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ε-HYPERCYCLIC OPERATORS THAT ARE NOT δ-HYPERCYCLIC

FOR δ < ε

FRÉDÉRIC BAYART

Abstract. For every fixed ε ∈ (0, 1), we construct an operator on the separable Hilbert

space which is δ-hypercyclic for all δ ∈ (ε, 1) and which is not δ-hypercyclic for all

δ ∈ (0, ε).

1. Introduction

Let X be a separable infinite dimensional Banach space. During the last decades the

properties of the orbits of operators acting on X have been widely studied. In particular,

the notion of hypercyclic operators, namely operators with a dense orbit, has drawn the

attention of many mathematicians (see for instance [3]). It seems natural in this context to

investigate operators having orbits with a property slightly weaker than denseness. Does

this imply that the operator admits a dense orbit? For instance, N. Feldman has shown

in [4] that if there is an orbit of T ∈ L(X) which meets every ball of radius d > 0, then T

is hypercyclic.

The following definition concerning operators admitting an orbit which intersects every

cone of aperture ε has been introduced in [1].

Definition 1.1. Let ε ∈ (0, 1). A vector x ∈ X is called an ε-hypercyclic vector for

T ∈ L(X) provided for every non-zero vector y ∈ X, there exists an integer n ∈ N such

that ∥Tnx−y∥ ≤ ε∥y∥. The operator T is called ε-hypercyclic if it admits an ε-hypercyclic

vector.

In [1], the authors have shown that for every ε ∈ (0, 1), there exists an ε-hypercyclic

operator on ℓ1(N) which is not hypercyclic. This was refined in [2] and [5] where similar

examples are given on ℓ2(N) and on more general spaces. Moreover it is pointed out in [5,

Remark 4.7] that the ε-hypercyclic operator which is considered in that paper is not even

δ-hypercyclic for some δ ∈ (0, ε).

This leaves open the following natural question: letX be a Banach space, let 0 < δ < ε < 1.

Can we distinguish the class of δ-hypercyclic operators and that of ε-hypercyclic operators

acting on X? We give a positive answer for a large class of Banach spaces. To state our

result we recall some terminology. Let (en)n≥0 be a basis of X (namely every x ∈ X

writes uniquely
∑

n≥0 xnen) and let C ≥ 1. We say that (en)n≥0 is C-unconditional if

for any N ≥ 0, for any finite sequences of scalars (an)n=0,...,N and (bn)n=0,...,N such that
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|bn| ≤ |an| for all n = 0, . . . , N , then∥∥∥∥∥
N∑

n=0

bnen

∥∥∥∥∥ ≤ C

∥∥∥∥∥
N∑

n=0

anen

∥∥∥∥∥ .
Let us fix now X and Y two Banach spaces and suppose that (fn) is a 1-unconditional

basis of Y . We denote by
⊕

Y X the vector space

⊕
Y

X :=

{
(xn) ∈ XN :

+∞∑
n=0

∥xn∥Xfn ∈ Y

}
and we endow it by

∥(xn)∥ =

∥∥∥∥∥
+∞∑
n=0

∥xn∥Xfn

∥∥∥∥∥
Y

.

It is standard that
⊕

Y X is a Banach space.

Our main theorem now reads.

Theorem 1.2. Let X be an infinite dimensional separable Banach space with a 1-uncon-

ditional basis, let Y be an infinite dimensional separable Banach space with a normalized

1-unconditional basis such that the associated backward shift operator is continuous. For

all ε ∈ (0, 1), there exists an operator on Z =
⊕

Y X which is not δ-hypercyclic for all

δ ∈ (0, ε) and which is δ-hypercyclic for all δ ∈ (ε, 1).

Observe that if X is either c0(N) or ℓp(N), p ∈ [1,+∞), then X is isometric to
⊕

X X

by using the canonical basis of X. Therefore, it satisfies the assumptions of the previous

theorem. Recall also that if T is ε-hypercyclic for all ε ∈ (0, 1), then it is hypercyclic (see

[1, Theorem 1.3]).

We will need a way to prove that an operator is ε-hypercyclic. We state here a variant of

the ε-hypercyclicity criterion given in [5, Theorem 1.2]. Its proof is completely similar.

Theorem 1.3. Let X be an infinite dimensional separable Banach space, let T ∈ L(X)

and let ε ∈ (0, 1). Assume that there exist a dense subset D of X, a sequence (u(k)) dense

in X such that that, for all k ≥ 0, u(k) = u(l) for infinitely many integers l, a sequence

(v(k)) of vectors in X and an increasing sequence of positive integers (nk) such that

• limk→+∞ ∥Tnkx∥ = 0 for all x ∈ D;

• limk→+∞ ∥v(k)∥ = 0;

• for all k ≥ 0, ∥Tnkv(k)− u(k)∥ ≤ ε∥u(k)∥.
Then T is δ-hypercyclic for all δ > ε.

The remaining part of the paper is devoted to the proof of Theorem 1.2.

2. Proofs

2.1. A geometric lemma in dimension 2. The construction ultimately relies on the

following fact regarding normed spaces of dimension 2. It deals with the distance of some

fix vector to lines depending on a parameter.
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Lemma 2.1. Let F be a normed space of dimension 2, let (u, v) be a normalized basis of

F , let (u∗, v∗) be the dual basis and assume that ∥u∗∥ = ∥v∗∥ = 1. For all ε ∈ (0, 1), there

exists ω ∈ [ε, ε(1− ε)−1] such that

min
y∈C

∥(y − 1)u+ yωv∥ = ε.

Proof. When ω = ε,

min
y∈C

∥(y − 1)u+ yωv∥ ≤ ∥ωv∥ ≤ ε.

When ω = ε(1− ε)−1, for all y ∈ C,

∥(y − 1)u+ yωv∥ ≥ max(|y − 1|, |y|ω).

Now, if |y| ≥ 1/(1 + ω), |y|ω ≥ ω/(1 + ω) ≥ ε and if |y| ≤ 1/(1 + ω),

|y − 1| ≥ 1− 1

1 + ω
= ε.

Therefore, miny∈C ∥(y − 1)u + yωv∥ ≥ ε. The result follows by continuity of ω 7→
miny∈C ∥(y − 1)u+ yωv∥. □

Remark 2.2. If ∥au+ bv∥ = (|a|p+ |b|p)1/p for some p ∈ (1,+∞), then it is easy to prove

that the value of ω is given by
ω

(1 + ω
p

p−1 )
p−1
p

= ε

and that the minimum is attained at

y =
1

1 + ω
p

p−1

.

When p = 1, ω = ε and y = 1. When p = ∞, ω = ε
1−ε and y = 1

1+ω = 1 − ε. This

corresponds to the extremal cases of Lemma 2.1.

2.2. The construction of a sequence of operators on X. As the previous construc-

tions of ε-hypercyclic operators which are not δ-hypercyclic, our operator will be an op-

erator weighted shift. The next part of the proof consists in defining his weights. We

denote by (en) (resp. (fn)) the 1-unconditional basis of X (resp. Y ) which appears in

the statement of Theorem 1.2. We may assume that (en) is normalized which implies (by

1-unconditionality) that (e∗n) is normalized too.

The strategy is the following. At each step k we will define weights Amk+1, · · · , Amk+1

such that the products Amk+1 · · ·Aj , j = mk+1, . . . ,mk+1 leave e0 invariant, send ek onto

the line defined by Lemma 2.1 and el onto a multiple of el for l ̸= k. Therefore, provided

e∗0(u) is small, Amk+1 · · ·Aj(u) can be close to e0, but not too close.

We proceed with the details. We set

λ =
3

ε(1− ε)
and κ = (1 + λ) + max(1 + ε(1− ε)−1, 2/ε).

We exhibit two sequences of integers (mk)k≥1 and (rk)k≥1 and a sequence of operators

(Aj)j≥1 on X such that, for all k ≥ 1,

(i) Ane0 = e0 for all n = mk + 1, . . . ,mk+1;

(ii) An is invertible, ∥An∥ ≤ κ for all n = mk + 1, . . . ,mk+1;
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(iii) Amk+1 · · ·Amk+1
= Id.

We initialize the construction by setting m1 = 0. We assume that the construction has

been done until step k − 1 to do it at step k ≥ 1. We thus have to define mk+1, rk
and (Aj)j=mk+1,...,mk+1

. We set Fk = span(e0, ek) and Gk = span(el : l ̸= 0, k) so that

X = Fk ⊕Gk. Let ωk ∈ [ε, ε(1− ε)−1] be given by Lemma 2.1 for F = Fk and let yk ∈ C
minimizing y 7→ ∥(y−1)e0+yωkek∥. Since (en) is a 1-unconditional basis of X, we deduce

from the definition of ωk and yk that

(1) min
y∈C, w∈Gk

∥(y − 1)e0 + yωkek + w∥ = ∥(yk − 1)e0 + ykωkek∥ = ε.

Let rk > 0 be a very large integer (more precise conditions on rk will be given later) and

let us set mk+1 = mk + rk + k + 1. For j = 1, . . . , rk + k + 1, we define Amk+j by

• Amk+j(e0) = e0.

• 

Amk+1(ek) = e0 + ωkek
Amk+2(ek) = · · · = Amk+rk(ek) = 2ek

Amk+rk+1(ek) = · · · = Amk+rk+k−1(ek) = ek
Amk+rk+k(ek) = 1

2rk−1 ek

Amk+rk+k+1(ek) = − 1
ωk

e0 +
1
ωk

ek.

• for l ̸= 0, k, {
Amk+j(el) = λel, j = 1, . . . , rk + k,

Amk+rk+k+1(el) = 1
λrk+k el.

The invertibility of each An comes from the invertibility of its restriction to Fk and to Gk.

Furthermore we prove ∥An∥ ≤ κ. For n = mk + 1, . . . ,mk+1, for a, b ∈ C and w ∈ Gk,∥∥An(ae0 + bek + w)
∥∥ ≤ |a|+ |b|max(1 + ωk, 2, 2/ωk) + λ∥w∥
≤ κ∥ae0 + bek + w∥

where we have taken into account that ωk ∈ [ε, ε(1− ε)−1].

To go further with the properties of (Aj) we need to compute Amk+1 · · ·Amk+jek for

j = 1, . . . , rk + k + 1. We find

Amk+1 · · ·Amk+jek =



e0 + ωkek j = 1

2j−1e0 + 2j−1ωkek j = 2, . . . , rk
2rk−1e0 + 2rk−1ωkek j = rk + 1, . . . , rk + k − 1

e0 + ωkek j = rk + k

ek j = rk + k + 1.

We then deduce the following formula, which will be equally important:

A−1
mk+j · · ·A

−1
mk+1ek =



− 1
ωk

e0 +
1
ωk

ek j = 1

− 1
ωk

e0 +
1

2j−1ωk
ek j = 2, . . . , rk

− 1
ωk

e0 +
1

2rk−1ωk
ek j = rk + 1, . . . , rk + k − 1

− 1
ωk

e0 +
1
ωk

ek j = rk + k

ek j = rk + k + 1.
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2.3. The operator. We now glue together these maps. We formally define T on Z =⊕
Y X by

T (u0, u1, . . . ) = (A1u1, A2u2, . . . ).

Let K1 be the norm of the backward shift operator associated to (fn). Then for u =

(u0, u1, . . . ),

∥Tu∥ =

∥∥∥∥∥
+∞∑
n=1

∥Anun∥Xfn−1

∥∥∥∥∥
Y

≤ K1

∥∥∥∥∥
+∞∑
n=1

∥An∥ · ∥un∥Xfn

∥∥∥∥∥
Y

≤ K1κ∥u∥

which implies that T is well defined and maps boundedly Z into itself.

2.4. T is not δ-hypercyclic for any δ ∈ (0, ε). By contradiction, assume that T is

δ-hypercyclic for some δ ∈ (0, ε) and let u = (u0, u1, . . . ) be a δ-hypercyclic vector for T .

Observe that ∥un∥ → 0 so that un,0 := e∗0(un) → 0. Therefore it is possible to fix K > 0

such that

|K − un,0|ε > δK for any n ≥ 0.

We set v = (Ke0, 0, . . . ). Let n ≥ 1 be such that ∥v − Tnu∥ ≤ δ∥v∥ and let k ≥ 1 be such

that n ∈ [mk + 1,mk+1]. Let us write un = un,0e0 + wn with e∗0(wn) = 0. Then by using

(i) and (iii),

∥v − Tnu∥ ≥ ∥Ke0 −A1 · · ·An(un)∥
≥ ∥Ke0 −Amk+1 · · ·An(un,0e0 + wn)∥
≥ ∥(K − un,0)e0 −Amk+1 · · ·An(wn)∥.

If n = mk+1, then Amk+1 · · ·An(wn) = wn and

∥v − Tnu∥ ≥ |K − un,0| ≥ ε|K − un,0| > δ∥v∥.

If n ̸= mk+1, then Amk+1 · · ·An(wn) = xne0 + xnωkek + w′
n for some w′

n ∈ Gk and some

xn ∈ C. Therefore

∥v − Tnu∥ ≥
∥∥((K − un,0)− xn

)
e0 + xnωkek

∥∥
≥ ε|K − un,0| > δ∥v∥

where we have used (1). In both cases, we find a contradiction.

2.5. T is δ-hypercyclic for all δ ∈ (ε, 1). Let δ ∈ (ε, 1) and let us prove that T is δ-

hypercyclic by applying Theorem 1.3. Let (u(k)) be a dense sequence in Z such that each

u(k) may be written u(k) = (u0(k), . . . , uk−1(k), 0, . . . ) with uj(k) ∈ span(e0, . . . , ek−1)

and ∥uj(k)∥ ≤ k. Moreover for any k ≥ 1, we assume that there exist infinitely many

integers ℓ with u(k) = u(ℓ).

We want to find a sequence of vectors (v(k)) in Z and a sequence of integers (nk) such

that ∥v(k)∥ → 0 and ∥Tnkv(k) − u(k)∥ ≤ ε∥u(k)∥ for all k ≥ 1. We will define v(k) =
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(0, . . . , 0, v0(k), . . . , vk−1(k), 0, . . . ) where v0(k) is at the (mk + rk)-th position. Let k ≥ 1,

let j ∈ {0, . . . , k − 1} and let us write

uj(k) =

k−1∑
s=0

uj,s(k)es.

Let l be the unique integer such that ml ≤ j < ml+1. We will search vj(k) under the form

vj(k) =
k−1∑
s=1
s ̸=l

uj,s(k)

λrk+j
λj−mles + xel + yek

where x and y will be chosen so that

∥Aj+1 · · ·Amk+rk+j(vj(k))− uj(k)∥ ≤ ε∥uj(k)∥

and ∥vj(k)∥ ≤ k−2. Upon this has been done, we can easily apply Theorem 1.3 to deduce

that T is δ-hypercyclic for δ > ε. Indeed, T has a dense generalized kernel and, for all

k ≥ 1,

∥v(k)∥ =

∥∥∥∥∥∥
k−1∑
j=0

∥vj(k)∥fmk+rk+j

∥∥∥∥∥∥
≤

k−1∑
j=0

∥vj(k)∥ ≤ 1

k
.

Moreover

Tmk+rk(v(k)) = (A1 · · ·Amk+rk(v0(k)), . . . , Ak · · ·Amk+rk+k−1(vk−1(k)), 0, . . . ).

Therefore,

∥u(k)− Tmk+rk(v(k))∥ =

∥∥∥∥∥∥
k−1∑
j=0

∥Aj+1 · · ·Amk+rk+j(vj(k))− uj(k)∥ fj

∥∥∥∥∥∥
≤ ε

∥∥∥∥∥∥
k−1∑
j=0

∥uj(k)∥fj

∥∥∥∥∥∥
≤ ε∥u(k)∥.

So let us compute Aj+1 · · ·Amk+rk+j(vj(k)) =: zj(k).

zj(k) = A−1
j · · ·A−1

1 A1 · · ·Amk+rk+j(vj(k))

= A−1
j · · ·A−1

ml+1Amk+1 · · ·Amk+rk+j(vj(k))

= A−1
j · · ·A−1

ml+1

k−1∑
s=1
s̸=l

λj−mluj,s(k)es + λrk+jxel + 2rk−1ye0 + 2rk−1yωkek

 .
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The easiest case is when j = ml. In that case,

zj(k) = 2rk−1ye0 +
k−1∑
s=1
s ̸=l

uj,s(k)es + λrk+jxel + 2rk−1yωkek.

We simply choose x = 1
λrk+j uj,l(k) and y = yk

2rk−1uj,0(k) so that by (1)

∥zj(k)− uj(k)∥ = |uj,0(k)| · ∥(yk − 1)e0 + ykωkek∥
≤ ε|uj,0(k)| ≤ ε∥uj(k)∥

whereas

∥vj(k)∥ ≤
k−1∑
s=1

∥uj(k)∥
λrk

+
|yk| · ∥uj(k)∥

2rk−1
≤ k−2

provided rk is sufficiently large.

Let us now turn to j > ml. In that case, there exists 0 ≤ tj ≤ j −ml such that

zj(k) =
k−1∑
s=1
s ̸=l

uj,s(k)es +
λrk+j

ωl2tj
xel +

(
2rk−1y − λrk+jx

ωl

)
e0 +

2rk−1ωky

λj−ml
ek.

If we set to simplify the notations

λj = λj−ml µj = 2tj

x′ =
λrk+j

ωl2tj
x y′ =

2rk−1

λj−ml
y

a = uj,0(k) b = uj,l(k)

then

zj(k)− uj(k) =
(
λjy

′ − µjx
′ − a

)
e0 + (x′ − b)el + y′ωkek.

We are now ready to choose x′ and y′, namely x and y. We indeed set

x′ = b and y′ =
a+ µjb

λj

so that

zj(k)− uj(k) =

(
a+ µjb

λj

)
ωkek.

Therefore, by 1-unconditionality of (ek), since tj ≤ j −ml, λ ≥ 2 and ωk ≤ (1− ε)−1,

∥zj(k)− uj(k)∥ ≤ 1 + µj

λj
ωk∥uj(k)∥

≤
(
1

λ
+

2

λ

)
ωk∥uj(k)∥

≤ 3

λ(1− ε)
∥uj(k)∥ ≤ ε∥uj(k)∥
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by our choice of λ. Finally observe that

∥vj(k)∥ ≤
k−1∑
s=1
s ̸=l

∥uj(k)∥
λrk

+
ωl2

tj

λrk
∥uj(k)∥+

λj−ml

2rk−1
× 3

λ
∥uj(k)∥

≤ k

(
k−1∑
s=1

1

λrk
+

ωl2
mk

λrk
+

3λmk−1

2rk−1

)
≤ k−2

provided rk has been chosen large enough.

2.6. Concluding remarks and questions. Observe that in Theorem 1.2, we assume a

priori that (fn) is normalized which was not the case for (en). Indeed, if we normalize

(fn), this could destroy the continuity of the associated backward shift operator.

Following [5], we can slightly enlarge the scale of spaces where it is possible to produce

such an example. Indeed, observe that, by adjusting (mk) and (rk) during the construction

(we may ask that rk is bigger than any prescribed value), it is possible to ensure that T

satisfies the ε-hypercyclicity criterion with the sequence (nk) chosen as a subsequence of a

prescribed sequence (pk). Arguing like in [5, Theorem 4.10], we get therefore the following

corollary.

Corollary 2.3. Let Z be a separable Banach space. Assume that Z admits an infinite

dimensional complemented subspace
⊕

Y X, where X is an infinite dimensional separable

Banach space with a 1-unconditional basis and Y is an infinite dimensional separable

Banach space with a normalized 1-unconditional basis such that the associated backward

shift operator is continuous. Then for all ε ∈ (0, 1), there exists an operator on Z which

is not δ-hypercyclic for all δ ∈ (0, ε) and which is δ-hypercyclic for all δ ∈ (ε, 1).

Writing V =
⊕

Y X and Z = V ⊕W , the main step is to define T = T1⊕T2 where T2 is a

hypercyclic operator satisfying the hypercyclicity criterion and T1 is the operator defined

above. In particular, if Z contains a complemented copy of c0(N) or of ℓp(N), p ∈ [1,+∞),

then it satisfies the assumptions of Corollary 2.3.

To conclude, we observe that we can give an additional property of our operator when it

is defined on ℓ1.

Theorem 2.4. Assume that X = Y = ℓ1. Then T is not ε-hypercyclic.

Proof. By contradiction assume that u is an ε-hypercyclic vector for T . Let us introduce

M = max |un,0|, v = (e0, 0, . . . ), I =
[
2M
1−ε ,+∞

)
and for n ∈ N,

In = I ∩ {a ∈ R : ∥Tnu− av∥ ≤ εa}
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so that I =
⋃

n In. We first observe that if n = mk for some k, then In is empty. Indeed,

for these values of n, since A1 · · ·Anun = un, we get

∥Tnu− av∥ ≥ ∥un − ae0∥
≥ |un,0 − a|

≥ a− 1− ε

2
a

≥
(
1

2
+

ε

2

)
a > εa = ε∥v∥.

Let N = {n ∈ N : In ̸= ∅}. For n ∈ N , let a ∈ In. Since n ̸= mk, we know that

A1 · · ·An(un) = (un,0 + xn)e0 + xnεek + wn for some xn ∈ C and some wn ∈ ℓ1 with

e∗0(wn) = e∗k(wn) = 0. Therefore

εa ≥ ∥Tnu− av∥
≥ |un,0 + xn − a|+ |xn|ε.

Arguing as above, we find ℜe(xn) ≥ 0 so that

εa ≥ |ℜe(un,0) + ℜe(xn)− a|+ ℜe(xn)ε.

We thus find {
εa ≥ ℜe(un,0) + ℜe(xn)− a+ ℜe(xn)ε
εa ≥ a−ℜe(xn)−ℜe(un,0) + ℜe(xn)ε

which in turn yields

ℜe(xn) +
ℜe(un,0)
1 + ε

≤ a ≤ ℜe(xn) +
ℜe(un,0)
1− ε

.

In particular, ℜe(un,0) must be positive and In is contained in an interval of length

cℜe(un,0) for some c > 0. But since we are working on ℓ1,
∑

n |ℜe(un,0)| < +∞, which

contradicts that I =
⋃

n In has infinite length. □

Corollary 2.5. Let ε ∈ (0, 1). There exists an operator T on ℓ1 which is δ-hypercyclic

operator for all δ ∈ (ε, 1) and which is not ε-hypercyclic.

This leads to the following natural question:

Question 2.6. Let ε ∈ (0, 1). Does there exist an operator which is δ-hypercyclic if and

only if δ ∈ [ε, 1)?
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