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CONTEXT : ROBUST/RELIABLE CONCEPTION OF COMPLEX SYSTEMS

Complex and time 
consuming black-box 

simulator

𝑥

𝑢

𝑓 𝑥, 𝑢
𝑔 𝑥, 𝑢

Uncertain (random) variables

Quantities 
of interest

« Controllable » variables

= design variables
minimize/maximize

constrain
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HIDDEN CONSTRAINTS

Crashes or instabilities of the black-box simulator e.g. due to convergence issues

Often, simulation failures are computationally expensive

And they make the optimization convergence tricky

➔ Learn hidden constraint from a limited number of “costly” simulations 



4 ©  |  2 0 2 1 I F P E N

OUTLINE

Active learning of feasible input set for complex simulators
hidden constraint leading to simulation crashes

Optimization with hidden constraint
with derivative free trust region optimization method
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PROBLEM STATEMENT

𝑓: output of a black-box simulator with inputs 𝑥 ∈ Ω ⊂ ℝ𝑚

Our objective is to determine the feasible set (no simulation crash)

This is a binary classification problem

with binary observations 𝒳,𝒴 = 𝑥𝑗 , 𝑦𝑗 𝑗=1,…,𝑛
with 𝑦𝑗 = 𝟙𝑓(𝑥𝑗)≠𝑁𝐴𝑁

which aims to predict the probability of belonging to the failure/non-failure class 

→ Our choice: a classification model based on a Gaussian Process (GP)
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GAUSSIAN PROCESS CLASSIFIER (GPC)

A GPC is based on a latent GP 𝑍 conditioned on the sign observations characterizing
the belonging to a class (𝑍𝑛 = 𝑍 𝑥1 , … , 𝑍(𝑥𝑛) are not available)  [Bachoc et al, 2020]

Γ∗* **

𝑦(𝑥)

+

+

+

+

Γ∗***

+ obs

𝑍 𝑥 ~ 𝐺𝑃 𝑚𝑛 . , 𝑘𝑛 . , .

𝑚𝑛 . , 𝑘𝑛 . , . conditioned mean and kernel of 𝑍 𝑥
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GAUSSIAN PROCESS CLASSIFIER (GPC)

The GPC model allows to predict the probability of non-failure of a simulation

𝑝𝑛 𝑥 = ℙ 𝑌𝑛 𝑥 = 1 = ℙ 𝑌 𝑥 = 1 𝒳,𝒴
= ℙ 𝟙𝑍 𝑥 >0 = 1 𝑥,𝒳,𝒴
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GAUSSIAN PROCESS CLASSIFIER (GPC)

Characterization of the feasible set by quantiles
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ARCHISSUR STRATEGY: ACTIVE LEARNING OF FEASIBLE SET

Stepwise Uncertainty Reduction (SUR) strategy

Sequential choice of additional simulation point(s) 𝑥𝑛+1 in order to minimize the future uncertainty

on the feasible set [Bect et al., 2012, Molchanov, 2005]

min
𝑥𝑛+1

𝐽𝑛 𝑥𝑛+1 : = 𝔼𝑛 Var𝑛+1 Γ

with Var𝑛 Γ , the Vorob’ev deviation (variance of the feasible set) computed from the current GP model 𝑍𝑛.

[Chevalier, 2013, El Amri et al., 2021, Vorob’ev and Lukyanova, 2013].

→ARCHISSUR method: Active Recovery of Constrained and Hidden Subset by SUR

[Menz et al, hal-03688224]

https://hal.science/hal-03688224
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A 2D EXAMPLE (Branin function)

Intensification and exploration ability
of Archissur criterion
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RESULTS ON BRANIN FUNCTION (2D) - 80 initial DOE of 12 points

[Zhao et al., 2021]

(Var(GP) ; 𝑝𝑛~
1

2
)

Convergence speed-up Robustness
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RESULTS FOR A PROBLEM WITH 10 VARIABLES - 80 initial DOE of 60 points

Feasible set ~ 86% of the total domain
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OUTLINE

Active learning of feasible input set for complex simulators
hidden constraints leading to simulation crashes

Optimization with hidden constraint
with derivative-free trust region optimization method
with direct search method (NOMAD) → talk of S. Jacquet (MS245)
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DERIVATIVE FREE TRUST REGION OPTIMIZATION METHOD IN A NUTSHELL

SQA : Sequential Quadratic Approximation [Langouët, 2011]

= extension of NEWUOA (Powell, 2007) to constrained optimization

min
𝑥

𝑓(𝑥)

s.t. ቐ
𝑙 ≤ 𝑥 ≤ 𝑢
𝐶𝐷𝐵 𝑥 ≤ 0
𝐶𝐷𝐹(𝑥) ≤ 0

derivative based constraints
derivative free constraints

Constrained sub-problems in the trust region of size Δ𝑘

min
𝑑 ≤Δ𝑘

𝑄𝑘 𝑑 s.t. ൝
𝐶𝐷𝐵 𝑥𝑘 + 𝑑 ≤ 0
𝑄𝐶𝐷𝐹𝑘

(𝑑) ≤ 0

𝑄𝑘 and 𝑄𝐶𝐷𝐹𝑘
are quadratic interpolation models of 𝑓 and 𝐶𝐷𝐹 (black-box outputs)
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OPTIMIZING WITH HIDDEN CONSTRAINTS

Naïve approach

In case of a simulator crash: replace the NaN outputs by « surrogate » values

Maximal value of the objective functions associated with close points 

in order to avoid a further exploration of this “risky” area

Our proposal

Learn (and update) a GPC model from available simulations during the optimization iterations

→ Ƹ𝑝𝑛 𝑥 : probability of simulation success at iteration 𝑛

Apply two different strategies to integrate the hidden constraint model in the optimization

1. Prior constraint : do not simulate the point in case of a high probability of crash Ƹ𝑝𝑛 𝑥 <
1

2

2. Additional constraint ෝ𝒑𝒏 𝒙 ≥
𝟏

𝟐
as a derivative based constraint (cheap to evaluate)
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NUMERICAL TESTS

1) 

3) Function in dimension 7 [Sacher et al, 2018]

2)

Ωadm = {x ∈ Ω, 𝑐𝑖=1,…,4(x) ≤ 0}

min
𝐱∈Ωadm

𝑓(𝐱) = (𝑥1 − 10)2+5(𝑥2 − 12)2+𝑥3
4 + 3(𝑥4 − 11)2+10𝑥5

6 + 7𝑥6
2 + 𝑥7

4 − 4𝑥6𝑥7 − 10𝑥6 − 8𝑥7

𝑐3(x) = 23𝑥1 + 𝑥2
2 + 6𝑥6

2 − 8𝑥7 − 196, 𝑐4(x) = 4𝑥1
2 + 𝑥2

2 − 3𝑥1𝑥2 + 2𝑥3
2 + 5𝑥6 − 11𝑥7

𝑐1(x) = 2𝑥1
2 + 3𝑥2

4 + 𝑥3 + 4𝑥4
2 + 5𝑥5 − 127, 𝑐2(x) = 7𝑥1 + 3𝑥2 + 10𝑥3

2 + 𝑥4 − 𝑥5 − 282
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NUMERICAL RESULTS FOR 3 FUNCTIONS AND MULTIPLE INITIAL POINTS
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CONCLUSIONS

Active learning Archissur method has a good potential to learn disconnected feasible sets
[Menz et al, hal-03688224]

The GPC model of hidden constraint is useful in the optimization context to help and speed-up 
convergence

On-going work

Coupling Archissur with optimization: use not only GPC model but also active learning strategy

Future work

Comparison with other approaches: 
e.g., Bayesian Optimization coupled with SVM: EGO-LS-SVM [Sacher et al, 2018]

Application to the reliability-based design optimization of a wind turbine

https://hal.science/hal-03688224
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HIDDEN CONSTRAINTS

Crashes or instabilities of the black-box simulator e.g. due to convergence issues

Often, simulation failures are computationally expensive

And they make the optimization convergence tricky

➔ Learn hidden constraint from a limited number of “costly” simulations 
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GAUSSIAN PROCESS CLASSIFIER (GPC) FORMULATION

The GPC model allows to predict the probability of non-failure of a simulation

𝑝𝑛 𝑥 = ℙ 𝑌𝑛 𝑥 = 1 = ℙ 𝑌 𝑥 = 1 𝒳,𝒴

The probability 𝑝𝑛 𝑥 is modeled on the basis of [Bachoc et al, 2020] by using the sign 
of the latent GP 𝑍

𝑝𝑛 𝑥 = ℙ 𝟙𝑍 𝑥 >0 = 1 𝑥,𝒳,𝒴 = 

ℝ𝑛

𝜙𝒴
𝑍𝑛 𝑧𝑛 ϕ

−𝑚𝑛 𝑥, 𝑧𝑛

𝑘𝑛 𝑥
d𝑧𝑛

with 𝜙𝒴
𝑍𝑛 𝑧𝑛 the conditioned p.d.f of 𝑍𝑛 truncated to respect 𝑠𝑖𝑔𝑛(𝑍𝑛) = 𝒴, and 

ϕ
𝑎

𝑏
= ቐ

1 − ϕ(
𝑎

𝑏
), 𝑏 ≠ 0

𝟙−𝑎>0, 𝑏 = 0

where ϕ is the c.d.f of the normal standard distribution.
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GAUSSIAN PROCESS CLASSIFIER (GPC) FORMULATION
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COMPARISON OF DIFFERENT ENRICHMENT CRITERIA

Compared strategies

ARCHISSUR criterion: Active Recovery of Constrained and Hidden Subset by SUR

Mixed enrichment criterion: add the point corresponding to the maximum of the GP 
variance (exploration) and the one where              value is the closest to     (exploitation) 
simultaneously

SMOCU enrichment measure: Soft-MOCU (Mean Objective Cost of Uncertainty) method 
[Zhao et al., 2021]

Comparison criterion
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RESULTS FOR DAMAGE PREDICTION OF A WIND TURBINE

Wind turbine subject to wind loads described by 3 parameters:
ഥ𝑼 mean of wind speed (10mn), 𝑻𝑰 turbulence intensity, 
𝑵𝒂𝒄𝒀𝒂𝒘 misalignment angle

+
FAST simulator 

+ Python scripts

→

Predictions of damage at 
the bottom of the tower

TurbSim to simulate
multiple realizations

of wind
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RESULTS FOR DAMAGE PREDICTION OF A WIND TURBINE
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RESULTS ON A 10D FUNCTION 
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