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Introduction

Let X be a separable infinite dimensional Banach space. During the last decades the properties of the orbits of operators acting on X have been widely studied. In particular, the notion of hypercyclic operators, namely operators with a dense orbit, has drawn the attention of many mathematicians (see for instance [START_REF] Bayart | Dynamics of linear operators[END_REF]). It seems natural in this context to investigate operators having orbits with a property slightly weaker than denseness. Does this imply that the operator admits a dense orbit? For instance, N. Feldman has shown in [START_REF] Feldman | Perturbations of hypercyclic vectors[END_REF] that if there is an orbit of T ∈ L(X) which meets every ball of radius d > 0, then T is hypercyclic. The following definition concerning operators admitting an orbit which intersects every cone of aperture ε has been introduced in [START_REF] Badea | Epsilon-hypercyclic operators[END_REF]. Definition 1.1. Let ε ∈ (0, 1). A vector x ∈ X is called an ε-hypercyclic vector for T ∈ L(X) provided for every non-zero vector y ∈ X, there exists an integer n ∈ N such that ∥T n x-y∥ ≤ ε∥y∥. The operator T is called ε-hypercyclic if it admits an ε-hypercyclic vector.

In [START_REF] Badea | Epsilon-hypercyclic operators[END_REF], the authors have shown that for every ε ∈ (0, 1), there exists an ε-hypercyclic operator on ℓ 1 (N) which is not hypercyclic. This was refined in [START_REF] Bayart | Epsilon-hypercyclic operators on a Hilbert space[END_REF] and [START_REF] Tapia-García | An epsilon-hypercyclicity criterion and its application on classical Banach spaces[END_REF] where similar examples are given on ℓ 2 (N) and on more general spaces. Moreover it is pointed out in [START_REF] Tapia-García | An epsilon-hypercyclicity criterion and its application on classical Banach spaces[END_REF]Remark 4.7] that the ε-hypercyclic operator which is considered in that paper is not even δ-hypercyclic for some δ ∈ (0, ε). This leaves open the following natural question: let X be a Banach space, let 0 < δ < ε < 1. Can we distinguish the class of δ-hypercyclic operators and that of ε-hypercyclic operators acting on X? We give a positive answer for a large class of Banach spaces. To state our result we recall some terminology. Let (e n ) n≥0 be a basis of X (namely every x ∈ X writes uniquely n≥0 x n e n ) and let C ≥ 1. We say that (e n ) n≥0 is C-unconditional if for any N ≥ 0, for any finite sequences of scalars (a n ) n=0,...,N and (b n ) n=0,...,N such that

|b n | ≤ |a n | for all n = 0, . . . , N , then N n=0 b n e n ≤ C N n=0
a n e n .

Let us fix now X and Y two Banach spaces and suppose that (f n ) is a 1-unconditional basis of Y . We denote by Y X the vector space

Y X := (x n ) ∈ X N : +∞ n=0 ∥x n ∥ X f n ∈ Y
and we endow it by

∥(x n )∥ = +∞ n=0 ∥x n ∥ X f n Y .
It is standard that Y X is a Banach space. Our main theorem now reads.

Theorem 1.2. Let X be an infinite dimensional separable Banach space with a 1-unconditional basis, let Y be an infinite dimensional separable Banach space with a normalized 1-unconditional basis such that the associated backward shift operator is continuous. For all ε ∈ (0, 1), there exists an operator on Z = Y X which is not δ-hypercyclic for all δ ∈ (0, ε) and which is δ-hypercyclic for all δ ∈ (ε, 1).

Observe that if X is either c 0 (N) or ℓ p (N), p ∈ [1, +∞), then X is isometric to X X by using the canonical basis of X. Therefore, it satisfies the assumptions of the previous theorem. Recall also that if T is ε-hypercyclic for all ε ∈ (0, 1), then it is hypercyclic (see [START_REF] Badea | Epsilon-hypercyclic operators[END_REF]Theorem 1.3]). We will need a way to prove that an operator is ε-hypercyclic. We state here a variant of the ε-hypercyclicity criterion given in [START_REF] Tapia-García | An epsilon-hypercyclicity criterion and its application on classical Banach spaces[END_REF]Theorem 1.2]. Its proof is completely similar. Theorem 1.3. Let X be an infinite dimensional separable Banach space, let T ∈ L(X) and let ε ∈ (0, 1). Assume that there exist a dense subset D of X, a sequence (u(k)) dense in X such that that, for all k ≥ 0, u(k) = u(l) for infinitely many integers l, a sequence (v(k)) of vectors in X and an increasing sequence of positive integers (n k ) such that

• lim k→+∞ ∥T n k x∥ = 0 for all x ∈ D; • lim k→+∞ ∥v(k)∥ = 0; • for all k ≥ 0, ∥T n k v(k) -u(k)∥ ≤ ε∥u(k)∥.
Then T is δ-hypercyclic for all δ > ε.

The remaining part of the paper is devoted to the proof of Theorem 1.2.

Proofs

2.1.

A geometric lemma in dimension 2. The construction ultimately relies on the following fact regarding normed spaces of dimension 2. It deals with the distance of some fix vector to lines depending on a parameter. Lemma 2.1. Let F be a normed space of dimension 2, let (u, v) be a normalized basis of F , let (u * , v * ) be the dual basis and assume that ∥u * ∥ = ∥v * ∥ = 1. For all ε ∈ (0, 1), there exists

ω ∈ [ε, ε(1 -ε) -1 ] such that min y∈C ∥(y -1)u + yωv∥ = ε. Proof. When ω = ε, min y∈C ∥(y -1)u + yωv∥ ≤ ∥ωv∥ ≤ ε. When ω = ε(1 -ε) -1 , for all y ∈ C, ∥(y -1)u + yωv∥ ≥ max(|y -1|, |y|ω). Now, if |y| ≥ 1/(1 + ω), |y|ω ≥ ω/(1 + ω) ≥ ε and if |y| ≤ 1/(1 + ω), |y -1| ≥ 1 - 1 1 + ω = ε.
Therefore, min y∈C ∥(y -1)u + yωv∥ ≥ ε. The result follows by continuity of ω → min y∈C ∥(y -1)u + yωv∥. □ Remark 2.2. If ∥au + bv∥ = (|a| p + |b| p ) 1/p for some p ∈ (1, +∞), then it is easy to prove that the value of ω is given by ω

(1 + ω p p-1 ) p-1 p = ε
and that the minimum is attained at

y = 1 1 + ω p p-1 . When p = 1, ω = ε and y = 1. When p = ∞, ω = ε
1-ε and y = 1 1+ω = 1 -ε. This corresponds to the extremal cases of Lemma 2.1.

2.2.

The construction of a sequence of operators on X. As the previous constructions of ε-hypercyclic operators which are not δ-hypercyclic, our operator will be an operator weighted shift. The next part of the proof consists in defining his weights. We denote by (e n ) (resp. (f n )) the 1-unconditional basis of X (resp. Y ) which appears in the statement of Theorem 1.2. We may assume that (e n ) is normalized which implies (by 1-unconditionality) that (e * n ) is normalized too. The strategy is the following. At each step k we will define weights

A m k +1 , • • • , A m k+1 such that the products A m k +1 • • • A j , j = m k + 1, .
. . , m k+1 leave e 0 invariant, send e k onto the line defined by Lemma 2.1 and e l onto a multiple of e l for l ̸ = k. Therefore, provided e * 0 (u) is small, A m k +1 • • • A j (u) can be close to e 0 , but not too close. We proceed with the details. We set

λ = 3 ε(1 -ε) and κ = (1 + λ) + max(1 + ε(1 -ε) -1 , 2/ε).
We exhibit two sequences of integers (m k ) k≥1 and (r k ) k≥1 and a sequence of operators (A j ) j≥1 on X such that, for all k ≥ 1,

(i) A n e 0 = e 0 for all n = m k + 1, . . . , m k+1 ; (ii) A n is invertible, ∥A n ∥ ≤ κ for all n = m k + 1, . . . , m k+1 ; (iii) A m k +1 • • • A m k+1 = Id.
We initialize the construction by setting m 1 = 0. We assume that the construction has been done until step k -1 to do it at step k ≥ 1. We thus have to define m k+1 , r k and (A j ) j=m k +1,...,m k+1 . We set F k = span(e 0 , e k ) and G k = span(e l : l ̸ = 0, k) so that Let r k > 0 be a very large integer (more precise conditions on r k will be given later) and let us set 

X = F k ⊕ G k . Let ω k ∈ [ε, ε(1 -ε) -1 ]
m k+1 = m k + r k + k + 1. For j = 1, . . . , r k + k + 1, we define A m k +j by • A m k +j (e 0 ) = e 0 . •                A m k +1 (e k ) = e 0 + ω k e k A m k +2 (e k ) = • • • = A m k +r k (e k ) = 2e k A m k +r k +1 (e k ) = • • • = A m k +r k +k-1 (e k ) = e k A m k +r k +k (e k ) = 1 2 r k -1 e k A m k +r k +k+1 (e k ) = -1 ω k e 0 + 1 ω k e k . • for l ̸ = 0, k, A m k +j (e l ) = λe l , j = 1, . . . , r k + k, A m k +r k +k+1 (e l ) =
k ∈ [ε, ε(1 -ε) -1 ].
To go further with the properties of (A j ) we need to compute

A m k +1 • • • A m k +j e k for j = 1, . . . , r k + k + 1. We find A m k +1 • • • A m k +j e k =              e 0 + ω k e k j = 1 2 j-1 e 0 + 2 j-1 ω k e k j = 2, . . . , r k 2 r k -1 e 0 + 2 r k -1 ω k e k j = r k + 1, . . . , r k + k -1 e 0 + ω k e k j = r k + k e k j = r k + k + 1.
We then deduce the following formula, which will be equally important:

A -1 m k +j • • • A -1 m k +1 e k =                    -1 ω k e 0 + 1 ω k e k j = 1 -1 ω k e 0 + 1 2 j-1 ω k e k j = 2, . . . , r k -1 ω k e 0 + 1 2 r k -1 ω k e k j = r k + 1, . . . , r k + k -1 -1 ω k e 0 + 1 ω k e k j = r k + k e k j = r k + k + 1.
2.3. The operator. We now glue together these maps. We formally define T on Z = Y X by T (u 0 , u 1 , . . . ) = (A 1 u 1 , A 2 u 2 , . . . ).

Let K 1 be the norm of the backward shift operator associated to (f n ). Then for u = (u 0 , u 1 , . . . ),

∥T u∥ = +∞ n=1 ∥A n u n ∥ X f n-1 Y ≤ K 1 +∞ n=1 ∥A n ∥ • ∥u n ∥ X f n Y ≤ K 1 κ∥u∥
which implies that T is well defined and maps boundedly Z into itself.

2.4. T is not δ-hypercyclic for any δ ∈ (0, ε). By contradiction, assume that T is δ-hypercyclic for some δ ∈ (0, ε) and let u = (u 0 , u 1 , . . . ) be a δ-hypercyclic vector for T .

Observe that ∥u n ∥ → 0 so that u n,0 := e * 0 (u n ) → 0. Therefore it is possible to fix K > 0 such that |K -u n,0 |ε > δK for any n ≥ 0.

We set v = (Ke 0 , 0, . . . ). Let n ≥ 1 be such that ∥v -T n u∥ ≤ δ∥v∥ and let k ≥ 1 be such that n ∈ [m k + 1, m k+1 ]. Let us write u n = u n,0 e 0 + w n with e * 0 (w n ) = 0. Then by using (i) and (iii),

∥v -T n u∥ ≥ ∥Ke 0 -A 1 • • • A n (u n )∥ ≥ ∥Ke 0 -A m k +1 • • • A n (u n,0 e 0 + w n )∥ ≥ ∥(K -u n,0 )e 0 -A m k +1 • • • A n (w n )∥. If n = m k+1 , then A m k +1 • • • A n (w n ) = w n and ∥v -T n u∥ ≥ |K -u n,0 | ≥ ε|K -u n,0 | > δ∥v∥. If n ̸ = m k+1 , then A m k +1 • • • A n (w n ) = x n e 0 + x n ω k e k + w ′ n for some w ′ n ∈ G k and some x n ∈ C. Therefore ∥v -T n u∥ ≥ (K -u n,0 ) -x n e 0 + x n ω k e k ≥ ε|K -u n,0 | > δ∥v∥
where we have used [START_REF] Badea | Epsilon-hypercyclic operators[END_REF]. In both cases, we find a contradiction.

2.5.

T is δ-hypercyclic for all δ ∈ (ε, 1). Let δ ∈ (ε, 1) and let us prove that T is δhypercyclic by applying Theorem 1.3. Let (u(k)) be a dense sequence in Z such that each u(k) may be written u(k) = (u 0 (k), . . . , u k-1 (k), 0, . . . ) with u j (k) ∈ span(e 0 , . . . , e k-1 ) and ∥u j (k)∥ ≤ k. Moreover for any k ≥ 1, we assume that there exist infinitely many integers ℓ with u(k) = u(ℓ). We want to find a sequence of vectors (v(k)) in Z and a sequence of integers (n k ) such that ∥v(k)∥ → 0 and ∥T n k v(k) -u(k)∥ ≤ ε∥u(k)∥ for all k ≥ 1. We will define v(k) = (0, . . . , 0, v 0 (k), . . . , v k-1 (k), 0, . . . ) where v 0 (k) is at the (m k + r k )-th position. Let k ≥ 1, let j ∈ {0, . . . , k -1} and let us write

u j (k) = k-1 s=0 u j,s (k)e s .
Let l be the unique integer such that m l ≤ j < m l+1 . We will search v j (k) under the form

v j (k) = k-1 s=1 s̸ =l u j,s (k) λ r k +j λ j-m l e s + xe l + ye k
where x and y will be chosen so that

∥A j+1 • • • A m k +r k +j (v j (k)) -u j (k)∥ ≤ ε∥u j (k)∥
and ∥v j (k)∥ ≤ k -2 . Upon this has been done, we can easily apply Theorem 1.3 to deduce that T is δ-hypercyclic for δ > ε. Indeed, T has a dense generalized kernel and, for all k ≥ 1,

∥v(k)∥ = k-1 j=0 ∥v j (k)∥f m k +r k +j ≤ k-1 j=0 ∥v j (k)∥ ≤ 1 k . Moreover T m k +r k (v(k)) = (A 1 • • • A m k +r k (v 0 (k)), . . . , A k • • • A k +r k +k-1 (v k-1 (k)), 0, . . . ).
Therefore,

∥u(k) -T m k +r k (v(k))∥ = k-1 j=0 ∥A j+1 • • • A m k +r k +j (v j (k)) -u j (k)∥ f j ≤ ε k-1 j=0 ∥u j (k)∥f j ≤ ε∥u(k)∥.

So let us compute

A j+1 • • • A m k +r k +j (v j (k)) =: z j (k). z j (k) = A -1 j • • • A -1 1 A 1 • • • A m k +r k +j (v j (k)) = A -1 j • • • A -1 m l +1 A m k +1 • • • A m k +r k +j (v j (k)) = A -1 j • • • A -1 m l +1    k-1 s=1 s̸ =l λ j-m l u j,s (k)e s + λ r k +j xe l + 2 r k -1 ye 0 + 2 r k -1 yω k e k    .
The easiest case is when j = m l . In that case,

z j (k) = 2 r k -1 ye 0 + k-1 s=1 s̸ =l u j,s (k)e s + λ r k +j xe l + 2 r k -1 yω k e k .
We simply choose x = 1 λ r k +j u j,l (k) and y = y k 2 r k -1 u j,0 (k) so that by (1)

∥z j (k) -u j (k)∥ = |u j,0 (k)| • ∥(y k -1)e 0 + y k ω k e k ∥ ≤ ε|u j,0 (k)| ≤ ε∥u j (k)∥ whereas ∥v j (k)∥ ≤ k-1 s=1 ∥u j (k)∥ λ r k + |y k | • ∥u j (k)∥ 2 r k -1 ≤ k -2
provided r k is sufficiently large.

Let us now turn to j > m l . In that case, there exists 0 ≤ t j ≤ j -m l such that

z j (k) = k-1 s=1 s̸ =l u j,s (k)e s + λ r k +j ω l 2 t j xe l + 2 r k -1 y - λ r k +j x ω l e 0 + 2 r k -1 ω k y λ j-m l e k .
If we set to simplify the notations

λ j = λ j-m l µ j = 2 t j x ′ = λ r k +j ω l 2 t j x y ′ = 2 r k -1 λ j-m l y a = u j,0 (k) b = u j,l (k) then z j (k) -u j (k) = λ j y ′ -µ j x ′ -a e 0 + (x ′ -b)e l + y ′ ω k e k .
We are now ready to choose x ′ and y ′ , namely x and y. We indeed set

x ′ = b and y ′ = a + µ j b λ j so that

z j (k) -u j (k) = a + µ j b λ j ω k e k .
Therefore, by 1-unconditionality of (e k ), since t j ≤ j -m l , λ ≥ 2 and

ω k ≤ (1 -ε) -1 , ∥z j (k) -u j (k)∥ ≤ 1 + µ j λ j ω k ∥u j (k)∥ ≤ 1 λ + 2 λ ω k ∥u j (k)∥ ≤ 3 λ(1 -ε) ∥u j (k)∥ ≤ ε∥u j (k)∥
by our choice of λ. Finally observe that

∥v j (k)∥ ≤ k-1 s=1 s̸ =l ∥u j (k)∥ λ r k + ω l 2 t j λ r k ∥u j (k)∥ + λ j-m l 2 r k -1 × 3 λ ∥u j (k)∥ ≤ k k-1 s=1 1 λ r k + ω l 2 m k λ r k + 3λ m k -1 2 r k -1 ≤ k -2
provided r k has been chosen large enough.

2.6. Concluding remarks and questions. Observe that in Theorem 1.2, we assume a priori that (f n ) is normalized which was not the case for (e n ). Indeed, if we normalize (f n ), this could destroy the continuity of the associated backward shift operator. Following [START_REF] Tapia-García | An epsilon-hypercyclicity criterion and its application on classical Banach spaces[END_REF], we can slightly enlarge the scale of spaces where it is possible to produce such an example. Indeed, observe that, by adjusting (m k ) and (r k ) during the construction (we may ask that r k is bigger than any prescribed value), it is possible to ensure that T satisfies the ε-hypercyclicity criterion with the sequence (n k ) chosen as a subsequence of a prescribed sequence (p k ). Arguing like in [START_REF] Tapia-García | An epsilon-hypercyclicity criterion and its application on classical Banach spaces[END_REF]Theorem 4.10], we get therefore the following corollary.

Corollary 2.3. Let Z be a separable Banach space. Assume that Z admits an infinite dimensional complemented subspace Y X, where X is an infinite dimensional separable Banach space with a 1-unconditional basis and Y is an infinite dimensional separable Banach space with a normalized 1-unconditional basis such that the associated backward shift operator is continuous. Then for all ε ∈ (0, 1), there exists an operator on Z which is not δ-hypercyclic for all δ ∈ (0, ε) and which is δ-hypercyclic for all δ ∈ (ε, 1).

Writing V = Y X and Z = V ⊕ W , the main step is to define T = T 1 ⊕ T 2 where T 2 is a hypercyclic operator satisfying the hypercyclicity criterion and T 1 is the operator defined above. In particular, if Z contains a complemented copy of c 0 (N) or of ℓ p (N), p ∈ [1, +∞), then it satisfies the assumptions of Corollary 2.3.

To conclude, we observe that we can give an additional property of our operator when it is defined on ℓ 1 .

Theorem 2.4. Assume that X = Y = ℓ 1 . Then T is not ε-hypercyclic. Arguing as above, we find ℜe(x n ) ≥ 0 so that εa ≥ |ℜe(u n,0 ) + ℜe(x n ) -a| + ℜe(x n )ε.

We thus find εa ≥ ℜe(u n,0 ) + ℜe(x n ) -a + ℜe(x n )ε εa ≥ a -ℜe(x n ) -ℜe(u n,0 ) + ℜe(x n )ε which in turn yields ℜe(x n ) + ℜe(u n,0 ) 1 + ε ≤ a ≤ ℜe(x n ) + ℜe(u n,0 ) 1 -ε .

In particular, ℜe(u n,0 ) must be positive and I n is contained in an interval of length cℜe(u n,0 ) for some c > 0. But since we are working on ℓ 1 , n |ℜe(u n,0 )| < +∞, which contradicts that I = n I n has infinite length. □ Corollary 2.5. Let ε ∈ (0, 1). There exists an operator T on ℓ 1 which is δ-hypercyclic operator for all δ ∈ (ε, 1) and which is not ε-hypercyclic.

This leads to the following natural question:

Question 2.6. Let ε ∈ (0, 1). Does there exist an operator which is δ-hypercyclic if and only if δ ∈ [ε, 1)?

  be given by Lemma 2.1 for F = F k and let y k ∈ C minimizing y → ∥(y -1)e 0 + yω k e k ∥. Since (e n ) is a 1-unconditional basis of X, we deduce from the definition of ω k and y k that (1) min y∈C, w∈G k ∥(y -1)e 0 + yω k e k + w∥ = ∥(y k -1)e 0 + y k ω k e k ∥ = ε.

1 λ

 1 r k +k e l . The invertibility of each A n comes from the invertibility of its restriction to F k and to G k . Furthermore we prove ∥A n ∥ ≤ κ. For n = m k + 1, . . . , m k+1 , for a, b ∈ C and w ∈ G k , A n (ae 0 + be k + w) ≤ |a| + |b| max(1 + ω k , 2, 2/ω k ) + λ∥w∥ ≤ κ∥ae 0 + be k + w∥ where we have taken into account that ω

Proof.

  By contradiction assume that u is an ε-hypercyclic vector for T . Let us introduce M = max |u n,0 |, v = (e 0 , 0, . . . ), I = 2M 1-ε , +∞ and for n ∈ N,I n = I ∩ {a ∈ R : ∥T n u -av∥ ≤ εa} so that I = n I n .We first observe that if n = m k for some k, then I n is empty. Indeed, for these values of n, sinceA 1 • • • A n u n = u n , we get ∥T n u -av∥ ≥ ∥u n -ae 0 ∥ ≥ |u n,0 -a| = ε∥v∥.Let N = {n ∈ N :I n ̸ = ∅}. For n ∈ N , let a ∈ I n . Since n ̸ = m k , we know that A 1 • • • A n (u n ) = (u n,0 + x n )e 0 +x n εe k + w n for some x n ∈ C and some w n ∈ ℓ 1 with e * 0 (w n ) = e * k (w n ) = 0. Therefore εa ≥ ∥T n u -av∥ ≥ |u n,0 + x n -a| + |x n |ε.
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