optimization (LOP) (5.2), when (s,−sk+1) /∈ Sk+1. Consider indeed the LOP
(5.2) and denote by (d, t) one of its solutions (these have been shown to exist). Then, either t > 0
(equivalently, (s,−sk+1) /∈ Sk+1) or t = −1 (equivalently, (s,−sk+1) ∈ Sk+1).

Let σi, i ∈ [1 :k+1], be the multipliers associated with the first k+1 constraints of (5.2) and τ

be the multiplier associated with its last constraint. Then, the Lagrangian dual of (5.2) reads [14,
12,15,39]























max(σ,τ)∈Rk+1×R

∑

i∈[1 : k] σi − τ

σ > 0
τ > 0
σk+1 + τ = 1
σk+1sk+1vk+1 =

∑

i∈[1 : k] σisivi.

≡















maxσ∈Rk+1

∑

i∈[1 : k+1] σi − 1

σ > 0
σk+1 6 1
σk+1sk+1vk+1 =

∑

i∈[1 : k] σisivi,

(5.3)

where the second form of the dual is obtained by eliminating τ from the first form. By strong
duality in linear optimization, the dual problems in (5.3) are feasible, have a solution and have
the same optimal value as the primal problem. Let (σ, τ) ∈ Rk+1 × R be a dual solution. Then,
(s,−sk+1) ∈ Sk+1 if and only if t = −1 if and only if

∑

i∈[1 : k] σi = 0 and σk+1 = 0. We have
shown that

(s,−sk+1) ∈ Sk+1 ⇐⇒ σ = 0.
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Therefore, (s,−sk+1) /∈ Sk+1 if and only if σ 6= 0 if and only if σk+1 = 1 (if σk+1 = 0, one can
make the dual objective value as large as desired by multiplying σ by a factor going to +∞; if
σk+1 ∈ (0,1), the dual objective would by increased by replacing σ by σ/σk+1; in both cases the
optimality of σ would be contradicted) if and only if τ = 0. We have shown that

(s,−sk+1) /∈ Sk+1 ⇐⇒ sk+1vk+1 ∈ cone{sivi : i ∈ [1 :k]}.

The next proposition shows how a matroid circuit can be detected from the dual solution σ when
(s,−sk+1) /∈ Sk+1.

Proposition 5.9 (matroid circuit detection) Suppose that (s,−sk+1) /∈ Sk+1 and that (σ, τ)
is a solution to the dual problem in the left-hand side of (5.3) located at an extreme point of its

feasible set. Then, {i ∈ [1 :k + 1] : σi > 0} is a matroid circuit of V .

Proof We have seen that σk+1 = 1 and τ = 0 when (s,−sk+1) /∈ Sk+1. The fact that (σ, 0) is
an extreme point of the feasible set of the problem in the left-hand side of (5.3) implies that the
vectors [19,39]

{(
0

sivi

)

i∈[1 : k], σi>0

,

(
1

−sk+1vk+1

)}

are linearly independent.

In particular, the vectors

{sivi : i ∈ [1 :k], σi > 0} are linearly independent.

Since sk+1vk+1 =
∑

i∈[1 : k] σisivi, it follows that

{sivi : i ∈ [1 :k + 1], σi > 0} has nullity one.

The conclusion of the proposition follows from proposition 3.11. ⊓⊔

Recall that the dual-simplex algorithm finds a dual solution at an extreme point of the dual
feasible set. For this reason, we use this approach in the isf algorithm with option D2 (see sec-
tion 5.2.4(D)).

5.2.4 Improvements of the rc and stem algorithms

This section presents several modifications of the rc algorithm and one modification of the stem

algorithm that significantly improve their performance. The modifications are indicated by the
letters A, B, C and D, with reference to the sections where they are introduced. Additional numeric
indices specify variants of the D option. The version AD4 (modifications A and D4) can be considered
as an improvement of the new algorithm 5.7.
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A. Taking the rank of V into account. Instead of starting with the vector s = +1, one can
take into account the rank r := rank(V ) to determine 2r initial vectors s, hence avoiding to solve
linear optimization problems (LOPs) to determine these initial s’s. This is especially useful when
p− r is small. In particular, when p = r, S is straightforwardly determined.

The algorithm selects r := rank(V ) linearly independent vectors vi, among the columns of V ∈
Rn×p. These vectors can be obtained by a QR factorization of

V P = QR,

where P ∈ {0, 1}p×p is a permutation matrix, Q ∈ Rn×n is orthogonal (i.e., QTQ = In) and
R ∈ Rn×p is upper triangular with R[r+1 :n], : = 0. To simplify the presentation, one can assume,
without loss of generality, that P = I , in which case the vectors v1, . . . , vr are linearly indepen-
dent (in practice, the vectors are symbolically reordered by using the permutation matrix P ). By
proposition 4.2 and with the notation (4.3):

Sr = {±1}r. (5.4)

Furthermore, for each s ∈ Sr, we have, using S := Diag(s), Qr := Q : ,[1 : r] and Rr := R[1 : r],[1 : r],
that the vector

ds = QrR
−T

r s (5.5)

is such that s q (V T

: ,[1 : r]ds) = e > 0, as desired.
For each s ∈ Sr and the associated ds given by (5.5), the modified algorithm 5.5 runs the

recursive function rc-rec(V, ds, s) (see algorithm 5.11 below).

B. Special handling of the case where vTk+1d ≃ 0. Directions d± := d + t±vk+1 ensuring
that (s,±1) q(V T

k+1d±) > 0 can be computed not only when vTk+1d ≃ 0 like in step 2 of the rc-rec

algorithm 5.6, but also when vTk+1d is in the interval specified by (5.6) below. Note that the left-
hand side in (5.6) is negative and the right-hand side is positive (this can be seen by multiplying
numerators and denominators by si and by using siv

T

i d > 0 for all i ∈ [1 :k]), so that these
inequalities are verified when vTk+1d = 0. With the additional flexibility that (5.6) offers, the isf

algorithm can sometimes avoid solving a significant number of LOPs of the form (5.2). For a proof
of the next proposition, see [30].

Proposition 5.10 (two descendants without optimization) Suppose that s ∈ {±1}k verifies

s q (V T

k d) > 0, that vk+1 6= 0 and that

max
i∈[1 : k]

siv
T

i vk+1>0

−vTi d

vTi vk+1

<
−vTk+1d

‖vk+1‖2
< min

i∈[1 : k]

siv
T

i vk+1<0

−vTi d

vTi vk+1

. (5.6)

1) The direction d+ := d+ t+vk+1 verifies s q(V T

k d+) > 0 and vTk+1d+ > 0 if and only if t+ is in

the nonempty open interval





−vTk+1d

‖vk+1‖2
, min

i∈[1 : k]

siv
T

i vk+1<0

−vTi d

vTi vk+1




 . (5.7a)

2) The direction d− := d+ t−vk+1 verifies s q (V T

k d−) > 0 and −vTk+1d− > 0 if and only if t− is

in the nonempty open interval



 max

i∈[1 : k]

siv
T

i vk+1>0

−vTi d

vTi vk+1

,
−vTk+1d

‖vk+1‖2




 . (5.7b)
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C. Changing the order of the vectors vi’s. Each node s of the S-tree described in sec-
tion 5.2.1(A) has one or two descendants: (s,+1) and/or (s,−1). Since there is at most one LOP
solved per node of the S-tree, decreasing the number of nodes should decrease the number of LOPs
to solve, which significantly count in the computing time. To reach that goal, one can try to get as
much as possible at the top of the tree the nodes having a single descendant. As shown below, this
can be achieved by changing the order in which the vectors vi’s, the columns of V , are considered
in the depth-first search of the tree; previously, the order was imposed by the modification A, tak-
ing into account the rank of V . As we shall see, a new order is not fixed once and for all, but is
determined during the construction of the S-tree, is reconsidered at each node and depends on the
path going from the root of the S-tree to its leaves.

To implement this strategy, one associates with each node s ∈ S1
k of the S-tree, k ∈ [1 : p− 1],

the list of vectors considered so far at that node, denoted by Ts := {i1, . . . , ik} ⊆ [1 :p]. Hence,
we have to choose the next vector vik+1

be selecting an index ik+1 in T c
s := [1 : p] \ Ts. Now, a

natural idea is to restrict the set of possible indices to T b
s , the set of indices j of T c

s for which one
of the intervals (5.7a) or (5.7b), with vk+1 ≡ vj , is empty (implying that the technique used in
the modification B will not give two descendants), if there is such an index, or T c

s otherwise. To
determine the index in T b

s , we take

ik+1 = argmax
i∈T b

s

|vTi d|

‖vi‖
, (5.8)

which favors the vectors vi for which |vTi d|/‖vi‖ is away from zero.
As table 5.2 indicates (section 5.2.6(C.3)), this modification has a significant impact on the

decrease of the number of LOPs to solve.

D. Using stem vectors. We present in this section various modifications that use the concept of
stem vector, introduced in the second part of section 3.2.2. These stem vectors are used to detect
infeasible sign vectors, i.e., elements of Sc, thanks to proposition 3.10. If s ∈ S1

k and (s, sk+1) ∈ Sc

for sk+1 ∈ {±1}, s has no descendant in S along (s, sk+1), so that this part of the S-tree does
not need to be explored. From this point of view, computing all the stem vectors looks attractive,
but, to our knowledge, this is a time consuming process, so that this option is not necessarily
the most efficient one. The modifications presented below use more and more stem vectors, whose
computation requires more and more time.

D1) Natural candidates as stem vectors are those obtained from the matroid circuits I made of
r + 1 columns of V (r = rank(V )) formed of the r linear independent columns selected by
the QR factorization of section 5.2.4(A) and one of the remaining p − r columns of V . By
proposition 3.11, such I contains exactly one circuit. Therefore, one detects in this way p− r

circuits and 2(p − r) stem vectors. This is not much compared to the total number of stem
vectors, which may depend exponentially on p, so that the number of infeasible sign vectors
detected by these stem vectors is usually relatively small (see table 5.2).

D2) With this option, when a LOP (5.2) is solved at a certain node s ∈ S1
k to see whether (s, sk+1)

belongs to S1
k+1, for sk+1 ∈ {±1}, the dual solution is used to determine a matroid circuit, as

shown by proposition 5.9. For this purpose, the isf code solves the LOP with the dual-simplex
algorithm, so that the computed dual solution is at a vertex of the dual feasible set.

D3) With this option, all the stem vectors are computed, before running the recursive process that
builds the S-tree. At each note s ∈ S1

k , the algorithm still computes a direction d ∈ Rn such
that siv

T

i d > 0 for all i ∈ Ts (the set of vector indices considered so far at s). The advantage
of this direction is to allow the algorithm to use the beneficial modifications B and C and to
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easily determine one or two signs sk+1 ∈ {±1} such that (s, sk+1) ∈ S1
k+1. If a single sign

sk+1 ∈ {±1} is selected, the stem vectors can decide whether (s,−sk+1) ∈ S1
k+1. If this is the

case, this option D3 has the inconvenient of still requiring to solve a LOP to get a direction
associated with (s,−sk+1). These LOPs (5.2) have an optimal value −1 and should not be
solved exactly. Indeed, as soon as a feasible direction d for (5.2) gives a negative value to
the objective of the problem, one could stop solving it, since this d verifies siv

T

i d > 0 for all
i ∈ T(s,−sk+1). We have not implemented that inexact solve of the LOPs, by lack of flexibility
of the solver Linprog in Matlab.

D4) Like with the option D3, all the stem vectors are computed, before running the recursive
process that builds the S-tree. But now, unlike with option D3, the algorithm computes no
direction d ∈ Rn. When option A is also activated, the resulting approach can be viewed as
an improvement of the algorithm 5.7 (stem) presented in section 5.2.2.

Note that, knowing all the stem vectors, one could compute the complementary set Sc rather easily
by completing with ±1 the unspecified components of the stem vectors. Next, S could be obtained
from Sc by taking its complementary set in {±1}p, but a straightforward implementation of this
last operation looks rather expensive, so that we have not experimented it numerically.

5.2.5 Isf algorithm

We have named isf (for Incremental Signed Feasibility) the algorithm that improves the rc al-
gorithm 5.5 or the stem algorithm 5.7 with the enhancements described in section 5.2.4. For the
purpose of precision and reference, we formally state it in this section. It would be cumbersome and
confusing, hence inappropriate, to mention all the options in its description, in particular because
all of them have been specified separately in the previous section. As an example of algorithm, we
provide a description with the options ABCD2. It starts with a hat procedure isf, similar to that
of the rc algorithm but with the additional easy determination of Sr (modification A) and the
computation of some stem vectors (modification D1). Then, the hat procedure calls the recursive
procedure isf-rec.

Algorithm 5.11 (isf (V ), with options ABCD2) Let be given V ∈ Rn×p, with n and
p ∈ N∗, having nonzero columns.

1. Compute the QR factorization of V . Let r = rank(V ) and Tr := {i1, . . . , ir} be the
indices of r selected linear independent columns of V .

2. Compute the p− r matroid circuits containing Tr (see option D1).
3. For each s ∈ Sr, given by (5.4), and its associated ds, given by (5.5), call the recursive

procedure isf-rec(V, Tr, ds, s).

Algorithm 5.12 (isf-rec (V, T, d, s), with options BCD2) Let be given V ∈ Rn×p,
with n and p ∈ N∗ of rank r, having nonzero columns vi, T a selection of k columns of V
(with k ∈ [r : p]), a direction d ∈ Rn and a sign vector s ∈ {±1}k for some k ∈ [r : p]. It is
assumed that siv

T

i d > 0 for all i ∈ T .

1. If k = p, print s and return.
2. Determine the index ik+1 ∈ [1 :p] \T of the next vector to consider by option C and set

T+ := T ∪ {ik+1}.
3. If (5.6) holds (with [1 :k] changed into T and k + 1 into ik+1), then

3.1. Execute isf-rec(V, T+, d+, (s,+1)), where d+ := d+ t+vik+1
and t+ is chosen in

the nonempty open interval (5.7a).
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3.2. Execute isf-rec(V, T+, d−, (s,−1)), where d− := d+ t−vik+1
and t− chosen in the

nonempty open interval (5.7b).

4. Else sk+1 := sgn(vTik+1
d).

4.1. Execute isf-rec(V, T+, d, (s, sk+1)).
4.2. If (s,−sk+1) contains a stem vector, return.
4.3. Solve the LOP (5.2) (with [1 :k] changed into T and k + 1 into ik+1) by the dual-

simplex algorithm and denote by (d, t) a solution.

4.3.1. If t = −1, execute isf-rec(V, T+, d, (s,−sk+1)).
4.3.2. Else, use the dual solution to store two more stem vectors by option D2.

5.2.6 Numerical experiments

We present in tables 5.1, 5.2 and 5.3 the results obtained by running the algorithms 5.7 and 5.11
(with several variants) on a small number of problems and compare it with our implementation of
the rc algorithm 5.5, simulating algorithm 1 (IE) in [63].

A. Computer and problem presentation. The implementations have been done in Matlab

(version “9.11.0.1837725 (R2021b) Update 2”) on a MacBookPro18,2/10cores (parallelism is not
implemented however) with the system macOS Monterey, version 12.6.1. The linear optimization
problem solver is linprog.

Computation in isf is done in floating point numbers, so that numerical roundoff errors may
occur. To deal with this difficulty, the code uses various tolerances, for instance, to detect almost
identical normalized vectors (columns of V ), to identify nonzero components of circuits, etc. The
Julia code described in [31], which deals with more general hyperplane arrangements, offers the user
the possibility of requiring a computation in rational numbers, so as to have a computation in exact
arithmetic.

We have assessed the codes on randomly generated problems (function rand in Matlab, names
prefixed by rand and srand) and problems adapted/taken from [63] (names prefixed by rc) and [17]
(names prefixed by bek). Their relevant features are given in table 5.1 and their specifications are
now given.
r The rand-n-p-r problems have their data formed of a randomly generated matrix V ∈ Rn×p

with prescribed rank r.
r For the problems srand-n-p-q, the first n columns of V ∈ Rn×p form the identity matrix and
the last p − n > 0 columns have q nonzero random integer elements (0 < q 6 p− n), randomly
positioned.

r The matrix V ∈ Rn×p of problem rc-2d-n-p is formed of 4 blocs: V1:2,1:n−2 = 0, V3:n,n−1:p = 0,
and the remaining blocks have random integer data.

r The problems rc-perm-n refer to the hyperplane arrangements that are called permutahedron

in [63]: the matrix V ∈ Rn×p is such that V : ,[1 : n] is the identity matrix and V : ,[n : p] is a Coxeter
matrix [60] (each column is of the form ei − ej for some i 6= j in [1 :n], where ek is the kth basis
vector of Rn).

r The problems rc-ratio-n-p-r refer to the problems that are controlled by a degeneracy ratio
ρ in [63]: the first n columns of the matrix V ∈ Rn×p are randomly generated, while the other
p − n > 0 columns can either (with a probability ρ) be linear combination of the previously
generated columns or randomly generated.
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r The problems bek-threshold-n refer to the threshold arrangements in [17; § 6.2]: for n > 2, each
column of V ∈ Rn×p is formed of the components of (1, w) where w ∈ Rn−1 are all the vectors
of {0, 1}n−1 (hence p = 2n−1). This arrangement appears in the study of neural networks [78].

r The problems bek-resonance-n refer to the resonance arrangements in [17; § 6.3]: the columns
of V ∈ Rn×p are all the nonzero vectors with components in {0, 1} (hence p = 2n − 1). Note
that, for this arrangement, the number of chambers (i.e., |S| in our notation) is only known for
n 6 9. Our approach, which does not use the particular structure of this arrangement, can get
|S| in a reasonable time on a laptop for n 6 6, which is to be compared to n 6 9 in [17]. See [50]
for applications.

r The problems bek-crosspolytope-n refer to the cross-polytope arrangements in [17; § 6.4]: for
n > 2, each column of V ∈ Rn×p is formed of the components of (1, w) where w ∈ Rn−1 are all
the ±ei for i ∈ [1 :n− 1]; hence p = 2(n− 1). For these problems, one numerically observes that
|S| = 213n−1 − 2n−1 for n 6 12 (this observation is made for n 6 21 in [17]).

r The problems bek-demicube-n refer to the demicube arrangements in [17; § 6.6]: the columns of
V ∈ Rn×p are the components of (1, w) where w ∈ {w′ ∈ {0, 1}n−1 :

∑

i w
′
i is odd}.

We have retained 3 problems per family, the most difficult that isf can solve in a reasonable time
for the rc-perm and bek families. These test-problems are available on Software Heritage [34].

LOPs solved in

|∂BH(x)|
Schläfli’s Original Simulated Differ-

Problem n p r ς ςmax bound rc rc ence
rand-8-15-7 8 15 7 6435 6435 12952 12952 9908 9907 1
rand-9-16-8 9 16 8 11440 11440 32768 32768 22821 22818 3
rand-10-17-9 10 17 9 19448 19448 78406 78406 50643 50642 1

srand-8-20-2 8 20 8 540 167960 24544 188368 28748 28620 128
srand-8-20-4 8 20 8 84390 167960 157192 188368 136133 135566 567
srand-8-20-6 8 20 8 159702 167960 186430 188368 167545 167262 283
rc-2d-20-6 6 20 6 560 77520 512 33328 1936 1927 9
rc-2d-20-7 7 20 7 455 125970 960 87592 3392 3343 49
rc-2d-20-8 8 20 8 364 167960 1792 188368 5888 5855 33

rc-perm-6 6 21 6 1172 116280 5040 43400 10417 9346 1071
rc-perm-7 7 28 7 8018 4292145 40320 795188 99155 90169 8986
rc-perm-8 8 36 8 62814 94143280 362880 17463696 1036897 953009 83888

rc-ratio-20-5-7 5 20 5 34556 38760 8470 10072 13798 13785 13
rc-ratio-20-6-7 6 20 6 56184 77520 26194 33328 32993 32980 13
rc-ratio-20-7-7 7 20 7 112576 125970 76790 87592 82751 82738 13
bek-threshold-4 4 8 5 20 28 104 128 88 87 1
bek-threshold-5 5 16 5 1348 8008 1882 3882 2758 2757 1
bek-threshold-6 6 32 6 353616 3365856 94572 412736 248522 248521 1

bek-resonance-4 4 15 4 638 3003 370 940 705 635 70
bek-resonance-5 5 31 5 100091 736281 11292 63862 37766 36311 1455
bek-resonance-6 6 63 6 (1) 553270671 1066044 14137242 6272462 6164040 108422

bek-crosspolytope-11 11 20 11 45 125970 117074 709044 111442 86526 24916
bek-crosspolytope-12 12 22 12 55 497420 352246 2802584 339958 260601 79357
bek-crosspolytope-13 13 24 13 66 1961256 1058786 11092764 1032162 788970 243192

bek-demicube-5 5 8 5 6 28 146 198 106 99 7
bek-demicube-6 6 16 6 460 11440 3756 9888 4752 4719 33
bek-demicube-7 7 32 7 324640 10518300 291558 1885298 678453 674663 3790

Table 5.1 Description of the test-problems and comparison of the “original rc algorithm in [63]”, written in
Python, and the “simulated rc algorithm 5.5”, written in Matlab: “(n, p, r, ς)” are the features of the problem
(V ∈ Rn×p is of rank r and has ς circuits, this last number being known to be bounded by ςmax), “ |∂BH(x)|”
is the cardinality of the B-differential of H given by (1.3), “Schläfli’s bound” is the right-hand side of (4.9),
“Original rc” gives the number of linear optimization problems (LOPs) solved by the original piece of software
in Python of Rada and Černý [63], “Simulated rc” gives the number of LOPs solved by the implementation
in the Matlab code isf of the Rada and Černý algorithm (see algorithm 5.5), “Difference” is the difference
between the two previous columns. Note (1): computer crash after several weeks of computation.
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B. Observations on table 5.1. The dimensions n, p and r of the problems are given in columns
2-4 of table 5.1. Column 5 gives the number ς of matroid circuits of V , which is known to be
bounded by ςmax := ( p

r+1) (= 0 if r = p) [26; 2006, theorem 2.1], whose value is given in column 6.
In columns 7 and 8, one finds the cardinality |∂BH(x)|= |S| of the B-differential ∂BH(x) and the
Schläfli upper bound (the right-hand side of (4.9)). The codes will be compared on the number of
linear optimization problems (LOPs) they solve, which is a good image of their computation effort,
measured independently of the computer used to run the codes and the features of the LOP solver.
A first example of comparison is given in columns 9–11 of table 5.1, where one finds the number of
LOPs solved by the original rc algorithm and the simulated rc algorithm implemented in the isf

code, as well as the difference between these two numbers. The latter code will be used next, in the
comparison with its improved versions, both regarding the LOP counters (table 5.2) and the CPU
times (table 5.3).

1) The randomly generated problems rand are likely to provide vectors vi’s (the columns of V ) in
general position, in the sense of definition 4.9. This can be seen indirectly on the numbers in
table 5.1.
r It is known from proposition 4.10 that (4.8) implies equality in (4.9). This equality indeed
holds, as we can observe by comparing columns 7 and 8.

r The same phenomenon occurs with the bound ςmax, which is reached by ς if and only if the
vectors are in general position [26; 2006, theorem 2.1].

2) The number of matroid circuits, given in the column labeled by ς, depends on the determination
of the nonzero elements of the normalized vector α ∈ N (V : ,I) \ {0} for the selected index set I

(proposition 3.11). This operation is sensitive to a threshold value that is set to 105ε, where
ε > 0 is the machine epsilon; smaller values for this threshold have occasionally given larger
numbers of matroid circuits. In other words, due to the floating point calculation, there is no
certainty that the given number of circuits is the one that would be obtained in exact arithmetic.
With a computation in rational numbers, this difficulty is avoided [31].

3) A comparison between the “Original rc code” in Python and its “Simulated rc code” in Matlab

shows that the latter is slightly more effective in terms of the number of LOPs solved. This is
probably due to the special treatment in step 2 of the case where vTk+1d ≃ 0 in algorithm 5.6,
which is not considered in the original code.

C. Observations on table 5.2. Table 5.2 shows the effect of the modifications discussed in
section 5.2.4 on the number of LOPs solved, which significantly counts in the computing time. This
will lead us to select three algorithms, those which bring the best profit on the LOP counter. The
columns labeled “Ratio” show the acceleration ratio with respect to the simulated rc code in terms
of LOPs, that is the ratio of the LOP counter of the considered algorithm divided by the LOP
counter of the simulated rc algorithm. On the last two lines of the table, one finds the mean and
median values of these acceleration ratios, which may be viewed as a summary of the effect of the
considered modification. These mean/median values must be taken with caution when a solver fails
to solve a problem as is the case with isf(ABCD3) and isf(AD4) on problem bek-resonance-6.
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Number of linear optimization problems (LOPs) solved and acceleration ratio (Ratio) for various options
Simulated isf (A) isf (AB) isf (ABC) isf (ABCD1) isf (ABCD2) isf (ABCD3) isf (AD4)

Problem rc LOP Ratio LOP Ratio LOP Ratio LOP Ratio LOP Ratio LOP Ratio LOP Ratio
rand-8-15-7 9907 9844 1.01 7641 1.30 5210 1.90 5199 1.91 4355 2.27 3638 2.72 0 —
rand-9-16-8 22818 22691 1.01 17586 1.30 13046 1.75 13023 1.75 11185 2.04 9943 2.29 0 —
rand-10-17-9 50642 50387 1.01 38167 1.33 28849 1.76 28839 1.76 25370 2.00 23266 2.18 0 —

srand-8-20-2 28620 28620 1.00 20207 1.42 6668 4.29 5535 5.17 2881 9.93 2851 10.04 0 —
srand-8-20-4 135566 136027 1.00 113493 1.19 60066 2.26 59267 2.29 45569 2.97 42445 3.19 0 —
srand-8-20-6 167262 167351 1.00 137450 1.22 77800 2.15 77752 2.15 62694 2.67 54980 3.04 0 —
rc-2d-20-6 1927 1904 1.01 1680 1.15 912 2.11 688 2.80 40 48.17 0 — 0 —
rc-2d-20-7 3343 3296 1.01 2912 1.15 2208 1.51 1792 1.87 52 64.29 0 — 0 —
rc-2d-20-8 5855 5760 1.02 4992 1.17 2752 2.13 1984 2.95 28 209.11 0 — 0 —

rc-perm-6 9346 9280 1.01 7898 1.18 2076 4.50 1836 5.09 92 101.59 61 153.21 0 —
rc-perm-7 90169 90094 1.00 79049 1.14 17230 5.23 16558 5.45 960 93.93 855 105.46 0 —
rc-perm-8 953009 952597 1.00 856597 1.11 160781 5.93 158989 5.99 9766 97.58 9393 101.46 0 —

rc-ratio-20-5-7 13669 15341 0.89 14028 0.97 7108 1.92 7064 1.94 3644 3.75 2467 5.54 0 —
rc-ratio-20-6-7 32883 35882 0.92 31992 1.03 17797 1.85 17505 1.88 10669 3.08 8765 3.75 0 —
rc-ratio-20-7-7 82447 81428 1.01 72272 1.14 47798 1.72 47748 1.73 30442 2.71 25841 3.19 0 —
bek-threshold-4 87 79 1.10 54 1.61 46 1.89 37 2.35 26 3.35 16 5.54 0 —
bek-threshold-5 2757 2884 0.96 2399 1.15 1270 2.17 1180 2.34 502 5.49 370 3.75 0 —
bek-threshold-6 248521 261728 0.95 236027 1.05 71963 3.45 70410 3.53 21339 11.65 19184 3.19 0 —

bek-resonance-4 635 672 0.94 546 1.16 171 3.71 138 4.60 31 20.48 0 — 0 —
bek-resonance-5 36311 37607 0.97 34056 1.07 6700 5.42 6569 5.53 1141 31.82 810 44.83 0 —
bek-resonance-6 6164040 6269410 0.98 5956586 1.03 760930 8.10 760457 8.11 155555 39.63 (1) — 0 —

bek-crosspolytope-11 86526 110418 0.78 58954 1.47 17569 4.92 15265 5.67 6085 14.22 6049 14.30 0 —
bek-crosspolytope-12 260601 337910 0.77 182575 1.43 46900 5.56 41780 6.24 18785 13.87 18740 13.91 0 —
bek-crosspolytope-13 788970 1028066 0.77 560013 1.41 124828 6.32 113564 6.95 57299 13.77 57244 13.78 0 —

bek-demicube-5 99 90 1.10 33 3.00 24 4.12 12 8.25 3 33.00 0 — 0 —
bek-demicube-6 4719 4761 0.99 3659 1.29 1882 2.51 1741 2.71 665 7.10 588 8.03 0 —
bek-demicube-7 674663 704553 0.96 623160 1.08 175870 3.84 175595 3.84 60876 11.08 58333 11.57 0 —

Mean 0.97 1.28 3.45 3.88 31.54 24.52 —
Median 1.00 1.17 2.51 2.95 11.65 5.54 —

Table 5.2 Evaluation of the efficiency of the solvers by the number of LOPs they solve: A (taking the rank of V into account), B (special handling
of the case where vT

k+1d ≃ 0), C (changing the order of the vectors vi’s by taking ik+1 by (5.8)), D1 (pre-computation of 2(p−r) stem vectors after the
QR factorization), D2 (D1 and 2 additional stem vectors computed after solving a LOP, whose optimal value is nonnegative), D3 (all the stem vectors
are first computed and, for (s,±1) ∈ Sk+1, a LOP is solved to get a handle d), D4 (all the stem vectors are first computed and no LOP is solved). The
“Ratio” (acceleration ratio) columns give for each considered problem the ratio (LOPs of the considered isf version)/(LOPs of simulated rc). Note (1):
interruption of the run after several days of computation. The Mean/Median rows give the mean and medan values of the ratios.
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1) The modification A, proposed in section 5.2.4(A), which uses the QR factorization to get r

linearly independent columns of V , does not bring a large benefit (“Ratio” is close to 1) and
sometimes increases the number of LOPs to solve. The benefit is not important since it “only”
prevents

∑

i∈[0 : r−1] 2
i = 2r − 1 nodes from running the LOP solver, which is usually a small

fraction of the total number of nodes of the S-tree. One also observes that the number of solved
LOPs may increase (acceleration ratio < 1), which is sometimes due to the fact that the number
2r−1 of nodes at level r with modification A is larger than the one without modification A,
which contributes to increase the total number of nodes of the constructed S-tree and, therefore,
tends to increase the number of LOPs to solve. Furthermore, the order in which the vectors
are considered without/with modification A is not identical, which has also an impact on the
number of solved LOPs (see section 5.2.4(C)).

2) The modification B, proposed in section 5.2.4(B), which is able to detect two descendants of an
S-tree node, without solving any LOP, has a significant impact on the total number of these
problems. We see, indeed, that the (mean, median) acceleration ratio is raised to (1.28, 1.17).

3) Consider now the modification C, described in section 5.2.4(C), which changes the order in
which the vectors vi’s are considered. We use the test-problem rand-7-13-5 to show its effect
in the next table.

Number of nodes per level Total
With modifications AB 1 2 4 8 16 31 57 99 163 256 386 562 794 2379
With modifications ABC 1 2 4 8 16 26 43 69 107 168 270 443 794 1951

S-tree levels 1 2 3 4 5 6 7 8 9 10 11 12 13

The table gives the number of nodes for each level in the S-tree, with the modifications AB and
with the modifications ABC. Since rank(V ) = 5 for this problem and since the modification A
is used in both cases, the number of nodes per level, only starts to differ from level 6 (before
that it is equal to 2l−1, where l is the S-tree level). The final level is 13 (since there are p = 13
vectors) and its number of leaves is |S|/2 = 794 (an observation from the table above), necessary
identical in both cases. The effect of the modification C can be seen on the smaller number of
nodes per level and in all the S-tree (rightmost column). This contributes to the decrease of
the number of LOPs to solve: the (mean, median) acceleration ratio is raised to (3.45, 2.51).

4) The modifications D, described in section 5.2.4(D), deal with the contribution of the computed
stem vectors, whose number increases from modification D1 (2(p−r) stem vectors after the QR
factorization of V ), D2 (more stem vectors from the dual solution of the LOP (5.2) when this
one has a nonnegative optimal value), D3 and D4 (all the stem vectors).
r We see that the option D1 yields already some improvement (less LOPs to solve), but not
much, raising the (mean, median) acceleration ratio from (3.45, 2.51) to (3.88, 2.95).

r The use of the option D2 is more beneficial since the (mean, median) acceleration ratio now
goes up to (31.54, 11.65). We understand this fact to have its origin in the increase in the
number of stem vectors detected from the dual solutions of some solved LOP. Note that this
last operation does not require much computation time.

r With option D3, only the LOPs (5.2) with the optimal value −1 are solved, while, with option
D4, no LOP is solved. The efficiency of these modifications largely depends on the total
number 2ς of stem vectors. If this one is not too large, the modifications have an important
benefit. Otherwise, it can lead to execution failure, as for problem bek-resonance-6, which
requires days of computation.

In conclusion of these observations, one could retain the following three solvers for a comparison on
their computing time.
r Isf(ABCD2) is the most efficient solver that does not compute all the stem vectors.
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r The solvers isf(ABCD3) and isf(AD4) cannot be compared with the other solvers on the results
of table 5.2 since both use all the stem vectors, so that the time to compute and use these must
be taken into account, and isf(AD4) does not solve any LOP, which is the measure of efficiency
in table 5.2.

CPU times (in sec)
Simulated isf (ABCD2) isf (ABCD3) isf (AD4)

Problem rc Time Ratio Time Ratio Time Ratio
rand-8-15-7 71.77 33.27 2.16 32.91 2.18 5.62 12.77
rand-9-16-8 151.39 75.45 2.01 82.30 1.84 14.43 10.49
rand-10-17-9 347.32 185.05 1.88 198.18 1.75 55.96 6.21

srand-8-20-2 174.44 16.91 10.32 19.64 8.88 3.66 47.68
srand-8-20-4 832.74 309.15 2.69 450.35 1.85 349.83 2.38
srand-8-20-6 1011.30 483.97 2.09 732.82 1.38 746.49 1.35
rc-2d-20-6 11.01 0.32 34.71 0.25 43.53 0.22 50.95
rc-2d-20-7 19.88 0.50 39.95 0.50 39.68 0.38 52.97
rc-2d-20-8 35.87 0.41 87.97 0.74 48.56 0.63 56.78

rc-perm-6 53.29 0.76 70.05 2.10 25.41 1.90 28.00
rc-perm-7 549.04 7.44 73.78 45.62 12.04 67.10 8.18
rc-perm-8 6171.22 74.93 82.36 1233.80 5.00 3355.22 1.84

rc-ratio-20-5-7 83.34 22.71 3.67 28.36 2.94 18.58 4.49
rc-ratio-20-6-7 202.09 72.04 2.81 101.51 1.99 112.12 1.80
rc-ratio-20-7-7 504.52 247.99 2.03 351.08 1.44 353.15 1.43
bek-threshold-4 0.61 0.18 3.44 0.11 5.46 0.01 74.64
bek-threshold-5 17.43 3.56 4.89 2.83 6.16 0.35 50.40
bek-threshold-6 1758.16 194.75 9.03 4577.26 0.38 6532.56 0.27

bek-resonance-4 3.97 0.22 17.71 0.09 46.12 0.08 48.99
bek-resonance-5 228.41 7.90 28.90 44.78 5.10 183.84 1.24
bek-resonance-6 38296.20 1988.60 19.26 (1) — (1) —

bek-crosspolytope-11 480.07 34.35 13.97 39.27 12.22 7.63 62.95
bek-crosspolytope-12 1579.19 108.76 14.52 124.66 12.67 25.22 62.62
bek-crosspolytope-13 5017.73 322.43 15.56 404.80 12.40 104.22 48.15

bek-demicube-5 0.55 0.02 25.24 0.01 85.73 0.01 108.69
bek-demicube-6 27.38 4.15 6.59 4.09 6.69 0.43 63.82
bek-demicube-7 4310.35 510.25 8.45 2405.08 1.79 6396.66 0.67

Mean 21.71 15.12 31.14
Median 10.32 5.81 20.39

Table 5.3 Evaluation of the efficiency of the solvers by their computing times. The “Ratio” (acceleration
ratio) columns give for each considered problem the ratio (Time of the considered isf version)/(Time of
simulated rc). Note (1): interruption of the run after several days of computation. The Mean/Median rows
give the mean and medan values of the ratios.

D. Observations on table 5.3. Measuring the efficiency of the algorithms by the number of
LOPs solved during execution, like in table 5.2, is sometimes misleading. If this is the main cost
item for some algorithms, it is no longer the case when a large amount of stem vectors is computed.
For two reasons. First, the time spent in the computation of these stem vectors is not negligible,
far from it, at least in our implementation, in which each of them requires the computation of
the nullity of a matrix and a null space vector. Next, verifying that a sign vector contains a stem
vector (proposition 3.10) is also time consuming when there are many stem vectors. Therefore a
comparison of the CPU time of the runs is welcome. This is done for a selection of versions of the
isf codes in table 5.3, those selected at the end of section 5.2.6(C). Here are some observations on
the statistics of this table.

1) A first observation is that the good behavior of the selected versions of the isf codes is confirmed,
even though the acceleration ratios are not as large as the one based on the number of LOPs
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solved. This can be explained by the fact that the time spent in solving LOPs is counterbalanced
by the handling of stem vectors for the versions ABCD3 and AD4. Anyway, one observes that
the CPU time acceleration ratios have (mean, median) values in the ranges (15..31, 5..20), which
is significant.

2) The most effective combination of code options depends actually on the considered problems.
It is difficult to state a rule that would predict which code behaves best because some solvers
are better on some phases of the run, but worse on others (the three main phases are the
detection of the stem vectors, the execution of LOPs and the search for stem vectors covered by
a given sign vector). However, an inductive rule manifests itself: the purely dual method AD4

is ahead for problems with a reasonable number of stem vectors (or matrix circuits), but can
require a too large number of computing time if this number becomes large (this is the case of
problems bek-threshold-6, bek-resonance-6 and bek-demicube-7). This conclusion could be
invalidated if better techniques are used to enumerate and use the stem vectors.

6 Discussion

This paper deals with the description and computation of the B-differential of the componentwise
minimum of two affine vector functions. The fact that this problem has many equivalent formu-
lations, some of them being highlighted in section 3, implies that the present contribution has an
impact on several domains, including on the description of the arrangement of hyperplanes in the
space. To this respect, a singular aspect of this contribution is to propose a dual approach to solve
the problem, using some or all the stem vectors, a concept made useful thanks to the convex analysis
tool that is Gordan’s alternative. Besides this contribution, the paper also brings various improve-
ments of an algorithm of Rada and Černý [63], which was designed to determine the cells of an
arrangement of hyperplanes in the space.

Even in the spirit of the methods proposed in this article, there is still room for improvement,
in relation to three identified bottlenecks: (i) we have mentioned that with the option D3, the
LOP (5.2) can be solved inexactly, since, in that case, the optimal value is −1, while any negative
objective value for a feasible unknown would suffice, but this requires a better tuning of the linear
optimization solver, (ii) computing more efficiently all the stem vectors (or matroid circuits) of the
matrix V is certainly a source of improvement, (iii) a better algorithm to decide more rapidly that
a sign vector contains a stem vector is also welcome. Some of these possible improvements are also
linked to a better choice of programming language, probably one using a compilation phase.

This contribution has also various possible extensions. A first one would be to develop a dual
approach to the problem of the arrangement in the space of hyperplanes having no point in com-

mon [31]. Another natural extension would be to see the implications of this work for computing
the B-differential of the componentwise minimum of nonlinear vector functions [32]. Finally, the
possibility to take profit of the computation of the full B-differential of the function H in (1.3) in
a Newton-like approach to solve (1.4) is a subject that deserves reflection.
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