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Abstract This paper focuses on the description and computation of the B-differential of the com-
ponentwise minimum of two affine vector functions. This issue arises in the reformulation of the
linear complementarity problem with the Min C-function. The question has many equivalent formu-
lations and we identify some of them in linear algebra, convex analysis and discrete geometry. These
formulations are used to state some properties of the B-differential, like its symmetry, condition for
its completeness, its connectivity, bounds on its cardinal, etc. The set to specify has a finite number
of elements, which may grow exponentially with the range space dimension of the functions, so that
its description is most often algorithmic. We present first an incremental-recursive approach avoid-
ing to solve any optimization subproblem, which is based on the notion of matroid circuit and the
related introduced concept of stem vector. Next, we propose modifications, adapted to the problem
at stake, of an algorithm introduced by Rada and Černý in 2018 for determining the cells of an
arrangement in the space of hyperplanes having a point in common. Measured in CPU time on the
considered test-problems, the mean acceleration ratios of the proposed algorithms, with respect to
the one of Rada and Černý, are in the range 7..15, and this speed-up can exceed 30, depending on
the problem and the approach.
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1 Introduction

Let E and F be two real vector spaces of finite dimension n := dimE and m := dimF. The
B-differential at x ∈ E of a function H : E → F is the set denoted and defined by

∂BH(x) := {J ∈ L(E,F) : H ′(xk) → J for {xk} ⊆ DH converging to x},

where L(E,F) is the set of linear (continuous) maps from E to F, {xk} denotes a sequence and DH

is the set of points at which H is (Fréchet) differentiable (its derivative at x is denoted by H ′(x)).
Recall that a locally Lipschitz continuous function is differentiable almost everywhere in the sense
of the Lebesgue measure (Rademacher’s theorem [55]) and this property has the consequence that
the B-differential of a locally Lipschitz function is nonempty everywhere [19]. The B-differential is
an intermediate set used to define the C-differential (C for Clarke [19]) of H at x, which is denoted
and defined by

∂CH(x) := co ∂BH(x), (1.1)

where coS denotes the convex hull of a set S [57,41,15]. Both intervene in the specification of
conditions ensuring the local convergence of the semismooth Newton algorithm [52,53,61], which
can be a motivation for being interested in that concept.

In this paper, we focus on the description of the B-differential of H at x when H : Rn → Rm

is the componentwise minimum of two affine functions x 7→ Ax + a and x 7→ Bx + b, where A,
B ∈ Rm×n and a, b ∈ Rm. Hence, H is defined at x by

H(x) = min(Ax+ a,Bx+ b), (1.2)

where the minimum operator “min” acts componentwise (for two vectors u, v ∈ Rm and i ∈ [1 :m] :=
{1, . . . ,m}: [min(u, v)]i := min(ui, vi)). A motivation to look at the B-differential of that function
H comes from the fact that, when m = n and H is given by (1.2), as explained below, the equation

H(x) = 0 (1.3)

is a reformulation of the balanced [27] Linear Complementarity Problem (LCP)

0 6 (Ax+ a) ⊥ (Bx+ b) > 0. (1.4)

This system expresses the fact that a point x ∈ Rn is sought such that Ax + a > 0, Bx + b > 0
and (Ax+ a)T(Bx+ b) = 0 (the superscript “T” is used here and below to denote vector or matrix
transposition). Problem (1.4) is a special case of the so-called (extended) vertical LCP, which uses
more than two matrices and vectors in its formulation [21,64,68]. In the standard LCP, A is the
identity matrix and a = 0 [47,22].

The reformulation (1.3) of (1.4) is based on the fact that, for two real numbers α and β,
min(α, β) = 0 if and only if α > 0, β > 0 and αβ = 0 [1,50]. This reformulation serves as the
basis for a number of solving methods and investigations [1,44,49,50,51,33,7,8,42,9,25,26,27]. If
(1.4) stands alone, it is appropriate to have m = n, but (1.4) may be part of a system with other
constraints to satisfy [45,46,10], in which case m 6 n. In the computation of the B-differential of
the Min function (1.2), m and n may be unrelated.

Occasionally, we shall refer to the nonlinear version of the above problem, in which a function
H̃ : E → Rm is defined at x ∈ E by

H̃(x) := min(F (x),G(x)), (1.5)

where F and G : E → Rm are two functions and the “min” operator still acts componentwise. The
equation H̃(x) = 0 is then a reformulation of the complementarity problem “0 6 F (x) ⊥ G(x) > 0”.
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As a first general remark, let us quote the fact that the B-differential of H cannot be deduced
from the knowledge of the B-differential of its scalar components Hi : x ∈ E → Hi(x) ∈ R, for
i ∈ [1 :m], which is trivial in the present context. Indeed, if [19; proposition 2.6.2(e)]

∂BH(x) ⊆ ∂BH1(x)× · · · × ∂BHm(x), (1.6)

equality in this inclusion may not always hold (see [33; § 7.1.15] and almost all the examples and
test-cases below). Therefore, all the components of H must be taken into account simultaneously.

The B-differential of H at x is a finite set, made of Jacobians J whose ith row is Ai, : or Bi, :

(proposition 2.2). Consequently, its cardinal can be exponential in m and it occurs that its full
mathematical description is a tricky task, essentially when there are many indices i for which
(Ax+ a)i = (Bx+ b)i and Ai, : 6= Bi, : , a situation that makes H nondifferentiable (lemma 2.1).
Then, a rich panorama of configurations appears, which is barely glimpsed in this contribution.

The paper starts with a background section (section 2), which recalls a basic property of the
minimum of two functions (lemma 2.1) and gives us a first perception of the structure of the B-
differential of the function H , in particular its finite nature (proposition 2.2). A useful technical
lemma is also presented (lemma 2.5).

In section 3, it is shown that the problem of computing ∂BH(x) has a rich panel of equivalent
formulations, related to various areas of mathematics. We have quoted two forms of the problem in
linear algebra, which are dual to each other (section 3.2), two equivalent problems in convex analysis

(section 3.3) and a last equivalent problem, which arises in computational discrete geometry and
deals with the arrangement of hyperplanes having the zero point in common (section 3.4).

Section 4 gives some properties of the B-differential of H , recalls Winder’s formula of its cardinal,
provides some lower and upper bounds on this one, proves necessary and sufficient conditions so
that two extreme configurations occur and highlights two links between the B-differential and C-
differential.

Section 5 presents algorithms for computing one (section 5.1) or all (section 5.2) the Jacobians
of ∂BH(x). In the latter case, the algorithms construct a tree incrementally and recursively (sec-
tion 5.2.1), as proposed by Rada and Černý [54]. On the one hand (section 5.2.2), an algorithm
based on the notion of matroid circuit of the matrix V expressing the gap of differentiability is
proposed; it has the nice feature of requiring no linear optimization (LO) problem to solve. On
the other hand (section 5.2.4), various modifications of the algorithm of Rada and Černý [54] are
proposed with the goal of decreasing the number of LO problems to solve. Numerical experiments
are reported (section 5.2.6), showing that the proposed algorithms significantly improve the perfor-
mance of the Rada and Černý method, with mean (resp. median) acceleration ratios in the range
7..15 (resp. 3..14), measured by the computing time. This speed-up exceeds 30, for some algorithms
and test-problems.

This paper is an abridged version of the more detailed report [28].

Notation. We denote by |S| the number of elements of a set S (i.e., its cardinal). The power

set of a set S is denoted by P(S). The set of bipartitions (I, J) of a set K is denoted by B(K):
I ∪J = K and I ∩J = ∅. The sets of nonzero natural and real numbers are denoted by N∗ and R∗,
respectively. The sign of a real number is the multifunction sgn : R ⊸ R defined by sgn(t) = {1}
if t > 0, sgn(t) = {−1} if t < 0 and sgn(0) = [−1,1]. We note Rn

+ := {x ∈ Rn : x > 0} and
Rn

++ := {x ∈ Rn : x > 0} (strict inequalities must also be understood componentwise; hence x > 0
means xi > 0 for all indices i). For a subset S of a vector space, we denote by vect(S) the subspace
spanned by S. The vector of all one’s, in a real space whose dimension is given by the context, is
denoted by e. The Hadamard product of u and v ∈ Rn is the vector u qv ∈ Rn whose ith component
is uivi. The range space of an m×n matrix A is denoted by R(A), its null space by N (A), its rank
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is rank(A) := dimR(A) and its nullity is null(A) := dimN (A) = n− rank(A) by the rank-nullity
theorem. The ith row (resp. column) of A is denoted by Ai, : (resp. A : ,i). Transposition operates
after a row/column selection: AT

i, : is a short notation for the column vector (Ai, : )
T and AT

: ,i is a

short notation for the row vector (A : ,i)
T. For a vector α, Diag(α) is the square diagonal matrix

with the αi’s on its diagonal.

2 Background

Recall that F : E → F is said to be (Fréchet) differentiable at x if F (x+d) = F (x)+Ld+o(‖d‖) for
some L ∈ L(E,F), in which case one denotes by F ′(x) = L the derivative of F at x. We say below
that F is continuously differentiable at x if it is differentiable near x (like in [19], “near” means here
and below “in a neighborhood of” in the topological sense) and if its derivative is continuous at x.

The next famous lemma recalls a necessary and sufficient condition guaranteeing the differ-
entiability of the minimum of two scalar functions (see [52; 1993, final remarks (1)], [17; 2011,
theorem 2.1] and [28]).

Lemma 2.1 (differentiability of the Min function) Let f and g : E → R be two functions

and h : E → R be defined by h(·) := min(f(·), g(·)). Suppose that f and g are differentiable at a

point x ∈ E.

1) If f(x) < g(x), then h is differentiable at x and h′(x) = f ′(x).
2) If f(x) > g(x), then h is differentiable at x and h′(x) = g′(x).
3) If f(x) = g(x), then h is differentiable at x if and only if f ′(x) = g′(x). In this case, h′(x) =

f ′(x) = g′(x).

The previous lemma shows the relevance of the following index sets:

A(x) := {i ∈ [1 :m] : (Ax+ a)i < (Bx+ b)i}, (2.1a)

B(x) := {i ∈ [1 :m] : (Ax+ a)i > (Bx+ b)i}, (2.1b)

E(x) := {i ∈ [1 :m] : (Ax+ a)i = (Bx+ b)i}, (2.1c)

E=(x) := {i ∈ E(x) : Ai, : = Bi, : }, (2.1d)

E 6=(x) := {i ∈ E(x) : Ai, : 6= Bi, : }. (2.1e)

To simplify the presentation, we assume in the sequel that

E 6=(x) = [1 :p],

for some p ∈ [0 :m] (p = 0 if and only if E 6=(x) = ∅).
The next proposition describes the superset ∂BH(x) of ∂BH(x) given in the right-hand side

of (1.6) (see [43; 1998, § 2] in a somehow different context, [24; 2000, before (8)] and [28] for a
meticulous proof). This Cartesian product actually reads

∂BH(x) := {J ∈ L(E,Rm) :Ji, : = Ai, : , if i ∈ A(x),
Ji, : = Ai, : = Bi, : , if i ∈ E=(x),
Ji, : ∈ {Ai, : , Bi, : }, if i ∈ E 6=(x),
Ji, : = Bi, : , if i ∈ B(x)}.

(2.2)

Note that ∂BH(x) may differ from ∂BH(x): if n = 1, m = 2, F (x) ≡ 0 and G(x) ≡ xe, one has
∂BH(0) = {(00), (

1
1)}, while ∂BH(0) = {(00), (

1
0), (

0
1), (

1
1)}.
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Proposition 2.2 (superset of ∂BH(x)) One has ∂BH(x) ⊆ ∂BH(x) = ∂BH1(x) × · · · ×
∂BHm(x). In particular, |∂BH(x)| 6 2p.

The previous proposition shows that ∂BH(x) is a finite set. It also naturally leads to the next
definition.

Definition 2.3 (complete B-differential) We say that the B-differential of H at x ∈ Rn is
complete if ∂BH(x) = ∂BH(x) or, equivalently, if |∂BH(x)| = 2p. ⊓⊔

Definitions 2.4 (symmetry in ∂BH(x)) For x ∈ E, we say that the Jacobian J̃ ∈ ∂BH(x) is
symmetric to the Jacobian J ∈ ∂BH(x) if

J̃i, : =

{
Ai, : if i ∈ E 6=(x) and Ji, : = Bi, : ,
Bi, : if i ∈ E 6=(x) and Ji, : = Ai, : .

The B-differential ∂BH(x) itself is said to be symmetric if each Jacobian J ∈ ∂BH(x) has its
symmetric Jacobian J̃ in ∂BH(x). ⊓⊔

We shall use the following lemma, which, for the sake of generality, is written in a slightly more
abstract formalism than the one we need below (one could take E = Rn and the Euclidean scalar
product for 〈·, ·〉). It is a refinement of [17; lemma 2.1].

Lemma 2.5 (discriminating covectors) Suppose that (E, 〈·, ·〉) is a Euclidean vector space,

p ∈ N∗ and v1, . . . , vp are p distinct vectors of E. Then, the set of vectors ξ ∈ E such that

|{〈ξ, vi〉}i∈[1 : p]| = p is dense in E.

Proof Denote by Ξ the set of vectors ξ ∈ E such that |{〈ξ, vi〉}i∈[1 : p]| = p (i.e., {〈ξ, vi〉}i∈[1 : p]

contains p distinct values in R). We have to show that Ξ is dense in E.
Take ξ0 /∈ Ξ, so that 〈ξ0, vi〉 = 〈ξ0, vj〉 for some i 6= j in [1 :p]. By continuity of the scalar

product, for any ε0 > 0 sufficiently small, the vector ξ1 := ξ0 − ε0(vi − vj) guarantees

〈ξ1, vi1 〉 < 〈ξ1, vi2 〉

for all i1 and i2 ∈ [1 :p] such that 〈ξ0, vi1 〉 < 〈ξ0, vi2 〉 (in other words, ξ1 maintains strict the
inequalities that are strict with ξ0). In addition

〈ξ1, vi〉 − 〈ξ1, vj〉 = 〈ξ0, vi − vj〉
︸ ︷︷ ︸

=0

− ε0‖vi − vj‖
2

︸ ︷︷ ︸

>0

< 0.

Therefore, one gets one more strict inequality with ξ1 than with ξ0. Pursuing like this, one can
finally obtain a vector ξ in Ξ. This vector is arbitrarily close to ξ0 by taking the εi’s positive and
sufficienty small. ⊓⊔

3 Equivalent problems

The problem of determining the B-differential of the piecewise affine function, that is the minimum
(1.2) of two affine functions, appears in various contexts, sometimes with non straightforward
connections with it (this one is recalled in section 3.1). We review some equivalent formulations
in this section (see also [66,5,6] and the references therein) and give a few properties of the B-
differential in this piecewise affine case. As suggested by proposition 2.2, these problems have an
enumeration nature, since a finite list of mathematical objects has to be determined. This list
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may have a number of elements exponential in p, which makes its content difficult to specify (in
this respect, the particular case where the B-differential is complete is a trivial exception). Some
formulations, such as the one related to the arrangement of hyperplanes containing the origin
(section 3.4), have been extensively explored, others much less. Each formulation sheds a particular
light on the problem and is therefore, as such, interesting to mention and keep in mind. It also offers
the possibility of introducing new algorithmic approaches to describe the B-differential.

3.1 B-differential of the minimum of two affine functions

The problem of this section was already presented in the introduction and is sometimes referred to,
in this paper, as the original problem.

Problem 3.1 (B-differential of the minimum of two affine functions) Let be given two
positive integers n and m ∈ N∗, two matrices A, B ∈ Rm×n and two vectors a, b ∈ Rm. It is
requested to compute the B-differential at some x ∈ Rn of the function H : Rn → Rm defined
by (1.2). ⊓⊔

When E 6=(x) 6= ∅, the rows of B − A with indices in E 6=(x) will play a key role below. We
denote its transpose by

V := (B − A)TE 6=(x), : ∈ Rn×p. (3.1)

Note that, due to their indices in E 6=(x) = [1 :p] and the definition of this index set, the columns
of V are nonzero. This matrix may not always have full rank, however.

3.2 Linear algebra problems

3.2.1 Signed feasibility of strict inequality systems

Many proofs below leverage the equivalence between the original problem 3.1 and the following one.
The reason is that working on problem 3.2 often allows us to propose shorter proofs.

Problem 3.2 (signed feasibility of strict inequality systems) Let be given two positive
integers n and p ∈ N∗ and a matrix V in Rn×p with nonzero columns. It is requested to determine
the set

S := {s ∈ {±1}p : s qV Td > 0 is feasible for d ∈ Rn}. (3.2)

⊓⊔

The link between the two problems is established by the following map

σ : J ∈ ∂BH(x) 7→ s ∈ {±1}p, where si =

{
+1 if i ∈ E 6=(x), Ji, : = Ai, : ,
−1 if i ∈ E 6=(x), Ji, : = Bi, : .

(3.3a)

The map is well defined since Ai, : 6= Bi, : when i ∈ E 6=(x). Furthermore, σ is bijective since two
Jacobians in ∂BH(x) only differ by their rows with index in E 6=(x) and that these rows can take
any of the values Ai, : or Bi, : . Actually, its reverse map is

σ−1 : s ∈ {±1}p 7→ J ∈ ∂BH(x), where Ji, : =

{
Ai, : if i ∈ E 6=(x), si = +1,
Bi, : if i ∈ E 6=(x), si = −1.

(3.3b)

The question that arises is whether σ is also a bijection between ∂BH(x) and S .

6



Proposition 3.3 (bijection ∂BH(x) ↔ S) Let H : Rn → Rm be given by (1.2), x be a point

in Rn such that p 6= 0 and V be given by (3.1). Then, the map σ is a bijection from ∂BH(x) onto

S. In particular, the following properties hold.

1) If J ∈ ∂BH(x), then ∃ d ∈ Rn such that σ(J) qV Td > 0.
2) If s ∈ {±1}p and ∃ d ∈ Rn is such that s qV Td > 0, then σ−1(s) ∈ ∂BH(x).
3) Let J ∈ ∂BH(x). Then, J ∈ ∂BH(x) ⇐⇒ σ(J) qV Td > 0 is feasible for d ∈ Rn.

Proof The properties 1, 2 and 3 in the statement of the proposition are straightforward consequences
of the bijectivity of σ : ∂BH(x) → S . Now, the discussion before the proposition has shown that
σ : ∂BH(x) 7→ {±1}p is a bijection. Therefore, σ : ∂BH(x) 7→ {±1}p is injective and it suffices to
prove that

σ(∂BH(x)) = S . (3.4a)

[⊆ or point 1] Let J ∈ ∂BH(x). We have to show that σ(J) ∈ S . By J ∈ ∂BH(x), there exists
a sequence {xk} ⊆ DH converging to x such that

H ′(xk) → J. (3.4b)

For i ∈ E 6=(x), one cannot have (Axk + a)i = (Bxk + b)i, since Ai, : 6= Bi, : would imply that
xk /∈ DH (lemma 2.1). Therefore, one can find a subsequence K of indices k and a partition
(A0,B0) of E 6=(x) such that for all k ∈ K:

(Axk + a)A0
< (Bxk + b)A0

and (Axk + a)B0
> (Bxk + b)B0

. (3.4c)

Now, fix k ∈ K and set d := xk − x. Since (Ax+ a)i = (Bx+ b)i for i ∈ E 6=(x), one deduces from
(3.4c) that

(B − A)A0, :d > 0 and (B − A)B0, :d < 0.

Recalling the definitions of V in (3.1) and of S in (3.2), we see that, to conclude the proof of the
membership σ(J) ∈ S , it suffices to show that [σ(J)]A0

= +1 and [σ(J)]B0
= −1 or, equivalently,

by the definition of σ, (Ji, : = Ai, : for i ∈ A0) and (Ji, : = Bi, : for i ∈ B0). This is indeed the case,
since by (3.4c), for all k ∈ K, one has (H ′

i(xk) = Ai, : for i ∈ A0) and (H ′
i(xk) = Bi, : for i ∈ B0);

now, use the convergence (3.4b) to conclude.
[⊇ or point 2] Let s ∈ S . We have to find a J ∈ ∂BH(x) such that σ(J) = s, that is, which

satisfies

(Ji, : = Ai, : if si = +1) and (Ji, : = Bi, : if si = −1). (3.4d)

Since s ∈ S , there is a d ∈ Rn such that

s qV Td > 0. (3.4e)

Take a real sequence {tk} ↓ 0 and define the sequence {xk} ⊆ Rn by

xk := x+ tkd.

Then, xk → x. We claim that, for k sufficiently large, xk ∈ DH and H ′(xk) is a constant matrix J

satisfying (3.4d), which will conclude the proof. Let i ∈ [1 :m].

r If i ∈ A(x), (Axk + a)i < (Bxk + b)i for k large, so that xk ∈ DH and H ′
i(xk) = Ai, : .

r If i ∈ B(x), (Axk + a)i > (Bxk + b)i for k large, so that xk ∈ DH and H ′
i(xk) = Bi, : .

r If i ∈ E=(x), then Ai, : = Bi, : , so that xk ∈ DH and H ′
i(xk) = Ai, : = Bi, : .

7



r If i ∈ E 6=(x), subtract side by side (Axk + a)i = (Ax + a)i + tkAi, :d and (Bxk + b)i =
(Bx+ b)i + tkBi, :d, use (Ax+ a)i = (Bx+ b)i and next (3.4e) to get

(Bxk + b)i − (Axk + b)i = tk(Bi, : − Ai, : )d = tkV
T

i, :d

{
> 0 if si = +1,
< 0 if si = −1.

Hence, xk ∈ DH , (H ′
i(xk) = Ai, : if si = +1) and (H ′

i(xk) = Bi, : if si = −1). ⊓⊔

Equivalence 3.4 (B-differential ↔ signed feasibility of strict inequality systems) The
equivalence between the original problem 3.1 and the signed feasibility of strict inequality system
problem 3.2 is a consequence of the previous proposition with V given by (3.1), which shows the
bijectivity of the map σ : ∂BH(x) → S defined by (3.3a). Therefore, knowing σ by its definition
(3.3), determining ∂BH(x) or S are equivalent problems. ⊓⊔

3.2.2 Orthants encountered by the null space of a matrix

Recall the definition of S in (3.2), which is associated with some matrix V ∈ Rn×p, coming from
(3.1), with nonzero columns. The equivalent form of problem 3.2 (hence of problem 3.1) introduced
in this section is based on a bijection between the complementary set of S in {±1}p, denoted Sc :=
{±1}p \ S , and a collection I of subsets of [1 :p] (hence I ⊆ P([1 :p])), which refers to a collection
of orthants of Rp, those encountered by the null space of V . This equivalence will play a major
part in the conception of the algorithms in section 5.2, in particular, but not only, in an algorithm
describing the complementary set of ∂BH(x), which is interesting when |∂BH(x) \ ∂BH(x)| is
small. The concept of stem vector, defined in the second part of this section, has proven useful in
this regard. The equivalence rests on a duality concept through Gordan’s alternative.

Problem 3.5 (orthants encountered by the null space of a matrix) Let be given two
positive integers n and p ∈ N∗ and a matrix V in Rn×p with nonzero columns. Associate with
I ⊆ [1 : p] the following orthant of Rp :

Op
I := {y ∈ Rp : yI > 0, yIc 6 0},

where Ic := [1 :p] \ I . It is requested to determine the set

I := {I ⊆ [1 :p] : N (V ) ∩ Op
I 6= {0}}. ⊓⊔

Note that, if I ∈ I, then Ic ∈ I (because y ∈ (N (V ) ∩ Op
I ) \ {0} implies that −y ∈ (N (V ) ∩

Op
Ic) \ {0}), so that |I| is even (just like |S| and |Sc|, see proposition 4.1).

The equivalence between problems 3.2 and 3.5 is obtained thanks to the following bijection

ı : s ∈ {±1}p → ı(s) := {i ∈ [1 :p] : si = +1} ∈ P([1 :p]), (3.5)

whose reverse map is ı−1 : I ∈ P([1 :p]) → s ∈ {±1}p, where si = +1 if i ∈ I and si = −1 if i /∈ I .
As announced above, this equivalence relies on Gordan’s theorem of the alternative [36; 1873]: for
a matrix A ∈ Rm×n,

∃x ∈ Rn : Ax > 0 ⇐⇒ ∄α ∈ Rm
+ \ {0} : ATα = 0. (3.6)

Proposition 3.6 (bijection Sc ↔ I) The map ı defined by (3.5) is a bijection from Sc onto I.
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Proof Let s ∈ {±1}p and set I := ı(s) = {i ∈ [1 :p] : si = +1}. Define A := Diag(s)V T to make
the link with Gordan’s alternative (3.6). One has the equivalences

s ∈ Sc ⇐⇒ ∄ x ∈ Rn : Ax > 0 [definition of S in (3.2)]

⇐⇒ ∃α ∈ Rm
+ \ {0} : ATα = 0 [Gordan’s alternative (3.6)]

⇐⇒ ∃α ∈ Rm
+ \ {0} : s qα ∈ N (V )

⇐⇒ N (V ) ∩Op
I 6= {0} [see below] (3.7)

⇐⇒ I ∈ I [definition of I].

The implication “⇒” in (3.7) is due to the fact that s qα is nonzero and belongs to both N (V ) and
Op

I . The reverse implication “⇐” in (3.7) is due to the fact that there is a nonzero y ∈ N (V )∩Op
I ,

implying that α := s q y is nonzero and > 0 and is such that s qα = y ∈ N (V ).
Since ı : {±1}p → P([1 :p]) is a bijection, the above equivalences show that ı is also a bijection

from Sc onto I. ⊓⊔

Equivalence 3.7 (Sc ↔ I) The equivalence between problems 3.2 and 3.5 is a consequence of
the bijectivity of ı : Sc → I, established in proposition 3.6: to determine S , it suffices to determine
Sc = ı−1(I), hence to determine I. ⊓⊔

Recall that the nullity of a matrix A, denoted by null(A), is the dimension of its null space. Let
us introduce the following collection of index sets (from now on, J usually denotes a set of indices
rather than a Jacobian matrix):

C := {J ⊆ [1 : p] : J 6= ∅, null(V : ,J) = 1, V : ,J0
is injective if J0 ( J}, (3.8)

where “(” is used to denote strict inclusion. In the terminology of the vector matroid formed by
the columns of V and its subsets made of linearly independent columns [48; proposition 1.1.1],
the elements of C are called the circuits of the matroid [48; proposition 1.3.5(iii)]. The particular
expression (3.8) of the circuit set is interesting in the present context, since it readily yields the
following implication:

J ∈ C =⇒ any nonzero α ∈ N (V : ,J) has none zero component. (3.9)

From (3.8) and (3.9), one can associate with J ∈ C a pair of sign vectors ±s̃ ∈ {±1}J by s̃ := sgn(α)
for some nonzero α ∈ N (V : ,J); the sign vectors ±s̃ do not depend on the chosen α ∈ N (V : ,J) \ {0}
since null(V : ,J) = 1. We call such a sign vector a stem vector, because of proposition 3.9 below,
which shows that any s ∈ Sc can be generated from such a stem vector.

Definition 3.8 (stem vector) A stem vector is a sign vector s̃ = sgn(α), where α ∈ N (V :,J) for
some J ∈ C. ⊓⊔

Note that there are twice as many stem vectors as circuits and that the stem vectors do not have
all the same size.

Proposition 3.9 (generating Sc from the stem vectors) For s ∈ {±1}p,

s ∈ Sc ⇐⇒ sJ = s̃ for some J ⊆ [1 :p] and some stem vector s̃. (3.10)

9



Proof [⇒] The index set J ⊆ [1 :p] in the right-hand side of (3.10) can be determined as the one
satisfying the following two properties:

{d ∈ Rn : sjv
T

j d > 0 for all j ∈ J} = ∅, (3.11a)

∀ J0 ( J, {d ∈ Rn : sjv
T

j d > 0 for all j ∈ J0} 6= ∅. (3.11b)

To determine such a J , start with J = [1 :p], which verifies (3.11a), since s ∈ Sc. Next, remove
an index j from [1 :p] if (3.11a) holds for J = [1 :p] \ {j}. Pursuing the elimination of indices j

in this way, one arrives to an index set J satisfying (3.11a) and {d ∈ Rn : sjv
T

j d > 0 for all
j ∈ J \ {j0}} 6= ∅ for all j0 ∈ J . Then, (3.11b) clearly holds. We claim that, for the J thus defined,
sJ is a stem vector, which will conclude the proof of the implication.

We first show that J is a matroid circuit, sticking to definition 3.8. By (3.11a), J 6= ∅. By
Gordan’s alternative (3.6), (3.11a) and (3.11b) read

∃α ∈ RJ
+ \ {0} such that

∑

j∈J sjvjαj = 0, (3.11c)

∀J0 ( J , ∄α′ ∈ RJ0

+ \ {0} such that
∑

j∈J0
sjvjα

′
j = 0. (3.11d)

From these properties, one deduces that α > 0 and that null(V : ,J) > 1. To show that null(V : ,J) =

1, we proceed by contradiction. Suppose that there is a nonzero α′′ ∈ RJ that is not colinear
with α and that verifies

∑

j∈J sjvjα
′′
j = 0. One can assume that t := max{α′′

j /αj : j ∈ J} is
> 0 (take −α′′ otherwise). Set J0 := {j ∈ J : α′′

j /αj < t}. By the non-colinearity of α and α′′,
on the one hand, and the definition of t, on the other hand, one has ∅ ( J0 ( J . Furthermore,
α′ := α− α′′/t > 0, α′

j > 0 for j ∈ J0 and α′
j = 0 for j ∈ J \ J0. Since

∑

j∈J0
sjvjα

′
j = 0, we have

a contradiction with (3.11d).
To show that J ∈ C, we still have to show that V : ,J0

is injective when J0 ( J . Let J0 ( J and
suppose that

∑

j∈J0
sjvjβj = 0 for some β ∈ RJ0 . We only have to show that β = 0. The cases

when β > 0 or β 6 0 are easy since then, (3.11d) readily implies that β = 0. Suppose now that β

has positive (> 0) and negative (< 0) components. Set t := min{−αj/βj : j ∈ J0, βj < 0} > 0.
Then, α′ := αJ0

+ tβ > 0 and
∑

j∈J0
sjvjα

′
j = 0. By (3.11d), α′ = 0, implying that β 6 0. Like

previously, (3.11d) implies that β = 0.
Now, since J is a matroid circuit of V , since sJ q α ∈ N (V : ,J) \ {0} by (3.11c) and since

sJ = sgn(sJ qα), sJ is a stem vector.
[⇐] Since s̃ is a stem vector with indices in J ⊆ [1 :p], s̃ := sgn(α) for some α ∈ RJ with

nonzero components that satisfies V : ,Jα = 0. Let J+ := {j ∈ J : αj > 0} = {j ∈ J : sj = +1},
which may be empty. Since one has α ∈ N (V : ,J)∩OJ

J+
, the bijection ı in (3.5), restricted to {±1}J ,

tells us that ı−1(J+) = sgn(α) = s̃ is such that there is no d ∈ Rn such that s̃ivTi d > 0 or sivTi d > 0
for i ∈ J , hence certainly not for i ∈ [1 :p], meaning that s ∈ Sc. ⊓⊔

To determine the stem vectors, which are based on the matroid circuits defined by (3.8), one
has to select subsets of columns of V forming a rank one matrix, whose strict subsets form injective
matrices. Actually, this last condition can be simplified by the following property.

Proposition 3.10 (matroid circuit detection) Suppose that I ⊆ [1 : p] is such that null(V : ,I) =
1 and that α ∈ N (V : ,I) \ {0}. Then, J := {i ∈ I : αi 6= 0} is a matroid circuit of V and the unique

one included in I.

Proof 1) Let us show that J is a matroid circuit. Since α 6= 0, J 6= ∅.
Let us show that null(V : ,J) = 1. Since J ⊆ I , one has null(V : ,J) 6 null(V : ,I) = 1. Furthermore,

αJ ∈ N (V : ,J) \ {0} implies that null(V : ,J) > 1.
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Now, let J0 ( J and suppose that V : ,J0
β = 0. We have to show that β = 0. Since V : ,J(β, 0J\J0

) =
0, it follows that (β, 0J\J0

) ∈ N (V : ,J), which is of dimension 1, so that (β, 0J\J0
) is colinear to α.

Since the components of α are 6= 0, we get that β = 0.
2) Let us now show that J is the unique matroid circuit of V included in I .
Let J ′ be a matroid circuit of V included in I . Then null(V :,J′) = 1 and there is a nonzero

α′ ∈ N (V : ,J′). By (3.9), α′ has nonzero components. Furthermore, (α′, 0I\J′) ∈ N (V : ,I), which
has unit dimension and contains α. Therefore, α and (α′, 0I\J′) are colinear. Since the components
of α are 6= 0, we get that J ′ = J . ⊓⊔

3.3 Convex analysis problems

The formulation of the original problem 3.1 in the form of the convex analysis problems 3.11 and 3.14
below may be useful to highlight some properties of ∂BH(x), thanks to the tools of that discipline.

3.3.1 Pointed cones by vector inversions

Recall that a convex cone K of Rn is a convex set verifying R++K ⊆ K (or, more explicitly, tx ∈ K

when t > 0 and x ∈ K). A closed convex cone K is said to be pointed if K ∩ (−K) = {0} [15; p. 54],
which amounts to saying that K does not contain a line (i.e., an affine subspace of dimension one)
or that K has no nonzero direction z such that −z ∈ K. For P ⊆ Rn, we also denote by “coneP ”
the smallest convex cone containing P .

Problem 3.11 (pointed cones by vector inversions) Let be given two positive integers n and
p ∈ N∗ and p vectors v1, . . . , vp ∈ Rn \ {0}. It is requested to determine all the sign vectors
s ∈ {±1}p such that cone{sivi : i ∈ [1 : p]} is pointed. ⊓⊔

The equivalence between the original problem 3.1 and this problem 3.11 is obtained thanks to
the next proposition, which gives another property (“cone pointedness”) that is equivalent to those
in (3.6) and that is adapted to the present concern. For a proof, see [37; theorem 2.3.29] [28].

Proposition 3.12 (pointed polyhedral cone) For a finite collection of nonzero vectors {vi :
i ∈ [1 :p]} ⊆ Rn, the following properties are equivalent:

(i) cone{vi : i ∈ [1 :p]} is pointed,

(ii) ∄α ∈ Rp
+ \ {0} :

∑

i∈[1 : p] αivi = 0,

(iii) ∃ d ∈ Rn, ∀i ∈ [1 : p] : vTi d > 0.

Equivalence 3.13 (signed linear system feasibility ↔ pointed cone by vector inversion)

The equivalence (i) ⇔ (iii) of the previous proposition shows that the set S defined by (3.2) is also
given by

S = {s ∈ {±1}p : cone{sivi : i ∈ [1 :p]} is pointed}. (3.12)

To put it in words, denoting by v1, . . . , vp the columns of the matrix V defined by (3.1), the original
problem of section 3.1 is equivalent to problem 3.11. ⊓⊔
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3.3.2 Linearly separable bipartitions of a finite set

This section extends section 3.3.1 and adopts its concepts and notation. The point of view presented
in this section was also shortly considered by Zaslavsky [67; 1975, § 6A].

Problem 3.14 (linearly separable bipartitioning) Let be given an affine space A and p ∈ N∗

vectors v̄1, . . . , v̄p ∈ A. Let A0 := A − A be the vector space parallel to A, endowed with a scalar
product 〈·, ·〉. It is requested to find all the ordered bipartitions (i.e., the partitions made of two
subsets) (I, J) of [1 :p] for which there exists a vector ξ ∈ A0 (also called separating covector below)
such that

∀ i ∈ I, ∀ j ∈ J : 〈ξ, v̄i〉 < 〈ξ, v̄j〉. ⊓⊔

Of course, if (I, J) is an appropriate ordered bipartition to which a separating covector ξ corre-
sponds, then (J, I) is also an appropriate ordered bipartition with separating covector −ξ. Therefore,
only half of the appropriate ordered bipartitions (I, J) must be identified, a fact that is related to
the symmetry of ∂BH(x) (proposition 4.1). Figure 3.1 shows the solution to this problem by draw-

r = 2, |S| = 8

r = 3, |S| = 12
r = 3, |S| = 14

Fig. 3.1 Linearly separable bipartitions of a set of p = 4 points v̄i in R2 (the dots in the figure). Possible
separating hyperplanes are the drawn lines. We have not represented any separating line associated with the
partition (∅, [1 : p]) or ([1 : p],∅), so that |S| = 2(ns + 1), where ns is the number of represented separating
lines. We have set r := dim(vect{v̄1, . . . , v̄p}) + 1.

ing the separating hyperplanes {v̄ ∈ A : ξTv̄ = t} corresponding to some separating covector ξ and
some t ∈ R, for three examples with n − 1 = 2 and p = 4. Since it will be shown that |S| is the
number of these searched linearly separable bipartitions, this one is denoted that way in the figure.
Obviously, |S| not only depends on p and r := dim(vect{v̄1, . . . , v̄p}) + 1, but it also depends on
the arrangement of the v̄i’s in the affine space A. We also see that |S| cannot take all the even
values (proposition 4.1) between its lower bound 2p = 8 and its upper bounds 8 (if r = 2) and 14
(if r = 3) given by propositions 4.7 and 4.10.

The equivalence between the linearly separable bipartitioning problem 3.14 of this section and
the vector inversion problem 3.11 (hence, with the original problem 3.1) is grounded on the following
construction and proposition.

Construction 3.15 1) Let be given two integers n and p ∈ N∗ and p nonzero vectors v1, . . . ,
vp ∈ Rn such that K := cone{vk : k ∈ [1 :p]} is a pointed cone. From proposition 3.12, there is a
direction d ∈ Rn such that

‖d‖ = 1 and
(
∀ k ∈ [1 : p] : vTk d > 0

)
.

Define

A := {v̄ ∈ Rn : dTv̄ = 1}, A0 := A− A = {v ∈ Rn : dTv = 0},

∀ k ∈ [1 :p] : v̄k := vk/(v
T

k d) ∈ A.
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2) For a given bipartition (I, J) of [1 :p], define

KI := cone{vi : i ∈ I} and KJ := cone{vj : j ∈ J}, (3.13a)

CI := KI ∩A and CJ := KJ ∩ A. (3.13b)

⊓⊔

Proposition 3.16 (pointed cone after vector inversions) Let be given two integers n and

p ∈ N∗ and p nonzero vectors v1, . . . , vp ∈ Rn such that K := cone{vk : k ∈ [1 :p]} is a pointed

cone. Let (I, J) be a partition of [1 : p]. Adopt the construction 3.15. Then, the following properties

are equivalent:

(i) cone((−KI) ∪KJ ) is pointed,

(ii) KI ∩KJ = {0},
(iii) CI ∩ CJ = ∅,

(iv) there exists a vector ξ ∈ A0 such that maxi∈I ξTv̄i < minj∈J ξTv̄j .

Proof [(i) ⇒ (ii)] We show the contrapositive. If there is v ∈ (KI ∩KJ) \{0}, then −v ∈ (−KI) ⊆
cone((−KI)∪KJ ) and v ∈ KJ ⊆ cone((−KI)∪KJ). Therefore, cone((−KI)∪KJ ) is not pointed.

[(ii) ⇒ (iii)] ∅ = A ∩ {0} = A ∩KI ∩KJ [(ii)] = (A ∩KI) ∩ (A ∩KJ ) = CI ∩ CJ .
[(iii) ⇒ (iv)] We claim that

CI is nonempty, convex and compact.

Indeed, since CI is nonempty (it contains the vectors v̄i for i ∈ I 6= ∅), convex (because KI and A
are convex) and closed (because KI and A are closed), it suffices to show that CI is bounded or
that its asymptotic cone (or recession cone in [57; p. 61]), namely C∞

I = KI ∩A0, is reduced to {0}
[57; theorem 8.4]. This is indeed the case since vTd > 0 for all v ∈ KI \ {0} ⊆ K \ {0}. For the
same reason,

CJ is nonempty, convex and compact.

Now, since CI ∩ CJ = ∅ by (iii), one can strictly separate the convex sets CI and CJ in A [57;
corollary 11.4.2]: there exists ξ ∈ A0 such that ξTv < ξTw, for all v ∈ CI and all w ∈ CJ . This
shows that (iv) holds.

[(iv) ⇒ (i)] Since cone((−KI)∪KJ) = cone({−vi : i ∈ I}∪{vj : j ∈ J}), by proposition 3.12,
it suffices to find d(I,J) ∈ Rn such that

(

−vTi d(I,J) > 0, ∀ i ∈ I
)

and
(

vTj d(I,J) > 0, ∀ j ∈ J
)

. (3.14)

By (iv) and the fact that θ ∈ (0, π) → cot θ ∈ R is surjective, one can determine θ ∈ (0, π) such
that

max
i∈I

ξTvi

vTi d
< − cot θ < min

j∈J

ξTvj

vTj d
. (3.15)

Since sin θ > 0 for θ ∈ (0, π) and since vTk d > 0 for all k ∈ [1 :p], this is equivalent to

max
i∈I

vTi [(cos θ)d+ (sin θ)ξ] < 0 < min
j∈J

vTj [(cos θ)d+ (sin θ)ξ].

Therefore, (3.14) is satisfied with d(I,J) := (cos θ)d+ (sin θ)ξ. ⊓⊔

One can now establish the link between the pointed cone problem of section 3.3.1 (problem 3.11)
and the linearly separable bipartitioning problem (problem 3.14).
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Equivalence 3.17 (pointed cone ↔ linearly separable bipartitioning) Let be given a matrix
V ∈ Rn×p with nonzero columns denoted by v1, . . . , vp and take s ∈ S , which is nonempty. By
(3.12), cone{sivi : i ∈ [1 : p]} is pointed. Use the construction 3.15(1) with vi y sivi.

For s̃ ∈ {±1}p, define a partition (I, J) of [1 :p] by

I := {i ∈ [1 :p] : s̃isi = −1} and J := {i ∈ [1 :p] : s̃isi = +1}.

Define also KI and KJ by (3.13a) with vi y sivi. We claim that

cone{s̃ivi : i ∈ [1 : p]} is pointed ⇐⇒ ∃ ξ ∈ A0 : max
i∈I

ξTv̄i < min
j∈J

ξTv̄j . (3.16)

Indeed, one has

cone{s̃ivi : i ∈ [1 :p]} is pointed

⇐⇒ cone{s̃isi(sivi) : i ∈ [1 :p]} is pointed

⇐⇒ cone((−KI) ∪KJ) is pointed

⇐⇒ ∃ ξ ∈ A0 : max
i∈I

ξTv̄i < min
j∈J

ξTv̄j ,

where we have used the equivalence (i) ⇔ (iv) of proposition 3.16 (vi y sivi).
The equivalence (3.16) establishes the expected equivalence between the pointed cone prob-

lem 3.11 (in which one looks for all the s̃ ∈ {±1}p such that cone{s̃ivi : i ∈ [1 :p]} is pointed)
and the linearly separable bipartitioning problem 3.14 of the vectors v̄i = sivi/(siv

T

i d) = vi/(v
T

i d),
i ∈ [1 :p], where d is associated with the pointed cone cone{sivi : i ∈ [1 :p]} by the equivalence (i)
⇔ (iii) of proposition 3.12. ⊓⊔

3.4 Discrete geometry: hyperplane arrangements

The equivalent problem examined in this section has a long history, going back at least to the XIXth
century [63,56]. More recently, it appears in Computational Discrete Geometry (the discipline has
many other names), under the name of hyperplane arrangements. Contributions to this problem, or
a more general version of it, with a discrete mathematics point of view, has been reviewed in [38,
32,62,2,40]. It has many applications [31,60,16].

Problem 3.18 (arrangement of hyperplanes containing the origin) Let be given two pos-
itive integers n and p ∈ N∗ and p nonzero vectors v1, . . . , vp ∈ Rn. Consider the hyperplanes
containing the origin:

Hi := {d ∈ Rn : vTi d = 0}. (3.17)

It is requested to list the regions of Rn that are separated by these hyperplanes. Such a region is
called a cell or a chamber, depending on the authors [5,59,2]. More specifically, let us define the
half-spaces

H+
i := {d ∈ Rn : vTi d > 0} and H−

i := {d ∈ Rn : vTi d < 0}.

The problem is to determine the following set of open sectors or cells of Rn, indexed by the bipar-
titions (I+, I−) of [1 :p]:

C :=
{

(I+, I−) ∈ B([1 :p]) : (∩i∈I+ H+
i ) ∩ (∩i∈I− H−

i ) 6= ∅
}

, (3.18)

where B([1 :p]) denotes the set of bipartitions of [1 :p]. ⊓⊔
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The link between problem 3.18 and the signed feasibility of strict linear inequality systems of
section 3.2.1 is obtained from the bijection

η : (I+, I−) ∈ B([1 :p]) 7→ s ∈ {±1}p, where si =

{
+1 if i ∈ I+,
−1 if i ∈ I−

(3.19)

and the setting V =
(
v1 · · · vp

)
, whose columns are nonzero by assumption here and in section 3.2.1.

Recall the definition (3.2) of the set of sign vectors S .

Proposition 3.19 (bijection C ↔ S) For the matrix V ∈ Rn×p, with nonzero columns vi’s, the

map η given by (3.19) is a bijection from C onto S.

Proof Let (I+, I−) ∈ B([1 :p]) and s := η((I+, I−)). Then,

(I+, I−) ∈ C ⇐⇒ ∃ d ∈ (∩i∈I+ H+
i ) ∩ (∩i∈I− H−

i )

⇐⇒ ∃ d ∈ Rn : (vTi d > 0 for i ∈ I+) and (vTi d < 0 for i ∈ I−)

⇐⇒ ∃ d ∈ Rn : s qV Td > 0

⇐⇒ s ∈ S .

These equivalences show the bijectivity of η from C onto S . ⊓⊔

Equivalence 3.20 (signed linear system feasibility ↔ hyperplane arrangement) The
equivalence between problems 3.2 and 3.18 follows from the bijection of the map η : C → S claimed
in proposition 3.19. ⊓⊔

4 Description of the B-differential

This section gives some elements of description of the B-differential ∂BH(x), when H is the piecewise
affine function given by (1.2) and x ∈ Rn. This description is often carried out in terms of the
matrix V defined by (3.1), whose p columns are denoted by v1, . . . , vp ∈ Rn and are assumed to
be nonzero. Some properties of ∂BH(x) are given in section 4.1, including those that are useful
in [30]. Section 4.2 deals with the cardinal |∂BH(x)| of the B-differential. Section 4.3 analyzes more
precisely two particular configurations. Section 4.4 highlights two links between the B-differential
and the C-differential of H .

4.1 Some properties of the B-differential

Let us start with a basic property of ∂BH(x), which is its symmetry in the sense of definitions 2.4.
This property has been observed by many in other contexts [2; § 1.1.4], so that we leave its short
proof, based on the equivalence 3.4, to [28].

Proposition 4.1 (symmetry of ∂BH(x)) Suppose that p > 0. Then, the B-differential ∂BH(x)
is symmetric and |∂BH(x)| is even.

We now give a necessary and sufficient condition ensuring the completeness of ∂BH(x) in the
sense of definition 2.3. The condition was shown to be sufficient in [17; corollary 2.1(i)] for the
nonlinear case (1.5), using a different proof, but we shall see in [30] that it is an easy consequence
of that property in the affine case (1.2). Thanks to the equivalence 3.4, the present proof is short.
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Proposition 4.2 (completeness of the B-differential) The B-differential of H at x, ∂BH(x),
is complete if and only if the matrix V ∈ Rn×p in (3.1) is injective. Hence, this property can hold

only if p 6 n.

Proof [⇒] We show the contrapositive. Assume that V is not injective, so that V α = 0 for some
nonzero α ∈ Rp. With s ∈ sgn(α), one can write

∑

i∈[1 : p]

|αi|sivi = 0.

By Gordan’s alternative (3.6), it follows that there is no d ∈ Rn such that s q V Td > 0. By (3.2),
this implies that s /∈ S . According to the equivalence 3.4, σ−1(s) /∈ ∂BH(x), showing that the
B-differential is not complete.

[⇐] Assume the injectivity of V . Let s ∈ {±1}p. Since V T is surjective, the system V Td = s is
feasible for d ∈ Rn. For this d, s qV Td = e, so that s qV Td > 0 is feasible for d ∈ Rn, so that the
selected s is in S . We have shown that S = {±1}p or that ∂BH(x) = σ−1({±1}p) (σ−1 is defined
by (3.3b)) is complete. ⊓⊔

We focus now on the connectivity of ∂BH(x), a notion that is more easily presented in {±1}p

but that can be transferred straightforwardly to ∂BH(x) by the bijection σ defined in (3.3).

Definition 4.3 (adjacency in {±1}p) Two sign vectors s1 and s2 ∈ {±1}p are said to be
adjacent if they differ by a single component (i.e., the vertices s1 and s2 of the cube co{±1}p can
be joined by a single edge). ⊓⊔

Definitions 4.4 (connectivity in {±1}p) A path of length l in a subset S of {±1}p is a finite
set of sign vectors s0, . . . , sl ∈ S such that si and si+1 are adjacent for all i ∈ [0 : l − 1]; in which
case the path is said to be joining s0 to sl. One says that a subset S of {±1}p is connected if any
pair of points of S can be joined by a path in S. ⊓⊔

Proposition 4.5 (connectivity of the B-differential) The set S defined by (3.2) is connected

if and only if V has no colinear columns. In this case, any points s and s̃ of S can be joined by a

path of length l :=
∑

i∈[1 : p] |s̃i − si|/2 6 p in S.

Proof [⇒] We prove the contrapositive. Suppose that the columns vi and vj of V are colinear:
vj = αvi, for some α ∈ R∗. Assume that α > 0 (resp. α < 0). By (3.2), for any s ∈ S , one can
find d ∈ Rn such that s qV Td > 0, implying that si = sj (resp. si = −sj). Therefore, one cannot
find a path in S joining s ∈ S and −s ∈ S (proposition 4.1), since one would have to change the
two components with index in {i, j} and that these components must be changed simultaneously
for the sign vectors in S , while the adjacency property along a path prevents from changing more
than one sign at a time.

[⇐] We leave to [28] the proof of this implication and of the last claim of the proposition, since
the conclusion of the implication is given in [2; section 1.10.4] as a simple observation with a very
different point of view, related to graph theory. ⊓⊔

For k ∈ [1 :p], we introduce

Sk := {s ∈ {±1}k : ∃ d ∈ Rn such that siv
T

i d > 0 for i ∈ [1 :k]}. (4.3)

We also note Sc
k := {±1}k \ Sk. Hence S = Sp and Sc = Sc

p. Point 1 of the next proposition will
be used to motivate an improvement of algorithm 5.5 in section 5.2.4 and its points 2 and 3 will be
used to get the equivalence in proposition 4.13, related to a fan arrangement.
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Proposition 4.6 (incrementation)

1) If s ∈ Sc
k, then (s,±1) ∈ Sc

k+1. In particular, |Sc
k+1| > 2|Sc

k|.

2) If vk+1 /∈ vect{v1, . . . , vk}, then, (s,±1) ∈ Sk+1 for all s ∈ Sk. In particular, |Sk+1| = 2|Sk|
and |Sc

k+1| = 2|Sc
k|.

3) If vk+1 is not colinear to any of the vectors v1, . . . , vk, then, (s,±1) and (−s,±1) ∈ Sk+1 for

one s ∈ Sk and (s′,+1) or (s′,−1) ∈ Sk+1 for any s′ ∈ Sk. In particular, |Sk+1| > |Sk|+ 2.

Proof 1) If s ∈ Sc
k, there is no d ∈ Rn such that siv

T

i d > 0 for i ∈ [1 :k]. Therefore, there is no
d ∈ Rn such that (sivTi d > 0 for i ∈ [1 :k]) and ±vTk+1d > 0. Therefore, (s,±1) ∈ Sc

k+1. This
implies that |Sc

k+1| > 2|Sc
k|.

2) Let P be the orthogonal projector on vect{v1, . . . , vk}
⊥ for the Euclidean scalar product. By

assumption, P vk+1 6= 0. Let s ∈ Sk, so that there is a direction d ∈ Rn such that siv
T

i d > 0 for
i ∈ [1 :k]. For any t ∈ R and i ∈ [1 :k], the directions d± := d± tP vk+1 verify siv

T

i d± = siv
T

i d > 0
(because vTi P vk+1 = 0). In addition, for t > 0 sufficiently large, one has ±vTk+1d± = ±vTk+1d +

t‖P vk+1‖
2 > 0 (because P2 = P and PT = P). We have shown that both (s,+1) and (s,−1) are

in Sk+1. Therefore, |Sk+1| > 2|Sk|.
Now, |Sk|+ |Sc

k| = 2k, |Sk+1|+ |Sc
k+1| = 2k+1 and |Sc

k+1| > 2|Sc
k| by point 1. Therefore, one

must have |Sk+1| = 2|Sk| and |Sc
k+1| = 2|Sc

k|.
3) We claim that one can find a direction d ∈ Rn such that

(

∀ i ∈ [1 :k] : vTi d 6= 0
)

and vTk+1d = 0. (4.4)

Let us show this by induction. One can find a direction d1 such that vT1 d1 6= 0 and vTk+1d1 = 0

(otherwise N (vT1 ) ⊇ N (vTk+1) or R(v1) ⊆ R(vk+1), which would imply that vk+1 and v1 are
colinear). Suppose now that, for some j ∈ [1 :k − 1], one can find a direction dj ∈ Rn such that
vTi dj 6= 0 for i ∈ [1 : j] and vTk+1dj = 0. Like above, one can find a direction pj ∈ Rn such that
vTj+1pj 6= 0 and vTk+1pj = 0 (because vk+1 and vj+1 are not colinear). Then, for ε > 0 sufficiently

small, dj+1 := dj + εpj satisfies vTi dj+1 6= 0 for i ∈ [1 : j + 1] and vTk+1dj+1 = 0.
Taking si := sgn(vTi d) for i ∈ [1 :k], one deduces from (4.4) that there is a direction d ∈ Rn

such that (

∀ i ∈ [1 :k] : siv
T

i d > 0
)

and vTk+1d = 0.

It follows that, for ε > 0 sufficiently small, the directions d± := d± εvk+1 satisfy
(

∀ i ∈ [1 :k] : siv
T

i d± > 0
)

and ± vTk+1d± > 0.

This means that (s,±1) ∈ Sk+1. By symmetry (proposition 4.1), one also has (−s,±1) ∈ Sk+1,
so that we have found 4 vectors in Sk+1. Now, since, for any s′ ∈ Sk \ {±s} (in number |Sk| − 2),
either (s′,+1) ∈ Sk+1 or (s′,−1) ∈ Sk+1, it follows that |Sk+1| > 4 + (|Sk| − 2) = |Sk|+ 2. ⊓⊔

4.2 Cardinal of the B-differential

4.2.1 Winder’s formula

Giving the exact number of elements in ∂BH(x), that is |∂BH(x)| = |S| = |C| = 2p−|Sc| = 2p−|I|,
with the notation (3.2), (3.18) and (3.5), is a tricky task, even in the present affine case, since it subtly
depends on the arrangement of the vectors vi’s in the space (see figure 3.1). Many contributions
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have been done on this subject; the earliest we cite dates from 1826 [63,56,38,67,65,3,4,32,20,62,
2]. The formula (4.5) for |∂BH(x)| is due to Winder [66; 1966] and reads for the matrix V with
nonzero columns given by (3.1)

|∂BH(x)| =
∑

I⊆[1 : p]

(−1)null(V : ,I), (4.5)

where null(V : ,I) is the nullity of V : ,I and the term in the right-hand side corresponding to I = ∅
is 1 (one takes the convention that null(V : ,∅) = 0). Note that, in this formula, the columns of V
can be colinear with each other. This amazing expression, with its only algebraic nature, potentially
made of positive and negative terms, is explicit but, to our knowledge, has not been at the origin
of a method to list the elements of ∂BH(x). We give in [28] a proof of (4.5) that follows the same
line of reasoning as the one of Winder [66], but that is more analytic in that it uses the sign vectors
introduced in section 3.2.1 rather than geometric arguments.

4.2.2 Bounds

When p is large, computing the cardinal |∂BH(x)| from (4.5) by evaluating the 2p ranks rank(V : ,I)
for I ⊆ [1 :p] could be excessively expensive. Therefore, having simple-to-compute lower and upper
bounds on |∂BH(x)|may be useful in some circumstances, including theoretical ones. Proposition 4.7
gives elementary lower and upper bounds, while proposition 4.10 reinforces the upper bound, thanks
to a lower semicontinuity argument (proposition 4.8). Necessary and sufficient conditions ensuring
equality in the left-hand side or right-hand side inequalities in the next proposition are given in
section 4.3.

Proposition 4.7 (lower and upper bounds on |∂BH(x)|) For V given by (3.1) and r :=
rank(V ), one has max(2p,2r) 6 2r + 2(p− r) 6 |∂BH(x)| 6 2p.

Proof The first inequality is clear since p > r > 1 and 2r 6 2r.
Consider the second inequality. One can assume that the first r columns of V are linearly

independent, so that |Sr| = 2r (notation (4.3) and proposition 4.6(2)). Next, by proposition 4.6(3),
|Sr+1| > 2r + 2. By induction, the given lower bound holds for |Sp| = |S| = |∂BH(x)|.

The upper bound was already mentioned in proposition 2.2. ⊓⊔

Recall that a function ϕ : x ∈ M → ϕ(x) ∈ R, defined on a metric space M, is said to be
lower semicontinuous if, for any x ∈ M and any sequence {xk} converging to x, one has ϕ(x) 6
lim infk→∞ ϕ(xk). It is known that the rank of a matrix can only increase in the neighborhood of a
given matrix, which implies its lower semicontinuity. The next lemma shows that the same property
holds for |S| ∈ N∗, viewed as a function of V . Recall that the bijection σ is defined by (3.3).

Proposition 4.8 (lower semicontinuity of |∂BH(x)|) Suppose that the set S = σ(∂BH(x))
is viewed as a function of V ∈ Rn×p given by (3.1). Then, S(V ) ⊆ S(Ṽ ) for Ṽ near V in Rn×p.

In particular, |∂BH(x)| ∈ N∗ is a lower semicontinuous function of V ∈ Rn×p.

Proof Suppose that s ∈ S(V ). Then, by the definition (3.2) of S , s qV Td > 0 is feasible for d ∈ Rn.
Clearly, it follows that, for Ṽ near V , s qṼ Td > 0 is also feasible for d ∈ Rn. Since S is finite, for any
Ṽ near V and any s ∈ S , s q Ṽ Td > 0 is also feasible for d ∈ Rn. We have shown that S(V ) ⊆ S(Ṽ )
for Ṽ near V .

As a direct consequence of this inclusion, we have that |S(V )| 6 |S(Ṽ )| for Ṽ near V . The lower
semicontinuity of V 7→ |∂BH(x)|= |S| follows. ⊓⊔
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Proposition 4.2 established a necessary and sufficient condition to have completeness of ∂BH(x).
Here follows a less restrictive assumption, called general position, which is equivalent to have equality
in (4.8) below. In connexion with this assumption, it is worth noting that, for a matrix V ∈ Rn×p

of rank r, one has
∀ I ⊆ [1 :p] : rank(V :,I) 6 min(|I |, r). (4.6)

Definition 4.9 (general position) The vectors v1, . . . , vp ∈ Rn are said to be in general position,
if the matrix V :=

(
v1 · · · vp

)
verifies

∀ I ⊆ [1 : p] : rank(V : ,I) = min(|I |, r), (4.7)

where r := rank(V ). ⊓⊔

This notion is used by Winder [66] when r = n. Example of vectors in general position are those
in the left-hand side and right-hand side panes in figure 3.1 (the points are the normalized vectors
v̄i’s so that the vi’s are actually in R3); note that in the first case 2 = r < n = 3. Those in the
middle pane are not in general position. This is due to the fact that r := rank(V ) = 3 while for
the 3 bottom vectors, with indices in I say, one has min(|I |, r)− rank(V : ,I) = 3− 2 6= 0.

Equality in the upper estimate (4.8) of the next proposition was shown by Winder [66; 1966,
corollary] when the columns of V are in general position and r = n, thanks to the identity (4.5).
Long before him, the Swiss mathematician Ludwig Schläfli [58; p. 211] established the identity under
the same assumptions, before 1852 [58; p. 174], without reference to (4.5), which was probably not
known at that time. Note that equality does not hold in (4.8) for the middle configuration in
figure 3.1 since |∂BH(x)| = 12, while the right-hand side of (4.8) reads 2[(30) + (31) + (32)] = 14 (we
have seen that the vectors in this pane are not in general position).

Proposition 4.10 (upper bound on |∂BH(x)|) For V given by (3.1) and r := rank(V ), one

has

|∂BH(x)| 6 2
∑

i∈[0 : r−1]

(

p− 1

i

)

, (4.8)

with equality if and only if (4.7) holds.

Proof 1) The proof of the implication “(4.7) ⇒ (4.8) with equality” is established in [66; corollary],
using the identity (4.5). See also [28].

2) Let us now show that (4.8) holds. Below, we systematically identify ∂BH(x) and S , thanks
to the equivalence 3.4. We also note S ≡ S(V ) to stress the dependence of S on V . Let β be the
right-hand side of (4.8). We proceed by contradiction, assuming that there is a matrix V ∈ Rn×p

such that
|S(V )| > β. (4.9a)

It certainly suffices to show that one can find a sequence {Vk} ⊆ Rn×p converging to V that satisfies

|S(Vk)| = β, (4.9b)

since then one would have the expected contradiction with the lower semicontinuity of V 7→ |S(V )|
ensured by proposition 4.8:

lim inf
k→∞

|S(Vk)| = β < |S(V )|.

To find Vk arbitrarily close to V verifying (4.9b), we proceed as follows. Since (4.9a) holds, the first
part of the proof implies that V does not satify (4.7). Our goal is to construct from V a matrix Vk
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arbitrarily close to V with columns in general position and rank not exceeding r = rank(V ), hence
satisfying (4.9b) by the first part of the proof. To get rank(Vk) 6 r, we arrange for R(Vk) ⊆ R(V ).

In view of (4.6), since V does not satify (4.7), there is some I ⊆ [1 :p] such that rank(V : ,I) <
min(|I |, r). We consider two complementary cases.
r If |I | < r, then, for an arbitrary small perturbation of the vectors vi y ṽi, with i ∈ I , one can
get the ṽi’s linearly independent in R(V ). If one takes ṽi = vi for i /∈ I , the matrix Ṽ formed of
the vectors ṽi’s verifies rank(Ṽ : ,I) = |I | = min(|I |, r).

r If |I | > r, then, for an arbitrary small perturbation of the vectors vi y ṽi, with i ∈ I , one can
get the ṽi’s generate R(V ), which is of dimension r. If one takes ṽi = vi for i /∈ I , the matrix Ṽ

formed of the vectors ṽi’s verifies rank(Ṽ : ,I) = r = min(|I |, r).

The perturbation of V : ,I into Ṽ : ,I also perturbs V : ,I′ for other index sets I ′ ⊆ [1 :p]. However,
one has rank(Ṽ :,I′) 6 min(|I ′|, r) by (4.6) and R(Ṽ ) ⊆ R(V ). Now, by the property of the rank,
which can only increase in a neighborhood of a given matrix, if the perturbation taken above is
sufficiently small, one has rank(V : ,I′) 6 rank(Ṽ :,I′) 6 min(|I ′|, r) for any I ′ ⊆ [1 : p]. Therefore,
rank(V : ,I′) = min(|I ′|, r) implies that rank(Ṽ : ,I′) = min(|I ′|, r). As a result, the modification of
V to get Ṽ described above increases by at least one the number of intervals I ′ ⊆ [1 :p] such that
rank(Ṽ : ,I′) = min(|I ′|, r). Since the number of such intervals is finite, proceeding similarly with
all the nonempty index sets I ′′ ⊆ [1 :p] such that rank(Ṽ : ,I′′) < min(|I ′′|, r), one finally obtains a
matrix Vk, arbitrary close to V , such that (4.7) holds: rank((Vk) : ,I) = min(|I |, r) for all I ⊆ [1 :p].
By taking smaller and smaller perturbations of V , one also has Vk → V .

3) One still has to show that “(4.8) with equality ⇒ (4.7)”. We proceed by contradiction,
assuming that (4.8) holds with equality for ∂BH(x) = σ−1(S) and V given by (3.1), but that (4.7)
does not hold. By (4.6), there exists I ⊆ [1 :p] such that

rank(V :,I) < min(|I |, r). (4.9c)

Let β be the right-hand side of (4.8). It certainly suffices to show that, thanks to (4.9c), one can find
a matrix Ṽ ∈ Rn×p such that rank(Ṽ ) 6 r and |S(Ṽ )| > β, since this would be in contradiction
with what has been shown in part 2 of the proof. This matrix Ṽ is obtained by perturbing V . By
proposition 4.8, if the perturbation is sufficiently small, one has S(V ) ⊆ S(Ṽ ), so that it suffices to
show that S(Ṽ ) contains a sign vector s that is not in S(V ).

We claim that (4.9c) implies that one can find an index set J ⊆ I such that

V : ,J is not injective and |J | 6 r. (4.9d)

Indeed, if |I | 6 r, one can take J = I to satisfy (4.9d), since rank(V : ,I) < |I | by (4.9c), so that V : ,I

is not injective. If |I | > r, then rank(V : ,I) < r by (4.9c), which implies that any J ⊆ I such that
|J | = r satisfies (4.9d).

Since V : ,J is not injective, one can find αJ ∈ RJ \ {0} such that

0 =
∑

j∈J

αjvj =
∑

j∈J

s̃j |αj |vj ,

for some s̃J ∈ {±1}J satisfying s̃j ∈ sgn(αj) for all j ∈ J . Then, by Gordan’s alternative (3.6),

∄ d ∈ Rn : s̃jvjd > 0, for all j ∈ J .

This implies that there is no s ∈ S(V ) such that sJ = s̃J . To conclude the proof, it suffices now to
show that one can construct an arbitrary small perturbation Ṽ of V , such that R(Ṽ ) ⊆ R(V ) and
with an s ∈ S(Ṽ ) satisfying sJ = s̃J .
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Let Jc := [1 :p] \ J . By (4.9d), |J | 6 r 6 n so that one can find vectors {ṽj : j ∈ [1 :p]}, such
that ṽj = vj for j ∈ Jc, the vectors {ṽj : j ∈ J} are linearly independent, ṽj − vj is arbitrary small
and {ṽj : j ∈ [1 :p]} ⊆ R(V ). Since the vectors {ṽj : j ∈ J} are linearly independent, one can find
a direction d0 ∈ Rn such that ṽTj d0 = s̃j for j ∈ J , hence

s̃j ṽ
T

j d0 > 0, ∀ j ∈ J.

Let d be a discriminating vector given by lemma 2.5 (with an additional v0 = 0, vi y s̃iṽi and
ξ y d) sufficiently close to d0. It results that s̃j ṽ

T

j d > 0 for j ∈ J and s̃j ṽ
T

j d 6= 0 for j ∈ Jc. Finally,

we see that the sign vector s ∈ {±1}p defined by si = sgn(ṽTi d) for all i ∈ [1 :p] is in S(Ṽ ) and
satisfies sJ = s̃J , as desired. ⊓⊔

Corollary 4.11 (stability of the sign vector set) The sign vector set S ⊆ {±1}p defined by

(3.2) is unchanged by small variations of the matrix V ∈ Rn×p preserving its rank, provided the

columns v1, . . . , vp ∈ Rn of V are in general position in the sense of definition 4.9.

Proof If Ṽ is near V , S(V ) ⊆ S(Ṽ ) by proposition 4.8. If the columns of V are in general position,
proposition 4.10 tells us that |S(V )| = β, where β is the right-hand side of Winder’s bound (4.8)
with r = rank(V ). Now, by the fact that rank(Ṽ ) = r, proposition 4.10 ensures that |S(Ṽ )| 6 β.
Therefore, one must have S(Ṽ ) = S(V ). ⊓⊔

4.3 Particular configurations

We consider in this section some particular matrices V given by (3.1), which may be useful to get
familiar with the B-differential of H . For these V ’s, |∂BH(x)| can be computed easily. We consider
two matrices V with the property that r := rank(V ) takes the value 2 or p; they yield the lower and
upper bounds on |∂BH(x)| given by proposition 4.7. The lower bound 2p applies to the left-hand
side pane of figure 3.1. As shown by the intermediate pane in figure 3.1, however, |∂BH(x)| does
not only depend on r.

Proposition 4.12 (injective matrix) The matrix V ∈ Rn×p given by (3.1) is injective if and

only if |∂BH(x)|= 2p.

Proof Indeed, by proposition 4.2, the B-differential ∂BH(x) is complete (meaning that it is equal
to ∂BH(x), given by (2.2)) if and only if V is injective. Clearly, the completeness of ∂BH(x) is
equivalent to |∂BH(x)| = 2p. ⊓⊔

Proposition 4.13 (fan arrangement) If p > 2 and the vectors vi’s are not two by two colinear,

one has rank(V ) = 2 if and only if |∂BH(x)| = 2p.

Proof [⇒] A short proof leverages Winder’s bound (4.8) with equality. Since the vi’s are not two
by two colinear, one has for any I ⊆ [1 :p]:

rank(V : ,I) =

{
|I | if |I | 6 2
2 if |I | > 2.

Therefore (4.7) holds. By proposition 4.10, this implies that equality holds in (4.8), that is, with
r = 2: |∂BH(x)|= 2

∑

i∈[0 : 1] (
p−1
i ) = 2p.
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[⇐] The rank(V ) =: r cannot be 1, since p > 2 and the vi’s are not two by two colinear.
We proceed by contradiction, assuming the r > 2. Then, one can find k ∈ [2 : p − 1] such that
dimvect{v1, . . . , vk} = 2 and dimvect{v1, . . . , vk+1} = 3. For any k ∈ [1 :p], denote by Sk the
set defined by (4.3). By the first part of the proof, |Sk| = 2k. Since vk+1 /∈ {v1, . . . , vk}, propo-
sition 4.6(2) tells us that |Sk+1| = 4k. Now, for j ∈ [k + 2 :p], proposition 4.6(3) tells us that
|Sj | > |Sj−1| + 2. As a result, we get |Sp| > 4k + 2(p − k − 1) = 2p+ 2(k − 1) > 2p+ 2 (since
k > 2), which contradicts the assumption |Sp| = 2p. ⊓⊔

4.4 A glance at the C-differential

The section presents two links between the B-differential and the C-differential of the function H

given by (1.2). The first proposition tells us that, whilst ∂CH(x) can be obtained from ∂BH(x)
by taking its convex hull (it is its definition (1.1)), the latter can be obtained from the former by
taking its extreme points. For a proof, see [28].

Proposition 4.14 (a link with the C-differential) ∂BH(x) = ext ∂CH(x).

The second proposition restates theorem 2.2 of Chen and Xiang [17; 2011], which applies to the
more general nonlinear function (1.5). The interest of this restatement comes from its proof that
is short, thanks to the use of the symmetry of the B-differential (proposition 4.1), and from the
fact that proposition 4.15 can be used, straightforwardly, to recover Chen and Xiang’s Jacobian,
when H is given by (1.5); see [30]. Recall the notation (2.1) of the index sets.

Proposition 4.15 (a particular C-Jacobian) One has J ∈ ∂CH(x) for the Jacobian whose ith

row, i ∈ [1 :m], is defined by

Ji, : =







Ai, : if i ∈ A(x),
1
2 [Ai, : +Bi, : ] if i ∈ E(x),
Bi, : if i ∈ B(x).

Proof Let M ∈ ∂BH(x), which is known to be nonempty. By proposition 2.2, Mi, : = Ai, : for
i ∈ A(x), Mi, : = Bi, : for i ∈ B(x) and Mi, : = Ai, : = Bi, : for i ∈ E=(x). By the symmetry of
∂BH(x) (proposition 4.1), M ′ defined by M ′

: ,i = M : ,i if i ∈ A(x) ∪ E=(x) ∪ B(x) and by

M ′
i, : =

{
Bi, : if i ∈ E 6=(x) and Mi, : = Ai, :

Ai, : if i ∈ E 6=(x) and Mi, : = Bi, :

is also in ∂BH(x). Therefore, J = (M +M ′)/2 is in co ∂BH(x) = ∂CH(x), by (1.1). This is the
formula of J given in the statement of the proposition. ⊓⊔

Instead of taking J1/2 := 1
2(M + M ′) in the preceeding proof, one could also have taken

Jt := (1− t)M + tM ′, which is also in co ∂BH(x) = ∂CH(x) for any t ∈ [0, 1]. The inconvenient of
this latter choice, when t 6= 1/2, is that M is usually not known. In particular, it is not necessarily
known whether Mi, : may be Ai, : or Bi, : , for a particular i ∈ E 6=(x), while Jt depends on this value
when t 6= 1/2. In contrast, J1/2 has an explicit formula that does not require the knowledge of the

value of Mi, : for i ∈ E 6=(x).
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5 Computation of the B-differential

This section describes techniques to compute a single Jacobian (section 5.1) or all the Jacobians
(section 5.2) of the B-differential ∂BH(x), in exact arithmetic, when H is the piecewise affine
function given by (1.2). The piece of software isf has been written to test the algorithms.

5.1 Computation of a single Jacobian

An interest of the problem equivalence highlighted in proposition 3.3(3) is to provide a method
to find rapidly an element of ∂BH(x), which complements Qi’s [52; 1993, final remarks (1)]. It is
shown in [30], that this method extends to the computation of an element of the B-differential in
the nonlinear case, i.e., when H is given by (1.5). The method is based on the following algorithm,
which associates with p nonzero vectors v1, . . . , vp, which may be identical or colinear, a direction
d such that vTi d 6= 0 for all i ∈ [1 :p]; it is a variant of the technique used in the proof of [17;
lemma 2.1]. When the vi’s are also distinct, the direction d can also be derived from lemma 2.5, by
adding the vector v0 = 0.

Algorithm 5.1 (computes d ∈ Rn such that v
T

i d 6= 0 for all i)

Let be given p nonzero vectors v1, . . . , vp in Rn and take d ∈ Rn \ {0}.
Repeat:

1. If I := {i ∈ [1 : p] : vTi d = 0} = ∅, exit.
2. Let i ∈ I .
3. Take t > 0 sufficiently small such that, for all j /∈ I , (vTj d)(v

T

j [d+ tvi]) > 0.
4. Update d := d+ tvi.

Explanation. In step 3, any sufficiently small t > 0 is appropriate (the proof of [17; lemma 2.1]
computes bounds explicitely), since (vTj d)(v

T

j [d+ tvi]) is positive for t = 0. The new direction d set

in step 4 is such that vTi (d+ tvi) = t‖vi‖
2 > 0, so that this direction makes at least one more vTj d

nonzero than the previous one. This implies that the algorithm finds an appropriate direction in at
most p loops. ⊓⊔

The next procedure uses a direction d computed by algorithm 5.1 to obtain a single element of
∂BH(x). Recall that the map σ is defined by (3.3a) and is a bijection from ∂BH(x) onto S , defined
by (3.2) (proposition 3.3).

Algorithm 5.2 (computes a single Jacobian in ∂BH(x))

Let H be given by (1.2), x ∈ Rn and suppose that p 6= 0.

1. Compute V ∈ Rn×p by (3.1) and denote its columns by v1, . . . , vp ∈ Rn.
2. By algorithm 5.1, compute d ∈ Rn such that vTi d 6= 0 for all i ∈ [1 : p].
3. Define s ∈ S by si := sgn(vTi d), for i ∈ [1 :p].
4. Then, σ−1(s) ∈ ∂BH(x).

Explanation. When p = 0, ∂BH(x) = ∂BH(x) contains a single Jacobian that is given by (2.2),
which explains why algorithm 5.2 focuses on the case when p > 0. The sign vector s computed in
step 3 is such that siv

T

i d > 0 for all i ∈ [1 :p], so that it is indeed in S and, by proposition 3.3,
σ−1(s) is a Jacobian in ∂BH(x). ⊓⊔
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5.2 Computation of all the Jacobians

This section presents two algorithms, and some variants, for computing all the B-differential of H .
They use the notion of S-tree presented in section 5.2.1(A). The first algorithm is grounded on the
notion of stem vector (section 3.2.2) and is described in section 5.2.2. The second algorithm is the
culmination of a series of improvements brought to an algorithm by Rada and Černý [54; 2018]
(section 5.2.1(B)) for computing the cells of a hyperplane arrangement, which is known to be an
equivalent problem to the one of computing the B-differential of H when the hyperplanes contain
zero (see section 3.4). The improvements are detailed in section 5.2.4 and the resulting algorithm is
described in section 5.2.5. Finally, numerical experiments are presented in section 5.2.6 to compare
the efficiency of the algorithms.

Algorithms for listing the elements of the finite set ∂BH(x) can be designed by looking at one of
the various forms of the problem, those described in section 3 and others [5]; this is what we shall do.
Nevertheless, the only algorithms we have found in the scientific literature take the point of view of
hyperplane arrangements of section 3.4 and can usually be used for more general arrangements than
those needed to describe ∂BH(x) (i.e., in which case the hyperplanes pass through zero). One can
quote the contributions by Bieri and Nef [12; 1982], Edelsbrunner, O’Rourke and Seidel [31; 1986],
Avis and Fukuda [5; 1996], improved Sleumer [59; 1998], and, more recently, Rada and Černý [54;
2018], which is described in section 5.2.1(B).

5.2.1 Incremental-recursive algorithms

The algorithms described in this section are incremental in the sense that the considered sign
vectors have their length increased by one at each step. Furthermore, the algorithms explore the
S-tree described in subsection A below by recursive procedures, whose names are recognizable by
their suffix “-rec”. All the procedures end by returning to their calling program.

A. The S-tree. A common feature of the algorithms considered in this paper is the construction
of the S-tree described below, incrementally and recursively. This idea was probably introduced by
Rada and Černý [54; 2018].

The level k of the S-tree is formed of a set of sign vectors denoted by

S1
k := {s ∈ Sk : s1 = +1},

where Sk is the subset of {±1}k defined by (4.3). In particular, the level 1 or root of the S-tree
contains the unique sign vector +1 ∈ {±1}1. There is indeed no reason to compute {s ∈ S :
s1 = −1} since this part of S is equal to −{s ∈ S : s1 = 1} by the symmetry property of S
(proposition 4.1). The S-tree has p levels, where p is the number of vectors vi, or columns of the
given matrix V ∈ Rn×p. In order to avoid the memorization of the elements of S1

k , the S-tree is
constructed by a depth-first search, which can be schematized as follows.

Algorithm 5.3 (stree) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns.

1. Execute the recursive procedure stree-rec(V,+1).

Algorithm 5.4 (stree-rec) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns, and a sign vector s ∈ S1

k for some k ∈ [1 :p].

1. If k = p, print s and return.
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2. If (s,+1) ∈ S1
k+1, execute stree-rec(V, (s,+1)).

3. If (s,−1) ∈ S1
k+1, execute stree-rec(V, (s,−1)).

The method used to determine whether (s,±1) is in S1
k+1 depends on the specific algorithm and

may or may not use a direction d intervening in (4.3). Note that, as emphasized in proposition 4.6(3),
at least one of the sign vectors (s,+1) and (s,−1) belongs to S1

k+1 (maybe both). It is justified
not to explore the S-tree below an (s,±1) that is not in S1

k+1, since then (s,±1, s′) /∈ S for any
s′ ∈ {±1}p−k−1. By construction, the algorithm stree prints all the elements of S1

p ≡ S1 := {s ∈

S : s1 = +1} in step 1 of the stree-rec procedure.

B. Rada and Černý’s algorithm. The algorithm proposed by Rada and Černý [54; 2018], which
is referenced below as the rc algorithm, deals with the determination of the cells associated with
a general hyperplane arrangement. We describe it below for an arrangement that results from the
computation of the B-differential ∂BH(x), whose hyperplanes all contain zero (see section 3.4). We
also use the linear algebra language of section 3.2.1, viewing the problem as the one of determining
the set S of sign vectors s ∈ {±1}p such that s qV Td > 0 is feasible for d ∈ Rn (V is the matrix
defined by (3.1)); in contrast, the language used in [54] is more geometric. The algorithm builds the
S-tree of the previous section A and, for each s ∈ S1

k , it solves a single LO problem to determine
whether (s,+1) or (s,−1) is in S1

k+1.
The rc algorithm succeeds in solving only one LO problem to determine whether (s,+1) and

(s,−1) are in S1
k+1, at the node s ∈ S1

k , thanks to the memorization of a direction d such that
s qV T

k d > 0 (we note Vk := V : ,[1 : k]). Indeed, one has

vTk+1d < 0 =⇒ (s,−1) ∈ S1
k+1,

vTk+1d > 0 =⇒ (s,+1) ∈ S1
k+1,

and one of these two cases takes place if we exclude the case where vTk+1d = 0. In [54; Algorithm 1],
the case where vTk+1d = 0 is not dealt with completely since (s,+1) is declared to belong to S1

k+1

in that case, while it is clear that (s,−1) is also in S1
k+1. Indeed, in our implementation of the

rc algorithm, we modify slightly d by adding a small positive or negative multiple of vk+1 to d

when vTk+1d = 0, so that both (s,±1) are accepted in S1
k+1 in that case. This choice may be at the

origin of the differences that one observes in table 5.1 below between the statistics of the original
rc algorithm in [54] and those of our implementation.

Next, when (s, sk+1) ∈ {±1}k+1 is observed to belong to S1
k+1, the question of whether

(s,−sk+1) also belongs to S1
k+1 arises. In the rc algorithm, the answer to this question is ob-

tained by solving a LO problem similar to






min(d,t)∈Rn×R t

siv
T

i d > 1, ∀ i ∈ [1 :k]

−sk+1v
T

k+1d > −t

t > −1.

(5.1)

When s ∈ S1
k , this problem is feasible (take d satisfying siv

T

i d > 1, for all i ∈ [1 :k], and t

sufficiently large) and bounded (its optimal value is > −1), so that it has a solution [18,13,14,
35]. Solving these LO problems is a time consuming part of the algorithms and in the numerical
experiments of section 5.2.6, in particular in table 5.2, following [54], we measure the efficiency of
the algorithms by the number of LO problems they solve.

One can now formally describe our version of the rc algorithm (the change is in step 2 of the
rc-rec algorithm, which is not considered in the original rc algorithm).
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Algorithm 5.5 (rc) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero columns.

1. Execute the recursive procedure rc-rec(V, v1,+1).

Algorithm 5.6 (rc-rec) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns, a direction d ∈ Rn and a sign vector s ∈ {±1}k for some k ∈ [1 :p], such that
siv

T

i d > 0 for all i ∈ [1 : k].

1. If k = p, print s and return.
2. If vTk+1d ≃ 0, then

2.1. Execute rc-rec(V, d+, (s,+1)), where d+ := d + t+vk+1 with t+ > 0 chosen in
the nonempty open interval




0, min

i∈[1 : k]

siv
T

i vk+1<0

−vTi d

vTi vk+1




 .

2.2. Execute rc-rec(V, d−, (s,−1)), where d− := d + t−vk+1 with t− < 0 chosen in
the nonempty open interval




 max

i∈[1 : k]

siv
T

i vk+1>0

−vTi d

vTi vk+1

, 0




 .

3. Else sk+1 := sgn(vTk+1d).

3.1. Execute rc-rec(V, d, (s, sk+1)).
3.2. Solve the LO problem (5.1) and denote by (d, t) a solution.

If t = −1, execute rc-rec(V, d, (s,−sk+1)).

The test vTk+1d ≃ 0 done at the beginning of step 2 is supposed to take into account floating point
arithmetic. In steps 2.1 and 2.2, the minimum and maximum are supposed to be infinite if their
feasible set is empty. It is easy to see that the directions d± computed in steps 2.1 and 2.2 are such
that siv

T

i d± > 0 for i ∈ [1 :k+1] and sk+1 = ±1, which justifies the recursive call to rc-rec with
the given arguments. The most time-consuming part of the rc algorithm comes from the possible
numerous LO problems to solve in step 3.2 of rc-rec.

5.2.2 An algorithm using stem vectors

When s ∈ Sk, it is conceptually easy to check whether (s,±1) is in Sk+1, provided a list of all
the stem vectors associated with V is known. Indeed, by proposition 3.9, if no subvector of (s,+1)
(resp. (s,−1)) is a stem vector, then (s,+1) (resp. (s,−1)) belongs to Sk+1. Note also that, because
any s ∈ Sk has at least one descendant in the S-tree (proposition 4.6(3)), if it is observed that
(s,+1) /∈ Sk+1, then, necessarily, (s,−1) ∈ Sk+1. This observation prevents the algorithm from
checking whether (s,−1) contains a stem vector, which is a time consuming operation when the list
of stem vectors is large. For future reference, we formalize this algorithm below.

Algorithm 5.7 (stem) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns.
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1. Compute all the stem vectors associated with V .
2. Execute the recursive procedure stem-rec(V,+1).

Algorithm 5.8 (stem-rec) Let be given V ∈ Rn×p, with n and p ∈ N∗, having nonzero
columns and a sign vector s ∈ {±1}k for some k ∈ [1 :p].

1. If k = p, print s and return.
2. If no subvector of (s,+1) is a stem vector, execute stem-rec(V, (s,+1)).
3. If (s,+1) /∈ Sk+1 or no subvector of (s,−1) is a stem vector, execute stem-rec(V, (s,−1)).

This algorithm is improved below, as the option AD4 of the isf algorithm (see paragraphs A and D
of section 5.2.4).

Note that, this algorithm need not generate directions d satisfying s q V T

k d > 0, like the rc

algorithm and need not solve any LO problem. Nevertheless, regarding the computation time, the
algorithm has two bottlenecks that we now describe. Despite them, algorithm 5.7 is often the fastest
in the numerical experiments of section 5.2.6.

The first bottleneck comes from the fact that the algorithm must compute all the stem vectors
(or the set C of matroid circuits in (3.8)) associated with V . This is usually an expensive operation.
For example, if V is randomly generated and of rank r, like in the test-cases data_rand_* in the
experiments of section 5.2.6, any selection of r columns of V is likely to form an independent set
of vectors, so that C is likely to be the sets of column indices of size r + 1. Therefore, in this case,
the number of circuits is likely to be the combination ( p

r+1) (and it is actually that number, see

section 5.2.6(B.1)), which can be exponential in p (this number is bounded below by 2p/2/(p+ 1)
if p is even and r + 1 = p/2 [23; (11.52)]). In the implemented isf code, numerically tested in
section 5.2.6, only the sets of columns whose cardinal is in [3 : r+1] are examined (since any group
of two columns of V is supposed to be linearly independent and a group of r+2 columns or more is of
nullity > 2, hence such group cannot form a matroid circuit; see (3.8)). In addition, the exploration
is made using a tree structure for the column subsets, in order to discard the descendants of a
circuit, which, by construction of the tree, contain this circuit and has more columns than this one.
These two provisions are not sufficient, however, to prevent generating a lot of redundant circuits
and, therefore, useless computation.

The second bottleneck is linked to the detection of a stem vector is the current sign vectors
(s,±1). This operation requires to search the long list of stem vectors, which is a time consuming
operation.

5.2.3 Linear optimization problem and stem vector

The property described in this section will be useful for the improvement D2 of the isf algorithm,
described in section 5.2.4(D). It shows that a stem vector can be obtained easily from the dual
solution of the LO problem (5.1), when (s,−sk+1) /∈ Sk+1. Consider indeed the LO problem (5.1)
and denote by (d, t) one of its solutions (these have been shown to exist). Then, either t > 0
(equivalently, (s,−sk+1) /∈ Sk+1) or t = −1 (equivalently, (s,−sk+1) ∈ Sk+1).

Let σi, i ∈ [1 :k+1], be the multipliers associated with the first k+1 constraints of (5.1) and τ

be the multiplier associated with its last constraint. Then, the Lagrangian dual of (5.1) reads [13,
11,14,34]







max(σ,τ)∈Rk+1×R

∑

i∈[1 : k] σi − τ

σ > 0
τ > 0
σk+1 + τ = 1
σk+1sk+1vk+1 =

∑

i∈[1 : k] σisivi.

≡







maxσ∈Rk+1

∑

i∈[1 : k+1] σi − 1

σ > 0
σk+1 6 1
σk+1sk+1vk+1 =

∑

i∈[1 : k] σisivi,

(5.2)
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where the second form of the dual is obtained by eliminating τ from the first form. By strong
duality in linear optimization, the dual problems in (5.2) are feasible, have a solution and have
the same optimal value as the primal problem. Let (σ, τ) ∈ Rk+1 × R be a dual solution. Then,
(s,−sk+1) ∈ Sk+1 if and only if t = −1 if and only if

∑

i∈[1 : k] σi = 0 and σk+1 = 0. We have
shown that

(s,−sk+1) ∈ Sk+1 ⇐⇒ σ = 0.

Therefore, (s,−sk+1) /∈ Sk+1 if and only if σ 6= 0 if and only if σk+1 = 1 (if σk+1 = 0, one can
make the dual objective value as large as desired by multiplying σ by a factor going to +∞; if
σk+1 ∈ (0,1), the dual objective would by increased by replacing σ by σ/σk+1; in both cases the
optimality of σ would be contradicted) if and only if τ = 0. We have shown that

(s,−sk+1) /∈ Sk+1 ⇐⇒ sk+1vk+1 ∈ cone{sivi : i ∈ [1 :k]}.

The next proposition shows how a matroid circuit can be detected from the dual solution σ when
(s,−sk+1) /∈ Sk+1.

Proposition 5.9 (matroid circuit detection) Suppose that (s,−sk+1) /∈ Sk+1 and that (σ, τ)
is a solution to the dual problem in the left-hand side of (5.2) located at an extreme point of its

feasible set. Then, {i ∈ [1 :k + 1] : σi > 0} is a matroid circuit of V .

Proof Necessarily, τ = 0 and σk+1 = 1 when (s,−sk+1) /∈ Sk+1. The fact that (σ, 0) is an extreme
point of the feasible set of the problem in the left-hand side of (5.2) implies that the vectors [18,34]

{(
0

sivi

)

i∈[1 : k], σi>0

,

(
1

−sk+1vk+1

)}

are linearly independent.

In particular, the vectors

{sivi : i ∈ [1 :k], σi > 0} are linearly independent.

Since sk+1vk+1 =
∑

i∈[1 : k] σisivi, it follows that

{sivi : i ∈ [1 :k + 1], σi > 0} has nullity one.

The conclusion of the proposition follows from proposition 3.10. ⊓⊔

Recall that the dual-simplex algorithm finds a dual solution at an extreme point of the dual
feasible set. For this reason, we use this approach in the isf algorithm.

5.2.4 Improvements of the rc and stem algorithms

This section presents several modifications of the rc algorithm and one modification of the stem

algorithm that significantly improve their performance. The modifications are indicated by the
letters A, B, C and D, with reference to the sections where they are introduced. Additional numeric
indices specify variants of the D option. The version AD4 (modifications A and D4) can be considered
as an improvement of the new algorithm 5.7.
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A. Taking the rank of V into account. Instead of starting with the vector s = +1, one
can take into account the rank r := rank(V ) to determine 2r initial vectors s, hence avoiding to
solve LO problems to determine these initial s’s. This is especially useful when p − r is small. In
particular, when p = r, S is straightforwardly determined.

The algorithm selects r := rank(V ) linearly independent vectors vi, among the columns of V ∈
Rn×p. These vectors can be obtained by a QR factorization of

V P = QR,

where P ∈ {0, 1}p×p is a permutation matrix, Q ∈ Rn×n is orthogonal (i.e., QTQ = In) and
R ∈ Rn×p is upper triangular with R[r+1 :n], : = 0. To simplify the presentation, one can assume,
without loss of generality, that P = I , in which case the vectors v1, . . . , vr are linearly indepen-
dent (in practice, the vectors are symbolically reordered by using the permutation matrix P ). By
proposition 4.2,

Sr = {±1}r. (5.3)

Furthermore, for each s ∈ Sr, we have, using S := Diag(s), Qr := Q : ,[1 : r] and Rr := R[1 : r],[1 : r],
that the vector

ds = QrR
−T
r s (5.4)

is such that s qV T

: ,[1 : r]ds = e > 0, as desired.
For each s ∈ Sr and the associated ds given by (5.4), the modified algorithm 5.5 will run the

recursive function rc-rec(V, ds, s) (see algorithm 5.11 below).

B. Special handling of the case where vTk+1d ≃ 0. Directions d± := d + t±vk+1 ensuring
that (s,±1) qV T

k+1d± > 0 can be computed not only when vTk+1d ≃ 0 like in step 2 of the rc-rec

algorithm 5.6, but also when vTk+1d is in the interval specified by (5.5) below. Note that the left-
hand side in (5.5) is negative and the right-hand side is positive (this can be seen by multiplying
numerators and denominators by si and by using siv

T

i d > 0 for all i ∈ [1 :k]), so that these
inequalities are verified when vTk+1d = 0. With the additional flexibility that (5.5) offers, the isf

algorithm can sometimes avoid solving a significant number of LO problems of the form (5.1). For
a proof of the next proposition, see [28].

Proposition 5.10 (two descendants without optimization) Suppose that s ∈ {±1}k verifies

s qV T

k d > 0, that vk+1 6= 0 and that

max
i∈[1 : k]

siv
T

i vk+1>0

−vTi d

vTi vk+1

<
−vTk+1d

‖vk+1‖2
< min

i∈[1 : k]

siv
T

i vk+1<0

−vTi d

vTi vk+1

. (5.5)

1) The direction d+ := d+ t+vk+1 verifies s qV T

k d+ > 0 and vTk+1d+ > 0 if and only if t+ is in

the nonempty open interval





−vTk+1d

‖vk+1‖2
, min

i∈[1 : k]

siv
T

i vk+1<0

−vTi d

vTi vk+1




 . (5.6a)

2) The direction d− := d+ t−vk+1 verifies s qV T

k d− > 0 and −vTk+1d− > 0 if and only if t− is in

the nonempty open interval



 max

i∈[1 : k]

siv
T

i vk+1>0

−vTi d

vTi vk+1

,
−vTk+1d

‖vk+1‖2




 . (5.6b)
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C. Changing the order of the vectors vi’s. Each node s of the S-tree described in sec-
tion 5.2.1(A) has one or two descendants: (s,+1) and/or (s,−1). Since there is at most one LO
problem solved per node of the S-tree, decreasing the number of nodes should decrease the number
of LO problems to solve, which significantly count in the computing time. To reach that goal, one
can try to get as much as possible at the top of the tree the nodes having a single descendant. As
shown below, this can be achieved by changing the order in which the vectors vi’s, the columns of
V , are considered in the depth-first search of the tree; previously, the order was imposed by the
modification A, taking into account the rank of V .

To implement this strategy, one associates with each node s ∈ S1
k of the S-tree, k ∈ [1 : p− 1],

the list of vectors considered so far at that node, denoted by Ts := {i1, . . . , ik} ⊆ [1 :p]. Hence,
we have to choose the next vector vik+1

be selecting an index ik+1 in T c
s := [1 : p] \ Ts. Now, a

natural idea is to restrict the set of possible indices to T b
s , the set of indices j of T c

s for which one
of the intervals (5.6a) or (5.6b), with vk+1 ≡ vj , is empty (implying that the technique used in
the modification B will not give two descendants), if there is such an index, or T c

s otherwise. To
determine the index in T b

s , we take

ik+1 = argmax
i∈T b

s

|vTi d|

‖vi‖
, (5.7)

which favors the vectors vi for which |vTi d|/‖vi‖ is away from zero.
As table 5.2 indicates (section 5.2.6(C.3)), this modification has a significant impact on the

decrease of LO to solve.

D. Using stem vectors. We present in this section various modifications that use the concept of
stem vector, introduced in the second part of section 3.2.2. These stem vectors are used to detect
infeasible sign vectors, i.e., elements of Sc, thanks to proposition 3.9. If s ∈ S1

k and (s, sk+1) ∈ Sc

for sk+1 ∈ {±1}, s has no descendant in S along (s, sk+1), so that this part of the S-tree does not
need to be explored. From this point of view, computing all the stem vectors looks attractive, but,
to our knowledge, this is a time consuming process, so that this option is not necessarily the most
efficient one. The modifications presented below use more and more stem vectors, which require
more and more computing time.

D1) Natural candidates as stem vectors are those obtained from the matroid circuits I made of
r + 1 columns of V (r = rank(V )) formed of the r linear independent columns selected by
the QR factorization of section 5.2.4(A) and one of the remaining p − r columns of V . By
proposition 3.10, such I contains exactly one circuit. Therefore, one detects in this way p− r

circuits and 2(p − r) stem vectors. This is not much compared to the total number of stem
vectors, which may depend exponentially on p, so that the number of infeasible sign vectors
detected by these stem vectors is usually relatively small (see table 5.2).

D2) With this option, when a LO problem (5.1) is solved at a certain node s ∈ S1
k to see whether

(s, sk+1) belongs to S1
k+1, for sk+1 ∈ {±1}, the dual solution is used to determine a stem

vector, as shown by proposition 5.9. For this purpose, the isf code solves the LO problems
with the dual-simplex algorithm, so that the computed dual solution is at a vertex of the dual
feasible set.

D3) With this option, all the stem vectors are computed, before running the recursive process that
builds the S-tree. At each note s ∈ S1

k , the algorithm still computes a direction d ∈ Rn such
that siv

T

i d > 0 for all i ∈ Ts (the set of vector indices considered so far at s). The advantage
of this direction is to allow the algorithm to use the beneficial modifications B and C and to
easily determine one or two signs sk+1 ∈ {±1} such that (s, sk+1) ∈ S1

k+1. If a single sign
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sk+1 ∈ {±1} is selected, the stem vectors can decide whether (s,−sk+1) ∈ S1
k+1. If this is

the case, this option D3 has the inconvenient of still requiring to solve a LO problem to get a
direction associated with (s,−sk+1). These LO problems (5.1) have an optimal value −1 and
should not be solved exactly. Indeed, as soon as a feasible direction d for (5.1) gives a negative
value to the objective of the problem, one could stop solving it, since this d verifies siv

T

i d > 0
for all i ∈ T(s,−sk+1). We have not implemented that inexact solve of the LO problems, by
lack of flexibility of the solver Linprog in Matlab.

D4) Like with the option D3, all the stem vectors are computed, before running the recursive
process that builds the S-tree. But now, unlike with option D3, the algorithm computes no
direction d ∈ Rn. The approach can be viewed as an improvement of the algorithm 5.7 (stem)
presented in section 5.2.2, in the sense that option A is also activated.

Note that, knowing all the stem vectors, one could compute the complementary set Sc rather
easily by completing with ±1 the unspecified components of the stem vectors. Next, S could
be obtained from Sc by taking its complementary set in {±1}p, but a straightforward imple-
mentation of this last operation looks rather expensive, so that we have not experimented it
numerically.

5.2.5 Isf algorithm

We have named isf (for Incremental Signed Feasibility) the algorithm that improves the rc al-
gorithm 5.5 or the stem algorithm 5.7 with the enhancements described in section 5.2.4. For the
purpose of precision and reference, we formally state it in this section. It would be cumbersome and
confusing, hence inappropriate, to mention all the options in its description, in particular because
all of them have been specified separately in the previous section. As an example of algorithm, we
provide a description with the options ABCD2. It starts with a hat procedure isf, similar to that
of the rc algorithm but with the additional easy determination of Sr (modification A) and the
computation of some stem vectors (modification D1). Then, the hat procedure calls the recursive
procedure isf-rec.

Algorithm 5.11 (isf, with options ABCD2) Let be given V ∈ Rn×p, with n and
p ∈ N∗, having nonzero columns.

1. Compute the QR factorization of V . Let r = rank(V ) and Tr := {i1, . . . , ir} be the
indices of r selected linear independent columns of V .

2. Compute the p− r matroid circuits containing Tr (see option D1).
3. For each s ∈ Sr, given by (5.3), and its associated ds, given by (5.4), call the recursive

procedure isf-rec(V, Tr, ds, s).

Algorithm 5.12 (isf-rec, with options BCD2) Let be given V ∈ Rn×p, with n and
p ∈ N∗ of rank r, having nonzero columns vi, Tk a selection of k columns of V (with
k ∈ [r : p]), a direction d ∈ Rn and a sign vector s ∈ {±1}k for some k ∈ [r : p]. It is assumed
that siv

T

i d > 0 for all i ∈ Tk.

1. If k = p, print s and return.
2. Determine the index ik+1 ∈ [1 :p] \ Tk of the next vector to consider by option C and

set Tk+1 := Tk ∪ {ik+1}.
3. If (5.5) holds (with [1 :k] changed into Tk and k + 1 into ik+1), then

3.1. Execute isf-rec(V, Tk+1, d+, (s,+1)), where d+ := d + t+vik+1
and t+ is chosen

in the nonempty open interval (5.6a).
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3.2. Execute isf-rec(V, Tk+1, d−, (s,−1)), where d− := d+ t−vik+1
and t− < 0 chosen

in the nonempty open interval (5.6b).

4. Else sk+1 := sgn(vTik+1
d).

4.1. Execute isf-rec(V, Tk+1, d, (s, sk+1)).
4.2. If (s,−sk+1) contains a stem vector, return.
4.3. Solve the LO problem (5.1) (with [1 :k] changed into Tk and k + 1 into ik+1) by

the dual-simplex algorithm and denote by (d, t) a solution.

4.3.1. If t = −1, execute isf-rec(V, Tk+1, d, (s,−sk+1)).
4.3.2. Else, use the dual solution to store two more stem vectors by option D2.

5.2.6 Numerical experiments

A. Computer and problem presentations. We present in tables 5.1, 5.2 and 5.3 the results
obtained by running the isf algorithm 5.11 (with several variants) on a small number of problems
and compare it with our implementation of the rc algorithm 5.5, simulating the algorithm 1 (IE)
in [54]. The implementations have been done in Matlab (version “9.11.0.1837725 (R2021b) Update

2”) on a MacBookPro18,2/10cores with the system macOS Monterey, version 12.6.1.
We have assessed the codes on randomly generated problems (function rand in Matlab, names

prefixed by rand and srand in the first part of table 5.1) and problems adapted from [54] (names
prefixed by rc). The rand-n-p-r problems have their data formed of a randomly generated matrix
V ∈ Rn×p with prescribed rank r := rank(V ). The matrix V of problem srand-n-p-q (s for
structured) has its n first columns formed of the n basis vectors of Rn and the last p−n > 0 columns
have q nonzero random integer elements, randomly positioned, which induces many matroid circuits.
The rc problems are adapted from [54] and given in the second part of table 5.1.

B. Observations on table 5.1. The dimensions n, p and r of the problems are given in columns
2-4 of table 5.1. Column 5 gives the number ς of matroid circuits of V . In column 6 and 7, one
finds the cardinal |∂BH(x)| = |S| of the B-differential ∂BH(x) and the Winder upper bound (the
right-hand side of (4.8)). The codes will be compared on the number of LO problems they solve,
which is a good image of their computation effort, measured independently of the computer used to
run the codes and the features of the LO solvers. A first example of comparison is given in columns 8
and 9 of table 5.1, where one finds the number of LO problems solved by the original rc algorithm
and the simulated rc algorithm implemented in the isf code respectively. The latter code will be
used next, in the comparison with its improved versions, both regarding the LO problem counters
(table 5.2) and the CPU times (table 5.3).

1) The randomly generated problems rand are likely to provide vectors vi’s (the columns of V ) in
general position, in the sense of definition 4.9. This can be seen indirectly on the numbers in
table 5.1.
r It is known from proposition 4.10 that (4.7) implies equality in (4.8). This equality indeed
holds, as we can observe by comparing columns 6 and 7.

r Incidentally, one can compute mentally Winder’s bound β when p is even and r = p/2. In
that case, the right-hand side of (4.8) reads

β = 2
∑

i∈[0 : r−1]

(

2r − 1

i

)

=
∑

i∈[0 : 2r−1]

(

2r − 1

i

)

= s2r−1 = 2p−1.
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This is what one observes in the table; for example when p = 8 and r = 4, one has β = 128,
which is indeed 28−1.

r The number of circuits is also predictable for the random problems. Indeed, by the random
generation of V , a subset of columns is likely to have nullity 1 (i.e., to form a circuit, in
the matroid terminology) if and only if it contains r + 1 columns (r being the rank of V ).
Therefore, their number should be ( p

r+1) (see also [39; footnote 1]), which is indeed the
number displayed in the 5th column of table 5.1 for the randomly generated problems.

2) One observes that when r = 2, one has |∂BH(x)|= 2p (proposition 4.13).
3) The number of matroid circuits, given in the column labeled by ς, depends on the determination

of the nonzero elements of the normalized vector α ∈ N (V : ,I) \ {0} for the selected index set I

(proposition 3.10). This operation is sensitive to a threshold value that is set to 105ε, where
ε > 0 is the machine epsilon; smaller values for this threshold have occasionally given larger
numbers of matroid circuits. In other words, due to the floating point calculation, there is no
certainty that the given number of circuits is the one that would be obtained in exact arithmetic.

4) A comparison between the “Original rc code” in Python and its “Simulated rc code” in Mat-

lab shows that the latter is slightly more effective in terms of the number of LO problems
solved. This is probably due to the special treatment in step 2 of the case where vTk+1d ≃ 0 in
algorithm 5.6, which is not considered in the original code.

C. Observations on table 5.2. Table 5.2 shows the effect of the modifications discussed in sec-
tion 5.2.4 on the number of LO problems (LOP) solved, which significantly counts in the computing
time. This will lead us to select three algorithms, those which bring the best profit on the LOP
counter. The columns labeled “Ratio” show the acceleration ratio with respect to the simulated rc

code in terms of LOP, that is the ratio of the LOP counter of the considered algorithm divided by
the LOP counter of the simulated rc algorithm. On the last two lines of the table, one finds the
mean and median values of these acceleration ratios, which may be viewed as a summary of the
effect of the considered modification.

1) The modification A, proposed in section 5.2.4(A), which uses the QR factorization to get r

linearly independent columns of V , does not bring a large benefit (“Ratio” is close to 1) and
sometimes increases the number of LO problems to solve. The benefit is not important since it
prevents “only”

∑

i∈[0 : r] 2
i = 2r+1 − 1 nodes to run the LO solver, which is usually a small

fraction of the total number of nodes of the S-tree. One also observes that the number of
solved LOP may increase (acceleration ratio < 1), which is sometimes due to the fact that the
number 2r of nodes at level r with modification A is larger than the one without modification A,
which contributes to an increase in the total number of nodes of the constructed S-tree and,
therefore, tends to increase the number of LO to solve. Furthermore, the order in which the
vectors are considered without/with modification A is not identical, which has also an impact
on the number of solved LOP (see section 5.2.4(C)).

2) The modification B, proposed in section 5.2.4(B), which is able to detect two descendants of an
S-tree node, without solving any LO problem, has a significant impact on the total number of
these problems. We see, indeed, that the (mean, median) acceleration ratio is raised to (1.24,
1.18).

3) Consider now the modification C, described in section 5.2.4(C), which changes the order in
which the vectors vi’s are considered. We use the test-problem rand-7-13-5 to show this effect
in the next table.

Number of nodes per level Total
With modifications AB 1 2 4 8 16 31 57 99 163 256 386 562 794 2379
With modifications ABC 1 2 4 8 16 26 43 69 107 168 270 443 794 1951

S-tree levels 1 2 3 4 5 6 7 8 9 10 11 12 13
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LO problems solved in
Winder’s Original Simulated Differ-

Problem n p r ς |∂BH(x)| bound rc rc ence
rand-4-8-2 4 8 2 56 16 16 29 28 1
rand-7-8-4 7 8 4 56 128 128 99 98 1
rand-7-9-4 7 9 4 126 186 186 163 162 1
rand-7-10-5 7 10 5 210 512 512 382 381 1
rand-7-11-4 7 11 4 462 352 352 386 385 1
rand-7-12-6 7 12 6 792 2048 2048 1486 1485 1
rand-7-13-5 7 13 5 1716 1588 1588 1586 1585 1
rand-7-14-7 7 14 7 3003 8192 8192 5812 5811 1
rand-8-15-7 8 15 7 6435 12952 12952 9908 9907 1
rand-9-16-8 9 16 8 11440 32768 32768 22821 22818 3
rand-10-17-9 10 17 9 19448 78406 78406 50643 50642 1
srand-8-20-2 8 20 8 990 24544 188368 28748 28620 128
srand-8-20-4 8 20 8 88752 157192 188368 136133 135566 567
srand-8-20-6 8 20 8 160074 186430 188368 167545 167262 283
rc-2d-20-4 4 19 4 926 136 1976 548 545 3
rc-2d-20-5 5 20 5 1317 272 10072 1096 1091 5
rc-2d-20-6 6 20 6 1120 512 33328 1936 1927 9
rc-2d-20-7 7 20 7 910 960 87592 3392 3343 49
rc-2d-20-8 8 20 8 728 1792 188368 5888 5855 33
rc-perm-5 5 15 5 268 720 2942 1211 1066 145
rc-perm-6 6 21 6 1649 5040 43400 10417 9346 1071
rc-perm-7 7 28 7 11874 40320 795188 99155 90169 8986
rc-perm-8 8 36 8 95097 362880 17463696 1036897 953009 83888
rc-ratio-20-3-7 3 19 3 3488 304 344 929 928 1
rc-ratio-20-3-9 3 19 3 1369 178 344 539 536 3
rc-ratio-20-4-7 4 20 4 15150 2278 2320 4954 4953 1
rc-ratio-20-4-9 4 20 4 14065 2016 2320 4393 4388 5
rc-ratio-20-5-7 5 20 5 34575 8470 10072 13798 13785 13
rc-ratio-20-5-9 5 20 5 31396 7826 10072 13798 13797 1
rc-ratio-20-6-7 6 20 6 56564 26194 33328 32993 32980 13
rc-ratio-20-6-9 6 20 6 64058 26758 33328 39823 39717 106
rc-ratio-20-7-7 7 20 7 112604 76790 87592 82751 82738 13
rc-ratio-20-7-9 7 20 7 75275 58468 87592 70214 70198 16

Table 5.1 Description of the test-problems and comparison of the “original rc algorithm in [54]”, written
in Python, and the “simulated rc algorithm 5.5”, written in Matlab: “(n, p, r, ς)” are the dimensions of
the problem (V ∈ Rn×p is of rank r and has ς circuits), “Winder’s bound” is the right-hand side of (4.8),
“ |∂BH(x)|” is the cardinal of the B-differential of H given by (1.2), “Original rc” gives the number of LO
problems solved by the original piece of software in Python of Rada and Černý [54], “Simulated rc” gives
the number of LO problems solved by the implementation in the Matlab code isf of the Rada and Černý
algorithm (see algorithm 5.5), “Difference” is the difference between the two previous columns.

The table gives the number of nodes for each level in the S-tree, with the modifications AB and
with the modifications ABC. Since rank(V ) = 5 for this problem and since the modification A
is used in both cases, the number of nodes per level, only starts to differ from level 6 (before
that it is equal to 2l−1, where l is the S-tree level). The final level is 13 (since there are p = 13
vectors) and its number of leaves is |S|/2 = 794 (an observation from the table above or from
table 5.2), necessary identical in both cases. The effect of the modification C can be seen on the
smaller number of nodes per level and in all the S-tree (rightmost column). This contributes to
the decrease of the number of LO to solve: the (mean, median) acceleration ratio is raised to
(2.35, 2.03).
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4) The modifications D, described in section 5.2.4(D), deal with the contribution of the computed
stem vectors, whose number increases from modification D1 (2(p − r) stem vectors after the
QR factorization of V ), D2 (more stem vectors from the dual solution of the LO problem (5.1)
when this one has a nonnegative optimal value), D3 and D4 (all the stem vectors).
r We see that the option D1 yields already some improvement (less LO to solve), but not
much, raising the (mean, median) acceleration ratio from (2.35, 2.03) to (2.63, 2.15).

r The use of the option D2 is more beneficial since the (mean, median) acceleration ratio now
goes up to (23.75, 3.29). We understand this fact to have its origin in the increase in the
number of stem vectors detected from the dual solutions of some solved LO problems. Note
that this last operation does not require much computation time.

r With option D3, only the LO problems (5.1) with the optimal value −1 are solved. This re-
duces even more significantly the number of LO to solve, with a (mean, median) acceleration
ratio that now reaches (27.91, 4.63).

r With option D4, no LO problem is solved.

In conclusion of these observations, one could retain the following three solvers:
r isf(ABCD2) is the most efficient solver that does not compute all the stem vectors,
r isf(ABCD3) has room for improvement in a compiled language (compared to an interpreter, like
Matlab) and therefore should not be discarded,

r isf(AD4) is the option combination without optimization problem to solve, which is an interesting
feature (it is also the solver described in section 5.2.2 with the modification A of section 5.2.4
in addition). As we shall see in section 5.2.6(D), it is the solver that has usually the lowest
(mean, median) CPU time on the considered test problems, but this good property is sometimes
invalidated on problems with many stem vectors.
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Number of LO problems solved (LOP) and acceleration ratio (Ratio) with various options
Simulated isf (A) isf (AB) isf (ABC) isf (ABCD1) isf (ABCD2) isf (ABCD3) isf (AD4)

Problem rc LOP Ratio LOP Ratio LOP Ratio LOP Ratio LOP Ratio LOP Ratio LOP Ratio
rand-4-8-2 28 27 1.04 21 1.33 16 1.75 10 2.80 9 3.11 0 — 0 —
rand-7-8-4 98 91 1.08 57 1.72 41 2.39 38 2.58 35 2.80 20 4.90 0 —
rand-7-9-4 162 155 1.05 108 1.50 80 2.02 74 2.19 61 2.66 35 4.63 0 —
rand-7-10-5 381 366 1.04 233 1.64 169 2.25 167 2.28 144 2.65 100 3.81 0 —
rand-7-11-4 385 378 1.02 287 1.34 167 2.31 168 2.29 132 2.92 75 5.13 0 —
rand-7-12-6 1485 1454 1.02 1012 1.47 748 1.99 735 2.02 628 2.36 495 3.00 0 —
rand-7-13-5 1585 1570 1.01 1234 1.28 763 2.08 759 2.09 589 2.69 401 3.95 0 —
rand-7-14-7 5811 5748 1.01 4222 1.38 3129 1.86 3100 1.87 2663 2.18 2233 2.60 0 —
rand-8-15-7 9907 9844 1.01 7642 1.30 5174 1.91 5199 1.91 4355 2.27 3638 2.72 0 —
rand-9-16-8 22818 22691 1.01 17586 1.30 13038 1.75 13023 1.75 11185 2.04 9943 2.29 0 —
rand-10-17-9 50642 50387 1.01 38167 1.33 28912 1.75 28839 1.76 25370 2.00 23266 2.18 0 —

srand-8-20-2 28620 28620 1.00 20207 1.42 6668 4.29 5535 5.17 2881 9.93 2851 10.04 0 —
srand-8-20-4 135566 136027 1.00 113493 1.19 60066 2.26 59267 2.29 45569 2.97 42445 3.19 0 —
srand-8-20-6 167262 167351 1.00 137450 1.22 77800 2.15 77752 2.15 62694 2.67 54980 3.04 0 —
rc-2d-20-4 545 540 1.01 480 1.14 256 2.13 196 2.78 43 12.67 0 — 0 —
rc-2d-20-5 1091 1080 1.01 960 1.14 528 2.07 408 2.67 44 24.80 0 — 0 —
rc-2d-20-6 1927 1904 1.01 1680 1.15 912 2.11 688 2.80 40 48.17 0 — 0 —
rc-2d-20-7 3343 3296 1.01 2912 1.15 2208 1.51 1792 1.87 52 64.29 0 — 0 —
rc-2d-20-8 5855 5760 1.02 4992 1.17 2752 2.13 1984 2.95 28 209.11 0 — 0 —

rc-perm-5 1066 1049 1.02 851 1.25 292 3.65 216 4.94 20 53.30 4 266.50 0 —
rc-perm-6 9346 9280 1.01 7898 1.18 2176 4.30 1836 5.09 92 101.59 61 153.21 0 —
rc-perm-7 90169 90094 1.00 79049 1.14 18794 4.80 16558 5.45 960 93.93 855 105.46 0 —
rc-perm-8 953009 952597 1.00 856597 1.11 168395 5.66 158989 5.99 9766 97.58 9393 101.46 0 —

rc-ratio-20-3-7 928 925 1.00 839 1.11 514 1.81 447 2.08 282 3.29 81 11.46 0 —
rc-ratio-20-3-9 536 564 0.95 541 0.99 456 1.18 432 1.24 152 3.53 23 23.30 0 —
rc-ratio-20-4-7 4953 4943 1.00 4522 1.10 2570 1.93 2500 1.98 1394 3.55 739 6.70 0 —
rc-ratio-20-4-9 4388 4498 0.98 4113 1.07 1998 2.20 1988 2.21 1054 4.16 562 7.81 0 —
rc-ratio-20-5-7 13785 15341 0.90 12979 1.06 7185 1.92 7064 1.95 3644 3.78 2467 5.59 0 —
rc-ratio-20-5-9 13797 13650 1.01 12220 1.13 6808 2.03 6719 2.05 3485 3.96 2454 5.62 0 —
rc-ratio-20-6-7 32980 35882 0.92 31967 1.03 17956 1.84 17505 1.88 10669 3.09 8765 3.76 0 —
rc-ratio-20-6-9 39717 40906 0.97 36485 1.09 21638 1.84 20142 1.97 11187 3.55 9061 4.38 0 —
rc-ratio-20-7-7 82738 81428 1.02 76158 1.09 47910 1.73 47748 1.73 30442 2.72 25841 3.20 0 —
rc-ratio-20-7-9 70198 (1) 51974 1.35 37448 1.87 35542 1.98 22295 3.15 19876 3.53 0 —

Mean 1.00 1.24 2.35 2.63 23.74 27.91 —
Median 1.01 1.18 2.03 2.15 3.29 4.63 —

Table 5.2 Improvement brought by the modifications described in section 5.2.4, in terms of the number of LO problems to solve: A (taking the rank of V
into account), B (special handling of the case where vT

k+1d ≃ 0), C (changing the order of the vectors vi’s by taking ik+1 by (5.7)), D1 (pre-computation
of 2(p − r) stem vectors after the QR factorization), D2 (D1 and 2 additional stem vectors computed after solving a LO problem, whose optimal value
is nonnegative), D3 (all the stem vectors are first computed and, for (s,±1) ∈ Sk+1, a LO problem is solved to get a handle d), D4 (all the stem vectors
are first computed and no LO is solved). The “Ratio” (acceleration ratio) columns give for each considered problem the ratio (LOP of the considered isf

version)/(LOP of the simulated rc). Note: (1) failure of the LO solver Linprog-‘dual-simplex’, which exceeds 5000 iterations.
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D. Observations on table 5.3. Measuring the efficiency of the algorithms by the number of LO
solved during execution, like in table 5.2, is sometimes misleading. If this is the main cost item
for some algorithms, it is no longer the case when a large amount of stem vectors is computed.
For two reasons. First, the time spent in the computation of these stem vectors is not negligible,
far from it, at least in our implementation, in which each of them requires the computation of the
nullity of a matrix and a null space vector. Next, verifying that a sign vector contains a stem vector
(proposition 3.9) is also time consuming when there are many stem vectors. Therefore a comparison
of the CPU time of the runs is welcome. This is done for a selection of versions of the isf codes in
table 5.3, those selected at the end of section 5.2.6(C). Here are some observations on the statistics
of this table.

1) A first observation is that the good behavior of the selected versions of the isf codes is confirmed,
even though the acceleration ratios are not as large as the one based on the number of LO
problems solved. This can be explained by the fact that the time spent in solving LO problems
is counterbalanced by the handling of stem vectors for the version ABCD3 and AD4. Anyway,
one observes that the CPU time acceleration ratios have (mean, median) values in the ranges
(7..15, 3..14), which is significant.

2) The most effective combination of code options depends actually on the considered problems. It
is difficult to state a rule that would predict which code behaves best because some solvers are
better on some phases of the run, but worse on others (the three main phases are the detection
of the stem vectors, the execution of LO problems and the search for stem vectors covered by a
given sign vector). Actually, this multicriterion problem has no clear solution and we leave this
question open for future numerical experiments.

6 Discussion

This paper deals with the description and computation of the B-differential of the componentwise
minimum of two affine vector functions. The fact that this problem has many equivalent formu-
lations, some of them being highlighted in section 3, implies that the present contribution has an
impact on several domains, including on the description of the arrangement of hyperplanes in the
space. To this respect, a singular aspect of this contribution is to propose a dual approach to solve
the problem, using some or all the stem vectors, a concept made useful thanks to the convex analysis
tool that is Gordan’s alternative. Besides this contribution, the paper also brings various improve-
ments of an algorithm of Rada and Černý [54], which was designed to determine the cells of an
arrangement of hyperplanes in the space.

Even in the spirit of the methods proposed in this article, there is still room for improvement,
in relation to three identified bottlenecks: (i) we have mentioned that with the option D3, the LO
problem (5.1) can be solved inexactly, since, in that case, the optimal value is −1, while any negative
objective value for a feasible unknown would suffice, but this requires a better tuning of the linear
optimization solver, (ii) computing more efficiently all the stem vectors (or matroid circuits) of the
matrix V is certainly a source of improvement, (iii) a better storage of the stem vectors that would
allow the algorithm to decide more rapidly that a sign vector contains a stem vector is also welcome.
Some of these possible improvements are also linked to a better choice of programming language,
probably one using a compilation phase.

This contribution has also various possible extensions. One would be to develop a dual approach
to the problem of the arrangement in the space of hyperplanes having no point in common [29].
Another natural extension would be to see the implications of this work for computing the B-
differential of the componentwise minimum of nonlinear vector functions [30].
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CPU times (in sec)
Simulated isf (ABCD2) isf (ABCD3) isf (AD4)

Problem rc Time Ratio Time Ratio Time Ratio
rand-4-8-2 1.13 0.95 1.19 0.15 7.53 0.09 12.56
rand-7-8-4 1.66 1.19 1.39 1.04 1.60 0.11 15.09
rand-7-9-4 2.18 1.41 1.55 1.17 1.86 0.12 18.17
rand-7-10-5 3.86 2.03 1.90 1.63 2.37 0.15 25.73
rand-7-11-4 3.90 1.94 2.01 1.50 2.60 0.16 24.38
rand-7-12-6 11.87 5.50 2.16 4.58 2.59 0.38 31.24
rand-7-13-5 12.80 5.31 2.41 4.08 3.14 0.48 26.67
rand-7-14-7 44.06 20.85 2.11 18.08 2.44 1.98 22.25
rand-8-15-7 73.31 33.09 2.22 30.78 2.38 5.22 14.04
rand-9-16-8 175.78 83.11 2.12 83.99 2.09 21.06 8.35
rand-10-17-9 410.86 185.85 2.21 217.53 1.89 70.34 5.84

srand-8-20-2 187.22 20.84 8.98 25.16 7.44 6.86 27.29
srand-8-20-4 985.69 351.11 2.81 639.82 1.54 686.00 1.44
srand-8-20-6 1079.92 516.67 2.09 1227.16 0.88 1557.59 0.69
rc-2d-20-4 4.79 1.35 3.55 0.34 14.09 0.25 19.16
rc-2d-20-5 8.67 1.42 6.11 0.44 19.70 0.34 25.50
rc-2d-20-6 14.71 1.44 10.22 0.58 25.36 0.53 27.75
rc-2d-20-7 26.58 2.09 12.72 1.04 25.56 0.83 32.02
rc-2d-20-8 44.32 2.02 21.94 1.43 30.99 1.29 34.36

rc-perm-5 8.07 1.23 6.56 1.02 7.91 0.34 23.74
rc-perm-6 64.31 2.62 24.55 3.92 16.41 3.31 19.43
rc-perm-7 675.87 13.77 49.08 52.43 12.89 85.43 7.91
rc-perm-8 6846.41 127.91 53.53 1614.33 4.24 5216.84 1.31

rc-ratio-20-3-7 6.91 3.07 2.25 1.82 3.80 0.38 18.18
rc-ratio-20-3-9 3.88 2.25 1.72 1.30 2.98 0.27 14.37
rc-ratio-20-4-7 32.43 11.70 2.77 8.76 3.70 3.51 9.24
rc-ratio-20-4-9 27.24 8.65 3.15 6.67 4.08 3.10 8.79
rc-ratio-20-5-7 86.35 27.34 3.16 30.58 2.82 22.61 3.82
rc-ratio-20-5-9 83.35 25.43 3.28 29.40 2.84 19.14 4.35
rc-ratio-20-6-7 203.89 75.41 2.70 115.68 1.76 95.12 2.14
rc-ratio-20-6-9 246.95 78.54 3.14 127.76 1.93 113.62 2.17
rc-ratio-20-7-7 533.16 221.18 2.41 481.12 1.11 525.48 1.01
rc-ratio-20-7-9 451.87 160.50 2.82 311.35 1.45 269.56 1.68

Mean 7.60 6.79 14.87
Median 2.77 2.84 14.37

Table 5.3 Comparison of the computing times.
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