
HAL Id: hal-04048372
https://hal.science/hal-04048372

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic testing of OCE, a human-centered
reinforcement learning system for automated software

composition
Maxence Demougeot, Kévin Delcourt, Jean-Paul Arcangeli, Sylvie Trouilhet,

Françoise Adreit

To cite this version:
Maxence Demougeot, Kévin Delcourt, Jean-Paul Arcangeli, Sylvie Trouilhet, Françoise Adreit. Au-
tomatic testing of OCE, a human-centered reinforcement learning system for automated software
composition. 1st International Workshop on Intelligent Software Engineering (ISE 2022), Dec 2022,
Virtual Event, Japan. �hal-04048372�

https://hal.science/hal-04048372
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Automatic testing of OCE, a human-centered
reinforcement learning system for automated

software composition

Maxence Demougeot, Kevin Delcourt, Jean-Paul Arcangeli, Sylvie Trouilhet,
and Françoise Adreit
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Abstract. More and more applications rely on Machine Learning (ML)
techniques, e.g., to automate software engineering. Like other applica-
tions, they need to be tested and validated. Testing ML-based software
differs from testing software which do not rely on AI and ML: non-
determinism, lack of oracle, high dependence on training and evaluation
data are hard points. The problem is even more complicated when hu-
mans are involved in the process. In this paper, we analyze the problem
of evaluating OCE, a human-centered intelligent system based on rein-
forcement learning that automatically builds user-tailored software. We
present a test environment composed of two tools which are based on
the notions of “scenario” and “ideal assembly”: OCE Scenario Maker to
edit scenarios and OCE Scenario Runner to automate and repeat their
execution.

Keywords: Test automation, testing tools, automated software compo-
sition, reinforcement learning, human in-the-loop

1 Introduction

More and more applications rely on Machine Learning (ML) techniques, namely
to automate software engineering. As part of our project on Opportunistic Soft-
ware Composition, we are designing an intelligent solution based on reinforce-
ment learning (RL) to automatically build applications in ambient contexts, and
we are developing several working prototypes of an Opportunistic Composition
Engine (OCE). With OCE, the user is put in the loop and provides feedback on
the built applications.

For ML-based solutions, as with any software, development teams need to ad-
dress validation issues. Testing is a potential solution. However, testing human-
centered ML-based systems is quite different from testing traditional software,
i.e., those which do not rely on ML techniques.

For our part, we need to assess the prototype versions of OCE in different
use cases. Beyond the common problems posed by the evaluation of ML-based
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systems, our issues lie in the dynamics of the learning environment, including the
human user. To answer, we have developed a tooling that supports the definition
of test scenarios with simulated users, their execution and the evaluation of the
results, which use is illustrated in a video1.

The purpose of this paper is to present our work on testing and evaluating
OCE, more specifically its learning mechanism. It describes the principles of our
solution and the tooling we have developed.

Sec. 2 summarizes the principles of Opportunistic Software Composition and
our needs for testing. Sec. 3 analyzes the main issues of testing ML-based systems
in particular with humans “in the loop”, then focuses on OCE. Sec. 4 briefly
presents several tools that allow testers to carry out experiments on ML-based
solutions, then describes the principles of our solution, the prototype tools we
have developed and integrated with OCE, and a demonstration. Sec. 5 concludes
and discusses some open issues.

2 Background

2.1 Opportunistic Software Composition

Today’s users live in ambient environments invaded by connected objects. These
environments are open, complex and dynamic: at any time, objects may appear
and others may disappear. Besides, the user needs may change depending on the
situation. One of the issues is how to manage the variability of such unpredictable
environments, and propose relevant services to the user [1].

To tackle this issue, Opportunistic Software Composition is a human-centered
approach based on reinforcement learning (RL) [2] that aims at automatically
build applications that are tailored to the user and the ambient context. It plans
on-the-fly assemblies of software components that are available in the ambient
environment. Like objects, software components [3] expose the services they
provide through an interface; in addition, they expose at the same level the
services they require from other components. This makes software components
easier to assemble, replace and reuse. Technically, they can be assembled by
connecting their services, the assembly implementing an application.

The goal of opportunistic software composition is to provide the user with
the right application at the right time, but without them having expressed needs
and preferences due to the dynamics and unpredictability of the environment,
which make their specification difficult. User-adapted applications are designed
in bottom-up way and emerge from the environment, relying on automatically
on-the-fly learnt knowledge about the user’s needs and preferences.

To realize opportunistic software composition, an Opportunistic Composition
Engine (OCE) has been designed: every service is locally managed by an “agent”
that learns by reinforcement the connection preferences according to the context
and decides on its own connections. Building an application consists in three
steps, called an OCE cycle, and involves the user:

1 https://www.irit.fr/OppoCompo/automatic-testing/
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1. OCE probes the ambient environment to detect the available components.
2. According to their learnt knowledge on the user’s preferences, the agents

decide on their connections to others to collaboratively build up an assembly
plan that defines an application and present it to the user.

3. Using the Interactive Control Environment (ICE), the user accepts, modifies
or rejects the application.

User’s actions in the last step are used as feedback for OCE. From this
feedback, a reinforcement signal is computed from which OCE’s agents learn by
reinforcement the user’s needs and preferences. As the cycles are repeated, OCE
gains knowledge that it can then use to create more relevant applications.

Readers who wish to know more about OCE and ICE can refer to [4] and [5],
and to [6] for a demo.

2.2 Need for testing OCE

A working prototype of OCE has been developed. However, it must be tested
and evaluated, with a focus on the learning mechanism, in order to check that
OCE builds assembly plans that fit the user needs and preferences. There are
also alternative versions of OCE whose behavior must be compared.

Moreover, OCE is parameterizable, and the parameter values have to be
adjusted. Among the parameters, some are ML-specific (for instance the amount
of exploration vs. exploitation), others are user-specific and must be tailored to
the individual: for instance, the coefficient that defines the user’s preference for
components or applications not yet encountered.

3 Testing human-centered ML-based systems

In a general way, the testing activity consists in defining test cases, running them,
and asserting the correctness of the outputs against a specification. Usually,
tests are used to check the behavior of a system by finding bugs or highlighting
anomalies but they can not prove their absence [7].

3.1 Issues in testing ML-based systems

The growing interest in AI and ML is driving development teams to focus on
testing and evaluation issues. However, testing ML-based systems is quite dif-
ferent from testing traditional software, i.e., those that do not rely on AI and
ML.

A first point is that learning is assessed indirectly. When testers evaluate a
ML-based solution, they seek to evaluate the correctness of the learning mecha-
nism. But learning can hardly be isolated from the rest of the application, which
is tested as a whole including the decision process. Therefore, the observed out-
puts are those of the whole application, not those of the only learning process.

Secondly, testers struggle to deal with randomness and non-determinism [8,9],
whether it comes from learning or decision. When an anomaly is detected, does
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it come from the non-deterministic nature of ML-based systems or is there a
design or implementation error [10]? Therefore, to get significant results, ex-
periments must be repeated a certain number of times to reduce the effects of
non-determinism.

Moreover, in many cases, testers can not predict the produced outputs for
specified inputs: there are not always oracles [11] or it is difficult to design
ones [12]. To assess the accuracy of decisions, a way is to ask humans to perform
the same tasks as the system with the same input data and observe the differences
in the outputs [10].

Finally, the results are highly dependent on the training data [9]. Indeed,
the choice of relevant data and test cases is critical for the verification of the
properties of ML-based systems. However, training data spaces are often infinite
and it is difficult but necessary to select the most relevant portions to train and
evaluate a system [10].

The problem is even more complicated when using reinforcement learning
because of the interactions between the learning agent and the environment [13]
and the incremental building of knowledge. In this case, the system learns over
time and makes decisions depending on both its current knowledge and the state
of the environment. Thus, the dependence on the environment and its variability
over time can lead to outdated or obsolete learnt knowledge.

3.2 Issues in testing interactive ML-based systems

Human-centered ML-based systems are interactive systems. In the field of in-
teractive systems, it is common to carry out test campaigns involving real or
potential users to evaluate interaction criteria, such as usability [14]. Such cam-
paigns may require a large number of participants to produce significant results
and be costly in time and money.

To alleviate these costs, designers often model synthetic users, e.g., personas,
and simulate their actions. This raises some challenges:

– The potential introduction of biases [15]: how to insure the quality of this
modelization?

– The need for specific design methods and tools.

In this paper, we focus on this second point and propose tools to take advantage
of synthetic users and apply human-centered methodologies to ML-based systems
[16].

In the case of interactive ML-based systems [17], humans are the source of
learning data. The main issue is the complexity and the diversity of user profiles.
Knowledge built from the interactions between the user and the learning system
is personalized and may suit one user but not another. Moreover, the human
users may be imprecise or change their opinions over time. It is thus difficult to
assert the behavior of the learning system.
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3.3 Issues in testing OCE learning process

OCE runs a distributed human-centered RL process where the human user is an
integral part of the learning environment: as they accept, modify, or reject an
assembly proposed by OCE, they provide feedback that OCE transforms into
a reinforcement signal. This way, learnt knowledge is personalized and differs
from one user to another. It also depends on the dynamics, whether it comes
from the ambient environment or from the changing user’s needs and preferences
depending on the current situation and time. OCE decisions are then dependent
on the knowledge gained.

Thus, the evaluation of the OCE learning process faces the issues of both ML-
based and interactive systems: in particular, non-determinism and the challenge
of assessing the quality of OCE’s decisions on the one hand, dependence on
the user, their profile and the variability of their needs and preferences on the
other hand. In addition, the multiple forms of the ambient environment must be
taken into account with the variety and number of components, as well as the
dynamics.

4 OCE testing principles and tools

4.1 Related work

In the literature, there are several tools that allow testers to carry out experi-
ments on ML-based solutions. We can cite the following:

– Arcade Learning Environment (ALE) [18] seeks to test the genericity of a
learning algorithm, which must be able to play dozens of Atari 2600 games.
The goal of a learning agent is to maximize the scores obtained on each
game. ALE thus proposes evaluation metrics to compare and understand
the performances of learning agents on the different games.

– OpenAI GYM [19] is a Python library that addresses the lack of normal-
ization of reinforcement learning environments by offering a set of standard
ones. It allows developers to test and compare their learning agents in these
environments to benchmarks.

– The DotRL platform [20] is a framework that enables rapid development
and test of reinforcement learning solutions. To carry out an experiment,
testers select environments and learning agents among those proposed by
the platform, or develop their own, and compare the performances.

– Cogment [21] facilitates the definition of complex human-centered machine
learning architectures, with human users and/or automated agents interact-
ing with each other with the aim of training humans and AI together and
improve ML results. For each experiment, Cogment generates logs to allow
the tester to analyze the results.

These tools offer a wide range of features to perform experiments. The Cog-
ment framework is fairly new but seems to be the most attractive since it focuses
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on the presence of humans in the learning process and fits well the human-
centered reinforcement learning paradigm. However, generally speaking, the gap
between what these tools provide and the needs for testing OCE seems quite
important and expensive to fill. Indeed, in order to test OCE using these tools,
it would be necessary to make the predefined environments and agents interop-
erable with those of OCE in particular to use the available benchmarks. Among
the problems, some seem difficult or even impossible to address such as taking
into account the distribution nature of OCE learning. However, some concepts
could be useful for the evaluation of OCE, e.g., the ALE evaluation metrics.

4.2 A tooling for OCE testing

Currently, we are exploring the state of the art in more depth. At the same time,
we have undertaken to develop our own tooling to automate the testing of OCE
learning process, which consists of a pair of tools:

– OCE Scenario Maker, which supports the definition of tests,
– OCE Scenario Runner, which allows to automate and repeat their execution.

These are based on (i) a formalism to describe test scenarios with the ambient
environment and the user’s preferences and their possible variations over time,
(ii) a way to repeat tests any number of times, and (iii) scores that measure the
quality of OCE decisions.

A benefit of these tools is that they allow to carry out test campaigns more
easily and at a lower cost, without having to develop concrete components and
involve real users.

4.3 Principles

We define a scenario as a series of OCE cycles but without the results that
could be provided by OCE: each cycle is described both by a set of software
components of the ambient environment and the user’s reaction to the proposal
that OCE would make in this context.

To define the user’s reactions without knowing the results provided by OCE,
we introduce the concept of ideal assembly : an ideal assembly is the one that the
user would prefer in a given context. Ideal assemblies model the user preferences
in the different situations.

A scenario includes training cycles followed by assessment cycles. In a training
cycle, the ideal assembly allows OCE to learn the user’s need and preferences in
the stated context. In an assessment cycle, the ideal assembly is used to verify
that OCE has correctly learnt: to do so, a distance between this ideal assembly
and the proposition of OCE is computed.

Defining a test consists thus in specifying a sequence of cycles with a variety
of components, a more or less important number of them, and a more or less
dynamic ambient environment. By specifying the ideal assembly for a cycle,
the tester behaves as an oracle. Besides, specifying ideal assemblies allows to
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simulate different user profiles: users with more or less stable preferences, more
or less open to new applications. . . Note that the selection of adequate training
and assessment cycles (i.e., the design of test cases) is another challenge that we
do not address in this paper.

In the following sections, we first present OCE Scenario Maker and OCE
Scenario Runner. Then, we describe the architecture of the testing environment
which associates OCE Scenario Maker, OCE Scenario Runner, and OCE (the
engine) to run and test the latter.

4.4 OCE Scenario Maker

To describe a test scenario, the tester has to indicate, for each training and
assessment cycle, both which components populate the environment and the
ideal assembly.

For that, OCE Scenario Maker is a tool composed of:

– A library of dummy software components.
– A component creator that allows the tester to define dummy components by

indicating their name and associated services, and add them to the library.
– A cycle creator that allows the tester to specify a cycle by choosing the

participating components and expressing the ideal assembly (i.e., giving a
list of connections between components).

In practice, OCE Scenario Maker is a single-page Web application. A GUI
(see Sec. 4.7) assists the tester to graphically manipulate the scenario elements
(components and connections). Once defined, the test scenario description is
saved in a JSON file.

4.5 OCE Scenario Runner

Once the test scenario is defined with OCE Scenario Maker, it has to be exe-
cuted to carry out automatic testing. OCE Scenario Runner is a Java desktop
application, which handles these experiments and their repetition as many times
as required to reduce the impact of non-determinism.

To start an experiment, several parameters must be set such as the test sce-
nario JSON file produced by OCE Scenario Maker, OCE parameters, the version
of OCE and the number of repetitions of the experiment. For each cycle, OCE
Scenario Runner compares the assembly proposed by OCE and the ideal assem-
bly and calculates a Jaccard Similarity index between the set of the connections
proposed by OCE and the one of the ideal assembly; then, it computes an av-
erage score over all the cycles. This provides a measure of the distance between
OCE’s propositions and the ideal assemblies, and so indicates whether the OCE
decisions make relevant applications emerge according to the learnt user’s pref-
erences. This measurement only makes sense for the assessment cycles as the
previous cycles are used to create knowledge. It therefore makes the tester able
to analyze and understand how OCE behaves.
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Fig. 1. Architecture overview in production and testing configurations

4.6 Software architecture

Figure 1 shows how OCE Scenario Maker and OCE Scenario Runner fit in OCE
runtime environment to create the testing environment. In the production en-
vironment, OCE interacts with the ambient environment by probing available
components. Then, according to its knowledge about the user’s preferences and
needs, it plans an assembly which is displayed on ICE. Last, through ICE, the
user gives a feedback to OCE that is converted into reinforcement signals for
OCE learning agents.

OCE’s modular architecture allows to seamlessly replace ICE and the am-
bient environment with OCE Scenario Runner, thus allowing simulation and
automation of the interactions with the user and the environment. When run-
ning a scenario, at each cycle, OCE retrieves the set of the available components
provided by OCE Scenario Runner, then proposes an assembly. Finally, OCE
Scenario Runner returns the ideal assembly that is used by OCE to create feed-
back for its agents. Therefore, OCE Scenario Runner plays both the role of the
ambient environment and the role of the user, in accordance with the scenario
description produced using OCE Scenario Maker.

4.7 Testing OCE’s behavior: a demonstration

The following video2 shows the case of a tester who wants to check OCE’s
behavior in a simple use case where new components appear dynamically and the
user preferences are stable. In this test scenario, the user is virtually surrounded
by devices like switches and lamps, a switch can be connected to a single lamp,
and OCE builds applications from them as they appear or disappear. Initially,
three lamps (but only two of them work) and a switch are available in the
user’s surrounding environment, and the user prefers to use the first lamp. After

2 https://www.irit.fr/OppoCompo/automatic-testing/
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a while, the third lamp works again and the user prefers to use it. An other
component appears but do not affect the user’s needs.

The video shows how the tester defines the component-based ambient envi-
ronment and the ideal assemblies cycle by cycle, then runs the resulting multi-
cycle scenario and gets similarity scores to check the relevance of OCE’s deci-
sions.

5 Conclusion

In this paper, we have addressed the problem of testing an intelligent solution
for automated software composition. We have presented both a reflection about
testing human-centered ML-based systems and a pair of tools that we have de-
veloped to automate the testing of our Opportunistic Composition Engine OCE.
When defining scenarios using OCE Scenario Maker, the tester behaves as an or-
acle by designing different situations to simulate the environment dynamics and
the user behavior. Then, experiments can be executed and repeated using OCE
Scenario Runner. Repetition smoothes out the results altered by the presence of
randomness in learning and decision.

Of course, questions arise concerning the design of the test sets. For now, we
only propose tools that facilitate specification, execution, repetition and analyze
of tests, but not a methodology: how to design test sets and how to assert their
relevance? As it is highly dependent on the users, one way would be to involve
them more in the design, e.g., build scenarios based on observations of their
behavior or ask them about their preferences in different situations. Another
way would be to improve usability of our tools in order to involve end-users in
the implementation and the execution of tests. These are tracks to be explored
further.

Although our work is still in progress, we hope that our approach can inspire
other practitioners in the field to develop tools for testing intelligent human-
centered automated solutions.
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