
HAL Id: hal-04048199
https://hal.science/hal-04048199

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A conditional time-intervals formulation of the real-time
Railway Traffic Management Problem

Grégory Marlière, Sonia Sobieraj Richard, Paola Pellegrini, Joaquin Rodriguez

To cite this version:
Grégory Marlière, Sonia Sobieraj Richard, Paola Pellegrini, Joaquin Rodriguez. A conditional time-
intervals formulation of the real-time Railway Traffic Management Problem. Control Engineering
Practice, 2023, 133, pp.105430. �10.1016/j.conengprac.2022.105430�. �hal-04048199�

https://hal.science/hal-04048199
https://hal.archives-ouvertes.fr

A Conditional Time-Intervals formulation of the
real-time Railway Traffic Management Problem

Grégory Marlièrea, Sonia Sobieraj Richarda, Paola Pellegrinia, Joaquin
Rodrigueza,

aCOSYS-ESTAS, Univ. Gustave Eiffel, Campus de Lille, 20 rue Elisée
Reclus, Villeneuve d’Ascq, F-59650, France

Abstract

This paper tackles the real-time Railway Traffic Management Problem
(rtRTMP). It is the problem of finding optimal choices for train schedules
and routes to minimize delays due to conflicts. We present a new Con-
straint Programming (CP) algorithm for the rtRTMP. The new formulation
at the basis of this algorithm exploits the concept of conditional time-interval
variables provided in the CP Optimizer library. A time-interval variable as-
sumes a value representing either the time interval in which an activity is
executed, or a quantity “⊥” indicating that the activity is non-executed.
The new formulation exploits this new kind of variables, and specific con-
straint propagation techniques contribute to the efficiency of the algorithm.
This efficiency is assessed in a wide experimental analysis based on five rail-
way control areas. The algorithm performance is compared to the one of the
state-of-the-art algorithm RECIFE-MILP based on a mixed-integer linear
programming (MILP) formulation. Moreover, an hybridization of RECIFE-
MILP and the proposed algorithm is proposed. It often outperforms the two
individual approaches, while the opposite never happens.

Keywords:
Real Time Traffic Management, Train Dispatching Problem, rerouting and
reordering trains, Minimize secondary delays, Constraint Propagation

Preprint submitted to Control Engineering Practice March 27, 2023

1. Introduction

The design of railway services is a complex process. Here, the planning
of train schedules and necessary resources is made at the tactical level. How-
ever, at the operational level, operators need to make control decisions to
manage perturbations as late train arrivals, bad weather conditions or extra
passenger flow. Indeed, at the tactical level, time allowances are introduced
in train schedules, at station arrival and departure and other relevant control
points. The values of these time allowances should make it possible to recover
from the consequences of perturbations. Nevertheless, in railway networks
with dense and heterogeneous traffic, time allowances are not always suffi-
cient and delays due to perturbations propagate in a snowball (or domino)
effect. Delays due to propagation are called secondary delays. Secondary
delays occur when two trains running at the planned speed would claim a
track section at the same time. When this happens, a conflict emerges. An
order decision must be made, and one of the two competing trains must be
slowed down or stopped. Conflicts are managed by dispatchers in charge
of traffic within a specific control area. Dispatchers aim to reduce the neg-
ative impacts of conflicts by means of appropriate decisions through train
retiming, rerouting and reordering. The problem of optimally making these
decisions is formalized at microscopic level as the real-time Railway Traffic
Management Problem (rtRTMP) (Pellegrini et al., 2014). The solution of the
rtRTMP must satisfy the constraints imposed by the signalling system and
other service needs such as train connections. The time available for making
decisions is limited by the real-time nature of the problem. To consider the
use of a solution algorithm for rtRTMP in a real-time traffic control loop,
its computation time must be short. This time must be less than the period
of the control loop. A review of published algorithms for rtRTMP used in
a real-time traffic control loop performed in the European X2Rail-4 project
is reported by Söhlke and Rodrigues (2022). The values envisaged for the
period of the control loop go from 60 to 480 seconds. These values may seem
large, but they must be considered with regard to the specificities of the
rail traffic management process. Although full automation of traffic manage-
ment can be expected in the future with advances in rtRTMP algorithms,
some railway infrastructure managers are keen to keep the human-in-the-
loop principle. With the human-in-the-loop, dispatchers are meant to assess
and possibly modify algorithm decisions. In this situation, it is not possible
to solicit the dispatcher with new solutions too frequently. How to choose

2

the best control loop period is an open question that will require extensive
field experimentation. In the meantime, a period of a few minutes is gener-
ally considered to be reasonable. However, it shall be emphasized that the
period of the real-time traffic control loop should not be confused with the
response time of an algorithm designed to be triggered by a dispatcher for a
specific situation. In the latter case, infrastructure managers wish a shorter
response time, of around 30 seconds (Söhlke and Rodrigues, 2022). Indeed,
experiments must also be carried out with dispatchers to find the compro-
mise between the computation time wished and the quality of the solution
provided.

A rich literature exists on approaches tackling various variants of the
rtRTMP. We refer the interested reader to Lusby et al. (2011), Cacchiani
et al. (2014), Fang et al. (2015) for relevant literature surveys. Following
the classification proposed by Cacchiani et al. (2014), the rtRTMP variant
we tackle focuses on dealing with perturbations (or disturbances), considers
microscopic level of details of the railway system, and optimizes a train-
centered objective function. The surveys point out that integer and mixed
integer linear programming (ILP and MILP, respectively) are the most pop-
ular techniques used for this variant, along with graph models. Instead,
constraint programming (CP) ones are very seldom used. Nevertheless, CP
has some undeniable merits which make it interesting to develop a new CP
model for the rtRTMP.

Among the advantages of CP, there is the ability to handle arbitrary (non-
linear) constraints and to use propagation to tighten variable domains. CP
also has the general advantage of well capturing the combinatorial complexity
of the problem. However, a weakness of CP is that it has to perform the con-
straint propagation for each constraint individually to obtain a global view.
This weakness can be compensated with high-level global constraints that
represent a group of simpler constraints to improve constraint propagation.

Many benchmark studies between CP and MILP conclude that neither
outperforms the other, except for specific problems. Since the 1990s, much re-
search has been conducted to combine their complementary strengths (Hooker
and van Hoeve, 2018). One approach for the integration of the two techniques
is to create for a given CP model, a linear programming (LP) model from
a set of constraints which represent a specific combinatorial structure. The
linear relaxation of this LP model gives bounds and can be used to guide the
search.

The development of the new CP model for rtRTMP presented in this

3

article is based on the CP Optimizer library (Laborie et al., 2018). It provides
a component that exploits the linear relaxation of a scheduling model to
handle temporal decisions.

The main contributions of this paper are summarized as follows:

• A new CP microscopic formulation of the rtRTMP based on CP conditional-
interval variables is proposed and validated,

• In our model, train retiming, reordering and rerouting decisions are
made considering characteristics of the signalling system such as track
detection sections, block signal limits, multi-aspect signalling and route-
lock sectional-release interlocking principle,

• The new CP model allows a compact formulation with relatively few
variables and constraints, enabling to push the applicability to large
problem instances,

• Global constraints and high-level temporal constraints between groups
of activities have been introduced to allow partial assignment of routes,
along with an improved constraint propagation on shared track sections
between several train route options,

• The experimental study integrates a benchmarking between two dif-
ferent formulation paradigms, i.e., CP and MILP, for the rtRTMP, to
highlight their strengths and weaknesses,

• Experiments are conducted based on a larger set of real-world railway
instances in comparison with most existing publications. These are
diversified instances of increasing difficulty, based on four infrastruc-
ture case studies and covering many different configurations such as
junctions, stations and bi-directional line corridors,

• A fifth artificial control area representing a generic station has been de-
signed and made available for result reproducibility and benchmarking
as the data of the four real control areas are protected by confidentiality
clauses,

• A solution algorithm using the hybridization of a CP and a MILP model
is also proposed and validated. To the best of our knowledge this kind
of hybridization has never been applied to solve the rtRTMP.

4

The paper is structured as follows. Section 2 reviews contributions to the
three levels of control in the field of real-time rail traffic management. Sec-
tions 3 explains the concept of the conditional time-interval variables. Sec-
tion 4 describes the general modeling principles we consider for the rtRTMP.
Section 5 details RECIFE-CPI, including the novel formulation and the so-
lution process. Section 6 sketches the functioning of the RECIFE-MILP
algorithm. Section 7 reports on the experiments setup and discusses the
results obtained when comparing RECIFE-CPI and RECIFE-MILP. Then,
Section 8 proposes and assesses experimentally the hybridization of these
algorithms. Finally, Section 9 reports our conclusions.

2. Literature review

The field of real-time rail traffic management has given rise to numerous
research works over the past decades. This section gives a brief overview of
some of the results obtained so far. Many rail networks organize real-time
rail traffic management into three control levels : (1) train control level, (2)
local area control level, and (3) network control level. To give a broader view
of the context of the rtRTMP addressed in this article, the literature review
is structured according to these three levels of control.

2.1. Level 1 - Train control
At train control level, the control variables are the train tractive and

braking effort. Before the start of the service, the driver is informed of the
main time points of the journey, in addition with other technical constraints
of the track or the rolling stock. During the trip, the driver has to adhere
to the planned time points as much as possible. In addition, the train driver
may also try to minimize power consumption. To do so, the driver applies
specific tractive and braking effort along the journey. The problem of find-
ing the optimal values of tractive and braking effort and their sequence is
named train trajectory planning problem. This problem of optimal train
control is very complex, it has been addressed by many researchers from the
1960s and still has open issues. As in other application domains, three ba-
sic approaches address this optimal control problem: dynamic programming,
indirect methods, and direct methods (Diehl et al., 2006).

Dynamic programming (DP) simplifies the problem by breaking it down
into simpler subproblems, in a recursive manner. Approximations by dis-
cretization is needed to apply DP to discrete-time systems with continuous

5

state spaces. These approximations leads to exponential growth of the com-
putation time (Wang et al., 2013).

Indirect methods can be sketched as “first optimize, then discretize”.
These methods derive from the original problem a boundary value prob-
lem in ordinary differential equations. Based on the Pontryagin Maximum
Principle, the latter hard to solve problem is reformulated to obtain opti-
mal driving regimes (i.e., traction, cruising, coasting, and braking) and their
sequence (Howlett, 1990, 2000; Albrecht et al., 2016a,b). Most published
articles use the indirect approach with (heuristic) constructive methods to
find (sub)optimal driving strategies based on optimality conditions, with
simplifications or assumptions on driving regimes (Goverde et al., 2021).
The applicability of these models to real situations has been successfully
achieved. Some models have been integrated into on-board driver advisory
systems (DAS) deployed on some railway lines. The algorithms used in DAS
are heuristic methods based on indirect methods due to their computational
efficiency (Scheepmaker et al., 2017).

Direct methods can be sketched as “first discretize, then optimize”. These
methods transform the original problem into a finite dimensional non-linear
programming problem. The latter is then solved with efficient numerical
optimization methods. In the optimal train control literature, direct methods
have been used only recently. Most approaches are based on pseudospectral
methods (Wang et al., 2013; Wang and Goverde, 2016; Goverde et al., 2021).

When regenerative braking is possible, the optimal train control structure
is extended with additional driving regimes: regenerative braking can be used
for cruising or braking (Albrecht, 2010; Yang et al., 2015).

Some other researches on optimal train control consider the additional
operational constraints due the signalling system and the interactions with
other trains (Wang et al., 2014b; Wang and Goverde, 2016, 2017). These
models of muti-trains control can be considered as a step toward traffic con-
trol of the upper control levels.

For more references and detailed analysis on train control optimization,
the interested reader is referred to (Yang et al., 2016; Scheepmaker et al.,
2017; Yin et al., 2017; Goverde et al., 2021).

2.2. Level 2 - Local area traffic control
At the local area level, control variables are mostly the departure/arrival

time of trains at stations, the order of trains on track sections and the routes
to be followed by trains. In specific situations, control variables can include

6

reservicing decisions, e.g., stop-skipping. The local control areas considered
are junctions areas, stations areas or corridor lines. A dispatcher is in charge
of analyzing the traffic of a local control area, identify trains involved in po-
tential conflicts for track usage and make decisions to apply the appropriate
control actions to reduce passenger inconvenience. The most used indica-
tors are delays or travel time when passenger information is available. The
literature is very abundant on this subject. Therefore, we present only a
few representative publications. In the presentation, the first part concerns
works which use a microscopic approach. The second one those which use a
macroscopic approach. The third part is devoted to the integration of train
control with local traffic control.

2.2.1. Microscopic approaches
The papers reviewed here consider microscopic approaches of local traffic

control with train retiming, reordering rerouting actions. This optimization
controller problem is known as rtRTMP.

A rich literature exists on formulations and methods for solving the
rtRTMP, the reader is referred to Lusby et al. (2011), Cacchiani et al. (2014),
Corman and Meng (2015), Fang et al. (2015) for recent literature surveys.

We focus on three main streams of research grouping approaches based on
similar techniques: graph models, linear programming and CP approaches.

An important stream of research on the rtRTMP considers the alternative
graph formulation defined during the European project COMBINE, in Mascis
et al. (2002). In this formulation, each node of the graph corresponds to the
moment when a train enters a section of track, named block, where only one
train can circulate at each time instant. A fixed directed arc is defined for
each train movement through a block, linking a pair of nodes. A pair of
alternative directed arcs is defined for each pair of train movements through
a common block whose running time intervals may overlap, i.e., where a
conflict may occur. For each conflict, an arc is selected and to give priority
to the train that minimizes delay propagation. The feasibility of the final
schedule is checked by verifying that the selected arc do not create positive
length cycles. The longest path between source and sink node represents the
maximum train delay in the schedule. Without being exhaustive, we can
mention D’Ariano et al. (2007), D’Ariano et al. (2008), Mannino and Mascis
(2009), Corman et al. (2010b) as important contributions in this research
stream. When also rerouting is considered, a metaheuristic algorithm is
devoted to this facet of the problem, which iteratively defines train routes to

7

be used in the alternative graph (Samà et al., 2017).
(Xu et al., 2017) extended the AG model to take into account multi-aspect

signalling, moreover an average speed choice variable for each signalling block
allows to apply an adjusted blocking-time theory (Hansen, 2008) according
to the chosen average speed.

The second research stream we recall here uses the solution of (M)ILP
formulations of the problem as the main rationale of the approaches. These
approaches can be classified according to the way in which time is modeled.
In the first group, time is discretized in small intervals and time decisions
are binary variables indicating if a train movement takes place or not in a
specific interval. These are the so called time-indexed formulations. Caimi
et al. (2012), Lusby et al. (2013), Meng and Zhou (2014) and more recently
Reynolds et al. (2020) develop approaches based on time-indexed formula-
tions of the rtRTMP. In the second group, continuous variables represent
times, and the assume a value equal to the instant at which events (e.g.,
movements) occur. These are the continuous time formulations. Törnquist
and Persson (2007), Khosravi et al. (2012), Pellegrini et al. (2014), Fischetti
and Monaci (2017) and Luan et al. (2017a) are some relevant contributions
proposing approaches based on continuous time formulations.

The stream of rtRTMP research proposing CP approaches is much thin-
ner than for alternative graphs and (M)ILP. CP was initially used in railway
for dealing with timetabling problems (Fukumori, 1980; Isaai and Singh,
2000; Kreuger et al., 2001) and capacity studies (Rivier et al., 2001; Ingolitto
et al., 2004). To consider a microscopic representation of the infrastruc-
ture for the rtRTMP, Lamma et al. (1997) and Oliveira (2001) define a CP
formulation that manages train movements at block level. Rodriguez and
Kermad (1998) describes a formulation that manages train movements at
the track detection section level. The extensions of this model enable to take
into account unplanned accelerations/decelerations when trains are delayed
(Rodriguez, 2007a), an effective handling of opposite direction conflicts (Ro-
driguez, 2007b) and an algorithm that implements a dynamic analysis of the
search space called “texture measurement" (Rodriguez et al., 2010). Recently,
Cappart and Schaus (2017) proposes a CP approach exploiting conditional
time-interval variables, as we do in this paper. Specifically, train routing
choices are modeled as an alternative global constraint, which links condi-
tional time-intervals associated to each route choice. Another CP approach
is later designed by Kumar et al. (2018). These two approaches are theo-
retically interesting, but they are shown to be capable of tackling only very

8

simple instances.

2.2.2. Macroscopic approaches
Preliminary works on traffic control optimization for local areas with

macroscopic approaches only relate to metro lines. The schedules of these
lines are based on the respect of headways which include the minimum train
separation imposed by the signalling systems and a margin time. When
train delays are above the margin time, the lines are unstable and give rise
to the phenomenon of “bunching”: train delays are propagated to the fol-
lowing trains and delays increase at each station due to the accumulation of
passengers.

In Cury et al. (1980) and Araya and Sone (1984), an on-line optimization
model for automated guideway transit systems is proposed which define re-
timing actions at stations to optimize trip time and discomfort of passengers.

Based on the previous formulations, Van Breusegem et al. (1991) de-
fine a control law for a conventional metro line by solving an unconstrained
quadratic optimization problem.

In Fernandez et al. (2006) and Cucala et al. (2007), a model predictive
control (MPC) framework is used to improve the efficiency of the dispatcher.
An MPC strategy uses an explicit model of the system to be controlled, this
model is used to predict its future behavior over a finite time interval. The
on-line optimization control problem is solved by maximizing a performance
criteria subject to constraints between inputs and outputs. Only the first
step of the sequence of control actions is applied. The problem is solved
again at the next step of the control loop using updated measurements and
a shifted time interval (García et al., 1989).

More recently, Wang et al. (2022a) propose to tackle the joint train traf-
fic regulation and passenger flow control problems. The formulation of the
variation of train traffic is based on the one of Van Breusegem et al. (1991).

Adding or skipping stops, cancelling and short-turning trains are reservic-
ing control actions to recover from delays when disturbances occur in urban
lines. Many researchers have explored the benefits of these control actions.

Given an OD passenger demand, Wang et al. (2014c,a) address the prob-
lem of adding skip-stop decisions while minimizing energy consumption and
passenger travel times. An MPC controller is used to generate the schedule.
In Wang et al. (2015a), a new iterative convex programming (ICP) approach
is proposed to solve the train scheduling problem.

9

Altazin et al. (2017) tackle the stop-skipping problem during perturbation
situations. An integrated Integer Linear Programming model is proposed. Its
objective function minimizes both recovery time and waiting time of passen-
gers. In Altazin et al. (2020), a multi-objective optimization including all
actions previously mentioned and combined with a macroscopic simulation
is proposed. A tool embedding this algorithm has been tested by dispatchers
and the very positive results have encouraged a future deployment in the
control centers of Paris suburban lines.

2.2.3. Train control integration
The integration of train control and traffic control problems has been

addressed with different approaches. A straightforward approach is the se-
quential one, which first solves the train scheduling problem with fixed (ap-
proximate) speed profiles then calculates the energy-efficient speed profiles
of trains given the train orders on tracks (D’Ariano and Albrecht, 2006; Al-
brecht, 2009; Montrone et al., 2018).

A nearby approach is the iterative one with a closed-loop feedback control
between the optimization model that feeds the optimized speed profiles to
the scheduling optimization (Mazzarello and Ottaviani, 2007; Lüthi, 2009).

In Luan et al. (2017c, 2018a,c), three mathematical models address the
integration of the two problems with retiming and reordering trains as traffic
control actions.

A two-layer hierarchical MPC model of the two problems formulated with
MILP models is proposed by Wang et al. (2022b), the multi-aspect signalling
constraints inspired by Xu et al. (2017) are integrated in the lower-level train
control formulation.

2.3. Level 3 - Network traffic control
Most of the railway networks have network traffic control centers. After

perturbations which impact several local areas or (main) disruptions, opera-
tors are in charge to recover the normal traffic state as soon as possible.

Due to the extended area, solving a microscopic model over the whole
network is not possible. This problem has been addressed more recently,
the proposed approaches can be distinguished according to the assumptions
made on the local areas (stations).

Schutter et al. (2002) propose to use an MPC framework for minimizing
delays by breaking train connections at a cost in railway networks. The
railway MPC problem is formulated as an extended linear complementary

10

problem. This formulation is easier to tackle as it involves the solution of a
sequence of optimization problems with a convex feasible set.

Strotmann (2007) applies a microscopic model of alternative graph to the
entire network, then decomposes the graph into different subgraphs corre-
sponding to local areas. First, the local problems are solved with the sub-
graph models. The global feasibility of the local solutions is checked through
a coordinator graph induced by the analysis of border elements of subgraphs.
In case of infeasibility, a coordination procedure adds suitable constraints to
the subgraphs to lead the global feasibility, the additional constraints are cal-
culated from the mathematical properties of the coordinator graph. Further
research improves the coordination procedure and the local solution method
used (Corman et al., 2010a, 2012, 2014).

Kersbergen et al. (2016a) extend the switching max-plus-linear model
of van den Boom and De Schutter (2006) to minimize delays at network
level. The control actions considered are breaking connections, splitting
joined trains, retiming, reordering and choosing the track between successive
stations when two options are possible. A model predictive controller solves
the dispatching problem formulated as a MILP model. A geography-based
decomposition of the previous model is proposed in Kersbergen et al. (2016b).
The partitions of the railway network are determined by solving a mixed in-
teger quadratic program. The traffic of each sub-network is optimized by
a proper MPC. There is no coordination control level, all sub-network con-
trollers communicate and coordinate with each other through an iterative
algorithm to reach a feasible solution. The efficiency of this geography-based
decomposition is illustrated with perturbation scenarios on the entire Dutch
network.

Wang et al. (2015b) develop an event-driven model for a urban rail transit
network to define the optimal train retiming considering accurate passenger
transfer behavior.

Luan et al. (2017b) propose three decomposition approaches to tackle
the traffic management problem microscopically at network level, the mi-
croscopic model of Luan et al. (2017a) optimizes traffic at local areas level,
like Kersbergen et al. (2016b). Then, a coordination agreement is obtained
through the iterative exchange of values of coupling variables.

Toletti et al. (2020) proposes a coordination approach for local reschedul-
ing algorithms applied to adjacent control areas. The local rescheduling
algorithm is based on a resource conflict graphs as in Caimi et al. (2012).
The coordination problem is modeled by applying a Lagrangian relaxation

11

to the complicating or coupling constraints as in Luan et al. (2020).
Cavone et al. (2022) propose an algorithm that combines MPC with both

the macroscopic MILP model of Kersbergen et al. (2016b) and the mesoscopic
MILP model of Blenkers (2015). The algorithm is tested on a disruption case
study of the national Dutch railway network with 5 disruption durations
combined with 20 short delays scenarios giving 100 instances.

2.4. Discussion and research motivations
From the review of the literature of the previous sections, it may be

pointed out that the practical applicability of the results obtained at the
train control level has been successfully achieved. In particular, this holds
for the results that have been able to be transferred to DAS.

Demonstrating the applicability of the approaches for the local area and
network control levels is much more difficult, mainly due to the complexity
of setting up actual pilot tests.

We notice that most of the practical research in the field of rail traffic
management automation considers either the detailed sequence of driving
events at the train control level (c.f. Subsection 2.2.2), or the traffic events
at the macroscopic or mesoscopic level, such as arrivals/departures of trains
in stations (c.f. Section 2.1).

Almost all contributions in Section 2.2.2 consider only train retiming
and reordering. However, they neglect events related to train interactions
through the signalling system, such as a train passing within sight distance of
a restrictive aspect of a signal, a train passing through block signal boundaries
or the entry/exit of a train into/from a track detection section.

This level of detail of the signalling system is seldom used in the automatic
control approaches due to tractability issues (Luan et al., 2017c, 2018a,b;
Wang et al., 2022b). A frequent assumption for foregoing this level of detail
is that the interactions through these signalling events have negligible impact
on the choices of optimal traffic control actions, and therefore may also be
neglected in the formulation of the optimal traffic control problem.

Indeed, there are many situations where the simplifying assumptions hold.
For example, when one or many of the following conditions are met: timeta-
bles are designed with significant buffer times; the capacity of the infrastruc-
ture is sufficient to cover the traffic demand; the rail services are homoge-
neous; the configuration of the infrastructure makes it possible to separate
incompatible traffic flows, thus making it possible to avoid almost all conver-
gences and cutting-across conflicts.

12

Typical examples where these assumptions hold are on certain urban
lines where overtaking is almost never used or on lines where each track is
dedicated to one traffic direction. Most of the infrastructure case studies
tackled in the articles that use macroscopic approaches mentioned in Subsec-
tion 2.2.2 meet these conditions. The envisaged future deployment of Altazin
et al. (2020) results illustrates a successful validation of the simplifying as-
sumptions and the proposed optimization control model.

Other constraints that are sometimes neglected are coupling constraints
between trains due to platform turnaround or passenger transfer constraints
at stations. The first assumption is valid when only one traffic direction is
considered possible on a line, and the second one when the line is isolated
of the network. Most of the articles considering microscopic approaches take
these constraints into account. At the network traffic control level, only
Schutter et al. (2002) and Kersbergen et al. (2016b) do so.

At the local area traffic control level, one of the most sensitive simplifi-
cation made consists in ignoring rerouting control actions. As the rerouting
actions make full use of the available capacity provided by alternative routes,
this simplification can only be valid if the capacity on the default route is
always sufficient or, on the contrary, when there is no useful capacity avail-
able on the alternative routes. Only the papers referenced in the microscopic
approach Subsection 2.2.2 consider rerouting.

Among the articles mentioned in Section 2.3 on the network traffic control
level, we point that Luan et al. (2017b) consider route choices by using the
microscopic model of Luan et al. (2017a). We also notice that the station
capacity constraint model of Blenkers (2015) used at lower level control in
Cavone et al. (2022) amounts to a platform allocation problem. The exper-
iments reported in Blenkers (2015) lead to long computation times, making
the proposed model not practical for a real-time implementation. As the
platform allocation problem in stations is a simplification of the rerouting
problem, this illustrates the difficulty to consider rerouting in stations.

Several papers who consider rerouting control actions assume that route
incompatibility of the railway interlocking systems is only managed with
the route-lock route-release principle. However, modern interlocking systems
deployed in almost all station areas use the route-lock sectional-release prin-
ciple. Therefore, a model that does not apply this interlocking principle
underestimates station capacity and may yield suboptimal solutions. To cor-
rectly model the route-lock sectional-release principle, it is necessary to be
able to take into account the events of the entry/exit of a train into/from

13

track detection sections. The articles that consider the route-lock sectional-
release principle are Rodriguez (2007b); Caimi et al. (2012); Pellegrini et al.
(2014); Reynolds et al. (2020); Toletti et al. (2020).

At the network traffic control level, having a single model for the whole
network is an issue. One approach to deal with this issue is to make simpli-
fying assumptions about some parts of the network. For example, Schutter
et al. (2002); van den Boom and De Schutter (2006); Kersbergen et al. (2016b)
assume that there is no capacity constraint at stations, i.e., that stations have
sufficient capacity to accommodate all arriving trains.

Another approach to deal with this issue is to decompose the network into
smaller parts, coupling or coordination constraints are added to the optimiza-
tion controller subproblem of each part. These coordination constraints are
provided by neighboring problems (Kersbergen et al., 2016a; Wang et al.,
2015b) or by a higher level “coordinator” (Strotmann, 2007; Corman et al.,
2010a; Toletti et al., 2020; Cavone et al., 2022).

The assumption of an infinite capacity constraint on dispatching areas
can be an issue for some practical applications. Today, the growing demand
for rail traffic from multiple stakeholders is causing bottlenecks. Moreover, if
the scheduled traffic is mixed, this increases the difficulty of traffic control in
these bottlenecks. Bottleneck distribution areas can be complex junctions,
stations or network corridors.

A well-known phenomenon in bottleneck dispatching areas is that a small
train delay can lead to a multiple additional knock-on delays (Lüthi, 2009).
Reducing the knock-on delays is a problem of major complexity in rail traf-
fic management. The previously mentioned relationships between signalling
events have a central role in the propagation speed of delays and the non-
linearity of the consequences.

The research goal of this work is to propose a new formulation at the
microscopic level of the real-time rail traffic management problem. This
formulation can improve the efficiency of the solution method while taking
into account the non-linearity behavior in bottleneck dispatching areas with
heavy and mixed traffic. We want to evaluate to what extent the powerful
algorithms provided by the CP conditional time-interval approach allow to
better deal with the combinatorics related to the coupling of the train routing
and ordering decisions. This evaluation must be carried out in the most
diverse situations possible. For this, we need to consider a large number of
instances that represent various infrastructure case studies.

From the perspective of the rail traffic control process, this work con-

14

tributes to finding new trade-offs between the level of detail of the control
model of the optimization problem in the MPC framework, the geographical
extent of the control areas, the extent of the control horizon and the limit of
the computation time corresponding to the period of the control loop.

3. Conditional time-interval variables in CP

In this section, we briefly introduce the concept of conditional time-
interval variable that is a key feature of the new CP formulation presented
in this paper.

In many works in the scheduling field, the main decisions to be made con-
sist in assigning resources to activities and in scheduling activities. However,
in industrial applications, it can also be necessary to consider the choice of
specific activities to be executed in the final schedule, for example when there
are alternative production processes to satisfy to an order. This translates
into the introduction of optional activities.

Vilím et al. (2005) introduce a tree data structure and a specific constraint
propagation algorithm to deal with optional activities. This is later extended
through the introduction of conditional time-interval variables in the IBM
ILOG CP Optimizer library (Laborie and Rogerie, 2008).

A conditional time-interval variable (or time-interval variable for the sake
of simplicity), noted a, represents a period of interest in a schedule. In many
cases, as in the rtRTMP, a time-interval variable is the period in which an
activity may be executed; the concept of optional activity and that of time-
interval variable are same. Let ⊥ be a value indicating that the period of
interest is not present in the solution schedule, i.e., the corresponding ac-
tivity is non-executed. The domain of a time-interval variable is a subset
of {⊥} ∪ {[s, e)|s, e ∈ Z, s ⩽ e}. As any other variable in a constraint satis-
faction problem, a time-interval variable is said to be fixed if its domain is
reduced to a singleton. Let a denote a fixed time-interval variable a, then
a =⊥ means that the activity is non-executed (not present in the solution
schedule); a = [s, e) means that the activity is executed (present in the so-
lution schedule). The values s and e are respectively the start and end time
of the activity. A time-interval variable is said to be non-executed if it is not
considered by any constraint or expression it is involved in, said in a different
way, it is as if it was deleted. An execution or presence status noted pres(a)
is equal to 1 if the activity is executed and 0 if it is non-executed.

15

The conditional time-interval variables are linked by two kinds of con-
straints: the logical constraints and the temporal constraints.

The logical constraints link the execution status of the time-interval vari-
ables. These constraints are aggregated in a 2-SAT (2-satisfiability) con-
straint network. For example, the execution status of the time-interval vari-
ables for two alternative resources that correspond to two resource choices
will be linked by a clause with a logical operator ⊕ (exclusive disjunction).

The temporal constraints state the different temporal positions of the
start and end events of the time-interval variables, e.g., “start before start"
or “start at end". These constraints are aggregated in a Simple Temporal
Network (STN) extended to the presence statuses. The temporal constraints
are “hybrid” in the sense that they combine the logical aspect of activities (i.e.,
“executed" or “non-executed") and the temporal aspect (i.e., it represents an
activity with a start, end and duration).

Beside the expressiveness of the time-interval variables, the 2-SAT and
STN constraint networks ensure a strong constraint propagation and there-
fore an efficient search for the optimization engine.

A new feature that has also motivated the proposal of our new CP for-
mulation for the rtRTMP is the integration of temporal linear relaxation
(Laborie and Rogerie, 2016) to the automatic search methods provided in
the CP Optimizer library (Laborie et al., 2018). The objective function we
use in the rtRTMP is an irregular one, i.e., it violates the property of non-
decreasing function of tasks completion times, in other words, an optimal
schedule does not necessarily execute all the activities as soon as possible.
To mitigate this issue for the solution methods, it is important to provide
good time placements of the activities. For this purpose, a linear relaxation
of the problem is solved with CPLEX at the relaxation step of a Large neigh-
borhood search (LNS) integrated as one component of the automatic search
procedure of CP Optimizer. The solution of the linear relaxation provides in-
dicative presence, start and end values for interval variables at the root node
of a completion strategy to re-optimize the relaxed precedence constraints
(Laborie and Rogerie, 2016).

The concept of time-interval variables and related algorithmic compo-
nents such as the temporal linear relaxation and 2-SAT and STN constraint
networks are specific to the CP Optimizer library, and no other CP library
currently covers it.

16

Figure 1: Train movement as a sequence of activities.

4. RECIFE modeling principles

As mentioned in the introduction, RECIFE is the French acronym for
“Research on the capacity of railway infrastructures”. It is the name of the
first research project in which the modeling principles presented in this sec-
tions have been used for the rtRTMP (Rodriguez and Kermad, 1998). In this
paper, we present a new CP-based algorithm for the rtRTMP, which exploits
conditional time-interval variables. We name this algorithm RECIFE-CPI,
where RECIFE stays for REcherche sur la Capacité d’Infrastructures FEr-
roviaires (Research on the Capacity of Railway Infrastructures). RECIFE-
CPI is an advanced version of a previous CP algorithm of the rtRTMP, named
RECIFE-CP (Rodriguez and Kermad, 1998). It makes the best of additional
modeling possibilities that have been developed in the last decade.

The main RECIFE modeling principles for rail traffic management prob-
lems are:

• The model must consider the railway infrastructure at a microscopic
level to be as accurate as necessary,

• The management of train movements must be formulated as in a con-
ventional scheduling problem.

The first principle stems from the central role of the signalling system in
rail traffic control. This leads to the explicit model of the influence of the
signalling system on traffic management decisions. Here, the microscopic rep-
resentation of infrastructure comes down to considering the technical features
of the signalling system like signal aspects, sight distance, block boundaries
or track detection sections (tds).

For the second principle, a train journey can be described as a sequence
of activities, or “jobs" in scheduling theory. As the smallest part of the track

17

train

head

tailti
m

e

clearing

head detection over the tds

tds blocking time reservation

watching

block
 tds

Figure 2: Train head detection activities and tds blocking time reservation.

considered in the infrastructure is a tds, activities are train movements on
tds’s as shown in Figure 1. In practice, a technical device is associated to
each tds. It allows the detection of the occupation of this part of the railway
infrastructure by a train. In many railway infrastructures, these are electric
devices named “track circuits” and are part of the block signalling system
that ensures the safe movement of trains.

If we refer to Figure 1, the temporal relations among train movement,
tds detection events and signalling system can be represented in a spatio-
temporal diagram as shown in Figure 2. This diagram can be interpreted as
a Gantt diagram of the use over time of the elementary components of the
railway infrastructure. Along the horizontal axis of this diagram, we have the
sequence of tds’s that the “blue” train runs through. The line is broken down
into blocks that are bounded by signals providing information to the train
driver. A block can have one or more tds’s depending on the configuration
of the line. In the diagram, blue dashed lines report the position of the head
and the tail of the train. The filled blue rectangles show the sequence of
head detection activities. Nevertheless from the point of view of the usage of
a tds, we must also consider (i) the behavior of the signalling system which

18

imposes a safety headway to another train that has to run on the tds and (ii)
the length of the train. For requirement (i), the tds is “reserved” in advance
to take into account the main characteristics of the block signalling system
such as: the number of signalling aspects and the watching time (i.e., running
time of the sight distance). For (ii), the clearing phase due to train length
is represented by the extended striped rectangle. It lasts until the tail of the
train is no longer detected in the tds.

When there are switches within a block, the existence of multiple tds’s
allows the interlocking system to release and set as soon as possible the se-
quence of incompatible routes and then safely optimize traffic. The sectional
route release of the interlocking system is built in because the release event
of tds coincides with the end of the clearing phase.

The temporal constraints of tds reservation, illustrated in Figure 2, com-
ply with the blocking time theory constraints (Hansen, 2008) and will be
called “blocking time” constraints (resp. activities) in the sequel of the pa-
per.

Furthermore, it can be noted that RECIFE is also the name of the digital
platform (Rodriguez et al., 2007) which brings together these types of models.
The RECIFE-MILP algorithm (Pellegrini et al., 2014) is a key figure of the
last decade. In addition to the different optimization algorithms, the platform
includes a database of case studies, interface modules with railway simulators,
a test bench for configurations in closed loop or open loop and statistical and
graphical tools to process the results of experiments.

5. RECIFE-CPI algorithm

In this section, we detail the algorithm we propose in this paper. The
first two subsections respectively describe resource and time constraints of
RECIFE-CPI. The third subsection is devoted to high-level temporal con-
straints between groups of activities to improve constraint propagation. The
last two subsections detail the problem formulation and the solution algo-
rithm.

5.1. Resource constraints
The resources considered in the RECIFE modeling principles for the

rtRTMP are a set of railway track sections corresponding to the tds’s of
the signalling system (c.f. Figure 1). During normal operations, after a
route is set for a train, the latter runs with clear line indications through a

19

S2

tds1

r2
r1

tds2 tds3 tds5

tds4 tds6 tds9tds8

tds7
r3

Figure 3: Example of tds sequences on three routes.

sequence of tds’s at the planned speed, lower than or equal to the maximum
authorized speed. Depending on the chosen route, the sequence of train head
detection activities, as the one shown in Figure 2, may vary. In CP optimizer,
a straightforward approach to model the consequent alternative combination
of resources is to define optional activities (Laborie et al., 2018). More specif-
ically for the rtRTMP, an optional “route activity” is associated with each
alternative route of a train in Cappart and Schaus (2017), and only one route
activity can have a presence status equal to 1. A route activity covers the
sequence of tds optional activities associated with a route. The presence
status of a route activity and of its sequence of tds activities are equal. A
disadvantage of this approach is that it leads to “two-phase” search methods
that choose routes for trains in a first step and choose order of trains in a
second step. In Rodriguez et al. (2010), we showed that a search method that
incrementally assigns tds’s to trains (i.e., assigns route portions) and makes
associated order decisions have better performance than two-phase ones. To
allow the solver to use such incremental method, we define an oriented graph
for each train. In this graph, nodes are optional head detection activities
and edges represent precedence constraints between pairs of activities. In
particular, an edge connects two activities if they follow each other on at
least one route. A source (respectively sink) node is defined and connected
to the activities of the entry (respectively exit) tds’s of the control area. The
value of the presence status of the activities must be set so as to obtain a
sequence of activities corresponding to an allowed route. The proposed graph
representation allows defining a single activity on a tds along different routes.
This is done provided that all movement characteristics on this tds are the
same on all the routes considered. For example, running and clearing times
must be the same on different routes.

To illustrate the model, let us consider the example of a train that has

20

σ ar1,r2,r3tds1

ar1tds2 ar1tds4 ar1tds6

ar2,r3tds2 ar2,r3tds3 ar2tds5 ar2tds6

ar3tds5 ar3tds7

ar1,r2tds8

ar3tds8

ar1,r2,r3tds9
τ

Figure 4: Graph of head detection activities for the routes of Figure 3.

three alternative routes r1, r2 and r3, in Figure 3. We have three sequences of
head detection activities for this example: one sequence of six activities for r1
and two sequences of seven activities for r2 and r3. The train head detection
activities on these sequences are represented in the graph in Figure 4. σ and
τ are respectively the source and sink nodes. The train movement on tds1
and tds9 have the same characteristics, hence the corresponding activities
generate a single node per tds. Conversely, for the movement through tds2,
two activities ar1tds2 and ar2,r3tds2 are defined because the minimum running time
for r1 is different from that for r2 and r3, as the train passes a switch in
different positions.

In the resulting directed graph for each train, if the status of an activity
is “present”, it means that the corresponding tds has been chosen as a part of
the final route within the solution under construction. However, to build a
coherent solution, the values of the presence status of the activities included
on the paths from the source to the sink node must satisfy the following
consistency conditions:

1. At least one path must include all present activities and its correspond-
ing tds sequence must be an allowed route,

2. If all activities included in one path are present then all other activities
must be absent.

For the previous example, given the graph of activities shown in Figure 4,
the status of the activities ar1,r2,r3tds1 and ar1,r2,r3tds9 is necessarily “present” because
these activities must be in any solution.

If the status of activities ar2,r3tds2 , ar2,r3tds3 is also set to “present”, then these val-
ues satisfy Condition 1 because both activities are included in path
< ar1,r2,r3tds1 , ar2,r3tds2 , ar2,r3tds3 , ar2tds5, ar2tds6, ar1,r2tds8

, ar1,r2,r3tds9 > corresponding to the
allowed route r2.

If the status of activities ar2,r3tds2 , ar2,r3tds3 , ar1tds6 is “present”, then these values
do not satisfy Condition 1 because there is no path which includes all present

21

presence statuses for
ar1tds2 ar1tds4 ar1tds6 ar1,r2tds8 ar2,r3tds2 ar2,r3tds3 ar2tds5 ar2tds6 ar3tds5 ar3tds7 ar3tds8

r1 1 1 1 1 0 0 0 0 0 0 0
r2 0 0 0 1 1 1 1 1 0 0 0
r3 0 0 0 0 1 1 0 0 1 1 1

Table 1: The allowedAssignments constraint for presence statuses of activities for the
routes of Figure 3

activities.
If the status of activities ar1,tds2

,ar1tds4 ,a
r1
tds6

,ar1,r2tds8
is “present”, all present ac-

tivities are included in the path which corresponds to route r1, and if the
status of activities ar2,r3tds2 , ar2,r3tds3 , ar2tds5, a

r2
tds6, a

r3
tds5, a

r3
tds7 and ar3tds8 is “absent”,

then these values satisfy Condition 2.
To ensure the above consistency conditions, we define

allowedAssignments constraints that enumerate the tuples of allowed values
for all presence statuses of head detection activities, for each allowed route.
Table 1 shows these tuples for the three alternative routes of the example in
Figure 3. Let us remark that, in general, not all paths of the graph of activ-
ities correspond to an allowed route. The number of allowedAssignments
constraints amounts to the number of allowed routes.

A further constraint that has to be added states that the capacity of
tds’s is 1: they are unary resources, as during normal operation no more
than one train can reserve a tds at a time. We model these constraints as
noOverlap ones. The modeling of route choice through allowedAssignments
and noOverlap constraints is very different from what had been previously
done in RECIFE-CP. In particular, in RECIFE-CP a train route is modeled
with a single sequence of activities regardless of the route chosen. The tds’s
in the control area are data structures associated with unary resources from
the out-dated Ilog Scheduler library. To take into account all routes, first,
the highest number of tds’s in a route is identified. Then, a sequence with as
many activities as this number is created. For each activity ai of the sequence,
a variable tdsai per possible tds assignments is defined, and a requirement
constraint requires(ai,tdsai) is set to link them. The domain values of tdsai
is a subset of tds’s and a table constraint enumerates the allowed tuple values
for a train route variable r and tds variables tdsai . This table constraint is the
assignment constraint that links a route choice to each activity’s tds choices.

22

For the case of routes with a lower number of tds’s, a “dummy” tds, denoted
tds∗ with infinite capacity is defined as a special value for the additional tds
variables (Rodriguez, 2007a). Table 2 shows the assignment constraint for
the example in Figure 3. Note that the dummy track detection section tds∗

can be inserted in any position of the tds sequence. However, in general it is
better to insert it in the middle of the sequence to maximize the number of
variables with minimum size domain, and thus facilitate the early constraint
propagation from the variables of these activities.

Variables r tdsa1 tdsa2 tdsa3 tdsa4 tdsa5 tdsa6 tdsa7

Tuples

r1 tds1 tds2 tds4 tds∗ tds6 tds8 tds9

r2 tds1 tds2 tds3 tds5 tds6 tds8 tds9

r3 tds1 tds2 tds3 tds5 tds7 tds8 tds9

Table 2: Table constraint of RECIFE-CP for the example of Figure 3.

5.2. Temporal constraints
In RECIFE-CPI, temporal constraints for each tds are defined on pairs

of activities, first of all. The first activity associated with a tds is the head
detection activity. An example of sequence of the head detection activities
is illustrated by the filled blue rectangles in Figure 2. With the exception
of the first activity, each activity of the sequence is linked to the previous
one by a “no wait” constraint. These constraints are classic in job shop
scheduling theory (Mascis and Pacciarelli, 2002), and they are implemented
in CP Optimizer by the startAtEnd constraints.

The second activity associated with a tds, named blocking time reserva-
tion activity, includes the head detection activity and is extended to satisfy
the blocking time constraints (c.f. Section 4). The start of the blocking time
reservation activities of a tds belonging to a block is synchronized with the
watching time of the signal controlling the entering of the block (c.f. Fig-
ure 2). It is formulated with a startAtStart constraint. The end of the
blocking time reservation corresponds to the end of the head detection ac-
tivity extended with a duration corresponding to the clearing of the tds by
the train (c.f. Figure 2). It is formulated with a endAtEnd constraint. As
for resource constraint, this formulation is quite different from the existing

23

RECIFE-CP one. There, only one activity was defined for each tds, and
three additional variables were defined: the earliest start time of detection
in the tds (estd), the earliest end time of detection in the tds (eftd) and
the index of the activity to synchronize the start variable (si). Table con-
straints enumerated the allowed tuple values of these variables and the route
choice variables. Appropriate values for these variables were defined for the
case of a dummy value tds∗ in the tds sequence of a route (c.f. Subsection
5.1). The blocking time constraints were formulated with these variables.
For example, the blocking time synchronization constraint was formulated
as start(ai) = end(asi)− eftdsi − estdsi (Rodriguez, 2007a). Note that this
is a non-linear constraint because the index of the variables used in the right
hand side is the index variable si.

5.3. Global constraints on groups of activities
To improve the constraint propagation and therefore the performance of

the RECIFE-CPI algorithm, we create a hierarchical model with global con-
straints on groups of activities. These global constraints allow the encapsu-
lation of a group of activities in a high-level activity. High-level activities can
be used with any temporal constraint in the same way as low level ones. They
are particularly useful for strengthening resource and temporal constraints,
in particular allowedAssignments constraints. Indeed, the unknown pres-
ence status of head detection activities does not allow a prompt constraint
propagation and domain reductions of the interval variables. For the exam-
ple of the graph in Figure 3, the activity ar2,r3tds3 is a point of route divergence
and, in the basic model, its latest end time is not propagated to the following
activities ar2tds5 and ar3tds5 as long their presence status is unknown. However,
if these two activities are grouped as alternatives in a high-level one, then the
latest end time of ar2,r3tds3 can be propagated to this high-level activity through
a startAtEnd time constraint.

To create high-level activities, the precedents and the successors of each
head detection activity of the graph are recursively analyzed with Algo-
rithm 1. The algorithm generates all pairs of activity groups (Gprec, Gsucc)
that can be linked with a group constraint. Before setting the group con-
straints, redundant group pairs are removed. Two group constraints are
possible: span and alternative. If there is no precedence relation between
two activities of a group, the group constraint alternative is applied, oth-
erwise the group constraint span is applied. The meaning of these group
constraints is : span(aG, a1, . . . , an) states that activity aG, if present, spans

24

Algorithm 1 : Generation of pairs of head detection activities groups
1: procedure genPrecSucc(ai,Gprec, Gsucc)
2: Gsucc= Gsucc ∪ {ai}
3: Setprec= getPrecSet(ai) # Get the set of previous activities
4: for each aj ∈ Setprec do
5: if aj /∈ Gprec then
6: Gprec= Gprec ∪ {aj}
7: Setsucc= getSuccSet(aj) # Get the set of next activities
8: for each ak ∈ Setsucc do
9: if ak /∈ Gsucc then

10: genPrecSucc(ak, Gprec, Gsucc)

σ ar1,r2,r3tds1

ar1tds2 ar1tds4 ar1tds6

ar2,r3tds2 ar2,r3tds3 ar2tds5 ar2tds6

ar3tds5 ar3tds7

ar1,r2tds8

ar3tds8

ar1,r2,r3tds9
τ

alternative

alternative

alternative

alternative

High-level activities groups

Head detection activities

aG1 aG2 aG3 aG4

Figure 5: High level activities definition for the example of Figure 3.

over all present activities of the set {a1, . . . , an}; alternative(aG, a1, . . . , an)
states that if activity aG is present then exactly one of activities {a1, . . . , an}
is present, and aG starts and ends together with the chosen one. Activity aG
is absent if and only if none of the activities {a1, . . . , an} is present (Laborie
and Rogerie, 2016).

To illustrate the definition of high-level activities and group constraints,
let us consider the example depicted in Figure 3 and the associated graph
of head detection activities in Figure 4. Figure 5 shows this graph en-
riched with high-level activity groups. The activities of each group are
shown with red dotted shapes linked by a red dotted line to the correspond-
ing group activity. The links are named with the group constraint used.
The first high-level activity aG1 is linked by an alternative constraint to

25

ar1,r2,r3tds1

0 10 20 30 40 50 60 70 80 90 100

ar1tds2
ar2,r3tds2

ar2,r3tds3

ar1tds4
ar2tds5
ar3tds5
ar1tds6
ar2tds6
ar3tds7
ar1,r2tds8

ar3tds8
ar1,r2,r3tds9

(a) Without high-level activities groups.

ar1,r2,r3tds1

0 10 20 30 40 50 60 70 80 90 100

aG1[
ar1tds2

ar2,r3tds2

ar2,r3tds3

ar1tds4
aG2[
ar2tds5

ar3,tds5

aG3[
ar1tds6

ar2,tds6

ar3tds7
aG4[
ar1,r2tds8

ar3,tds8

ar1,r2,r3tds9

(b) With high-level activities groups.

Figure 6: Domain reduction of interval variables of activities for the example of Figure 3.

26

the group G1 = {ar1tds2, a
r2,r3
tds2 } allowing to state the precedence constraint

startAtEnd(aG1 ,a
r1,r2,r3
tds1) and the logical constraint samePresence(aG1 , a

r1,r2,r3
tds1).

The latter means that if ar1,r2,r3tds1 is present, aG1 must be present and therefore
we have to make a choice between ar1tds2 and ar2,r3tds2 . The red arrows represent
these two types of constraints with high-level activities.

For an intuition on the strengthening of the resource and temporal con-
straint propagation with high-level activities, let us consider a numerical
instance associated to the previous example of Figure 5. Let [0,100] be the
time interval corresponding to the optimization horizon, 10 and 15 being the
minimum duration of all head detection activities depending on the state of
the switch the train runs through, and 10 being the earliest time at which the
train can be operated. Figure 6a shows the domain reduction of the time-
interval variables of activities after setting the expected arrival time of the
train in the control area (marked with a red arrow) and after propagation of
resource and temporal constraints but without definition of high-level activ-
ities. The graphical conventions are similar to those of a Gantt chart: each
row is associated with an activity, the x-axis represents time, time interval
domains are represented by “horizontal boxplots”, the size of the inner “box”
represents the minimum duration of the activity, the end marks represent the
earliest start and latest end times of the activity, if the state of the activity
is present, the box and whiskers are drawn as a solid line, but if the activity
state is unknown (i.e. the domain includes ⊥), they are drawn as a dotted
line. The lines of the Gantt chart for activities ar1,tds2

, ar2,r3tds2
, ar2,r3tds3

, ar1tds4 , a
r1
tds6

show that the earliest start times are updated by the startAtEnd constraint
propagation. However, the rows for activities ar2tds5 and ar3tds5 do not show any
change in the earliest start times. This illustrates the previously mentioned
issue of the lack of constraint propagation due to insufficient information on
the relationship between the presence statuses of activities at the points of di-
vergence of routes such as the one of ar2,r3tds3

, ar2tds5 and ar3tds5. We can observe the
same issue for the constraint propagation at the points of convergence of the
routes like that of ar1tds6, a

r2
tds6 and ar1,r2tds8 where there is no update of the latest

end times. The definition of group constraints with the auxiliary constraints
startAtEnd and samePresence make up for the lack of information on the
presence statuses of activities at the points of convergence and divergence of
routes. These additional constraints facilitate the constraint propagation and
thus the reduction of the domains of the time-interval variables. Figure 6b
shows the results of adding four group constraints and clearly illustrates the
strengthening of constraint propagation that leads to a considerable domain

27

reductions, which reduces the number of backtracks of search methods and
thus increases their efficiency.

Let us remark that in the example of Figure 5, we only consider a simple
infrastructure layout. When a track detection section includes more than
one switch, the corresponding head detection activity can be associated with
several points of route convergence and divergence. Figure 7 illustrates an
infrastructure example of this kind of situation. Such tricky cases can be
treated through span group constraints.

r2
r1

r4

r3
tds1

tds2

tds3

tds4

tds6

tds7

tds8tds5

Figure 7: Example of infrastructure requiring span group constraints.

5.4. Formulation
For the formulation, we use a notation close the one introduced by Pelle-

grini et al. (2014) for RECIFE-MILP and reported in Table 3 for parameters
and Table 4 for variables and functions.

28

T,R,TDS set of trains, routes and tds’s, respectively,
Rt ⊆ R set of routes that can be used by train t,
TDS r set of tds’s composing route r,
ty t type corresponding to train t (indicating characteristics as weight,

length, engine power, etc.),
TDS t ⊆ TDS set of tds’s that can be used by train t (TDS t =

⋃
r∈Rt

TDS r),
PL ⊂ TDS set of tds’s corresponding to platforms (if the control area includes

a station),
PLt ,t ′ ⊂ PL set of tds’s corresponding to the possible departure platforms of

a train t′ which uses the same rolling stock as train t and results
from the turnaround of train t,

bsr,tds block section including track detection section tds along route r,
pr,tds tds’s preceding tds along route r,
ref r,tds reference track detection section for the blocking time reservation

of tds along route r: first track detection section of the n−2nd block
section preceding bsr,tds , with n number of aspects characterizing
the signalling system,

rt ty,r,tds running time of tds along route r for a train of type ty ,
ct ty,r,tds clearing time of tds along route r for a train of type ty ,
for bs , rel bs formation and release time for block section bs , respectively,
init t earliest time at which train t can be operated: either expected

arrival in the control area or expected departure from a platform
within the control area,

exit t earliest time at which train t can reach its destination given init t,
the route assigned to t in the timetable and the intermediate stops,

i(t, t′) indicator function: 1 if trains t and t′ use the same rolling stock
and t′ results from the turnaround of train t, 0 otherwise,

ms t,t′ minimum separation between the arrival of a train t and the de-
parture of another train t′ using the same rolling stock,

St, TDSt,s set of stations where train t has a scheduled stop and set of tds’s
that can be used by t for stopping at station s,

arr t,s, dw t,s scheduled arrival time and minimum dwell time for train t at sta-
tion s,

St,r
pres tuple of presence status values of head detection activities of train

t for route r,
{(Gt

prec, G
t
succ)} set of pairs of head detection activities groups generated with Al-

gorithm 1,
Gt
alt set of groups of head detection activities of train t linked by an

alternative group constraint,
Gt
span set of groups of head detection activities of train t linked by a span

group constraint.

Table 3: Parameter definitions

29

at,r
tds,h time-interval variable which represents the head detection activity

of t on tds along r,
at,r
tds,b time-interval variable which represents the blocking time reserva-

tion activity of tds for t along r,
Darr

t ,Dexit
t delay suffered by train t at station arrivals (cumulative) and at the

exit from the control area,
first(at,r

tds,h) boolean functions that return true if at,r
tds,h is the first head detec-

tion activity of train t through the tds sequence for route r,
last(at,r

tds,h) boolean functions that return true if at,r
tds,h is the last, head detec-

tion activity of train t through the tds sequence for route r,
s(a), e(a), d(a) function that return the start, end and duration variables for time-

interval variable a, respectively,
pres(a) function that return the presence status variable for time-interval

variable a.

Table 4: Variable and funtion definitions

The objective is the minimization of the total delays suffered by trains at
their arrival at intermediate stations and exit from the control area:

min
∑
t∈T

(Darr
t +Dexit

t) (1)

The constraints are :

allowedAssignments(
⋃

r∈Rt,tds∈TDSr

pres(at,r
tds,h),

⋃
r∈Rt

St,r
pres) ∀t ∈ T, (2)

s(at,r
tds,h) ⩾ initt∀t ∈ T, r ∈ Rt, tds ∈ TDS r,

(3)

d(at,r
tds,h) ⩾ rt ty,r,tds∀t ∈ T, r ∈ Rt, tds ∈ TDS r,

(4)

startAtEnd(at,r
tds,h,a

t,r
pr,tds ,h

)∀t ∈ T, r ∈ Rt, tds ∈ TDS r,

(5)

endAtEnd(at,r
tds,b,a

t,r
tds,h, ct ty,r,tds + rel bsr,tds)∀t ∈ T, r ∈ Rt, tds ∈ TDS r,

(6)

30

startAtStart(at,r
tds,b,a

t,r
ref r,tds ,h

,−for bsr,ref r,tds
)∀t ∈ T, r ∈ Rt, tds ∈ TDS r,

(7)

alternative(at
G,a

t,r1
tds1,h

, . . . ,at,rn
tdsn,h)∀t ∈ T,{at,r1

tds1,h
, . . . ,at,rn

tdsn,h} ∈ Gt
alt,

(8)

span(at
G,a

t,r1
tds1,h

, . . . ,at,rn
tdsn,h)∀t ∈ T,{at,r1

tds1,h
, . . . ,at,rn

tdsn,h} ∈ Gt
span,

(9)

startAtEnd(at
G,a

t
G′)∀t ∈T, (G,G′) ∈ {(Gt

prec, G
t
succ)},

(10)

pres(at′,r′

tds,h) = pres(at,r
tds,h)

∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ : i(t, t

′) = 1 ∧ tds ∈ PLt ,t ′ ,

(11)

s(at′,r′

tds,h) ⩾ e(at,r
tds,h) +ms t,t′∀t, t′ ∈ T, r ∈ Rt, r

′ ∈ Rt′ :

i(t, t′) = 1 ∧ last(at,r
tds,h) ∧ first(at′,r′

tds,h) ∧ tds ∈ PLt ,t ′ ,

(12)

s(at′,r′

tds,b) = e(at,r
tds,b)∀t, t′ ∈ T, r ∈ Rt, r

′ ∈ Rt′ :

i(t, t′) = 1 ∧ last(at,r
tds,h) ∧ first(at′,r′

tds,h) ∧ tds ∈ PLt ,t ′ ,

(13)

noOverlap(
⋃

t∈T,r∈Rt,tds∈TDSt

at,r
tds,b)∀tds ∈ TDS, (14)

Dexit
t =

∑
r∈Rt,tds∈TDSr:

last(a
t,r
tds,h)

e(at,r
tds,h)−exit t∀t ∈ T, (15)

Darr
t =

∑
r∈Rt

∑
s∈St,

tds∈TDS t,s

(s(at,r
tds,h) + (rt ty,r,tds − arr t,s)pres(a

t,r
h))∀t ∈ T,

(16)

Constraints (2) ensure consistency of the presence status values of head run-

31

ning activities with the set of allowed routes. Constraints (3) state that
trains cannot be operated earlier than initt. Constraints (4) impose that
the duration of the running time head activities are greater than the run-
ning time of track detection section tds along route r for a train of type
ty. Constraints (5) impose a precedence relation between running time head
activities of a train. For Constraints (6), the blocking time reservation lasts
after the tail of the train clears tds, which corresponds to the end of the
head running plus a clearing time for the type of train ty plus the block
section release time. Constraints (7) state that the blocking time reserva-
tion activity is synchronized with the time the head of the train is detected
by the reference track detection section according to the interlocking sys-
tem ref r,tds minus the route formation time. Constraints (8) and (9) link
a group of activities G = {at,r1

tds1,h
, . . . ,at,rn

tdsn,h} into a high-level activity
at
G according to the presence of precedence constraints between low-level

activities. High-level activities are linked to low-level activities by span or
alternative constraints. Constraints (10) state the precedence constraints
between high-level activities. Constraints (11) ensure local coherence: trains
using the same rolling stock must use the same platform when they per-
form the turnaround. Constraints (12) ensure that a minimum separation
time must separate the arrival and departure of trains using the same rolling
stock. Constraints (13) ensure the tds where the turnaround takes place
is utilized for the whole time between t′’s arrival and t’s departure. Thus,
the first activity blocking time reservation of t′ starts when the last activity
blocking time reservation of t ends. Constraints (14) ensure that blocking
time activities on a tds do not overlap. Constraints (15) and (16) state that
the values of the delays Dexit

t and Darr
t of a train t is the difference be-

tween the actual and the scheduled times at the exit of the infrastructure,
respectively at the arrival at stop stations.

5.5. Solution algorithm
The RECIFE-CPI solution algorithm follows a two-step approach based

on the warm-start method used in RECIFE-MILP (Pellegrini et al., 2014).
As the number of alternative routes is one of the causes of the difficulty of
the rtRTMP, in the first step, the route fixed in the timetable is imposed to
each train. A pure scheduling problem is hence solved.

In the second step, the first-step solution is used as a warm start for
tackling the problem with all the alternative routes. Note that in both steps,
we solved a routing and scheduling problem. In the first step, the parameter

32

of the set of allowed routes for a train is reduced to a singleton, while in the
second step the parameter considers all allowed routes.

For the second step, we consider the automatic search methods pro-
vided in CP-optimizer library. It uses the algorithm of Vilím et al. (2015)
for scheduling problems which combines Self-Adapting Large Neighborhood
Search (SA-LNS) with Failure-Directed Search (FDS). The former (Laborie
and Godard, 2007) aims to find a good quality solution quickly. It is an
iterative improvement method with the following steps:

1. Start with an existing solution (heuristic or CP search)
2. Select a Large Neighborhood (LN) and a Completion Strategy (CS)
3. Apply LN to relax part of the solution and fix the rest
4. Apply CS to improve the solution using a limited search tree
5. If time limit is reached then stop else go to 2.

SA-LNS uses the following components to improve the search:

• Constraint propagation algorithms for the logical and the precedence
constraints networks (Vilím et al., 2005),

• Enhanced selection of LN and CS: apply machine learning techniques
to portfolios of LN and CS that quickly converge on good solutions
(Laborie and Godard, 2007),

• Temporal Linear Relaxation: use CPLEX’s LP solver for a solution
to a relaxed version of the problem to guide heuristics (Laborie and
Rogerie, 2016).

FDS is activated when SA-LNS has difficulties improving the current solution
the search space seems to be small enough. It builds a complete search tree
and it drives the search into conflicts in order to prove that the current branch
is infeasible. It uses a restart scheme with nogoods.

6. RECIFE-MILP algorithm

As RECIFE-CPI, RECIFE-MILP aims at solving the rtRTMP, simultane-
ously optimizing routing and scheduling decisions. It applies the warm-start
method sketched in Section 5.5. It consists in solving two MILP formula-
tions using a commercial solver for a limited time. If the optimal solutions
are reached before this time, then the algorithm either passes to the next step

33

or it stops. Otherwise, it returns the best solution found in the available time
disregard the absence of optimality proof. In the first step, the MILP formu-
lation only considers scheduling decisions: trains must traverse all the tds’s
in the route they are assigned in the timetable respecting operational con-
straints. Continuous variables represent times and binary variables represent
passing orders for pairs of trains on common sequences of tds’s. Disjunctive
constraints are imposed by exploiting these variables. For each tds possibly
used by a pair of trains, two big-M disjunctive constraints are created. Travel
time coherence is imposed by controlling running times on each tds for each
route it can be used on. In particular, if a tds can be used along ten routes
by a train, ten variables and constraints will be created to control travel time
there. Once the solution of this scheduling problem is returned, optimal or
not, it is used as a warm start for tackling an extended MILP formulation in
the second step. Here, in addition to scheduling decisions modeled as in the
first step, routing decisions are made, represented by binary variables indi-
cating the choice (or not) of a route by a train. Some pre and post-processing
are operated for the two optimization steps, as detailed in Pellegrini et al.
(2015) and Pellegrini et al. (2019).

The detailed formulations used in RECIFE-MILP are reported in Pelle-
grini et al. (2014) and Pellegrini et al. (2015).

7. Experimental comparison of RECIFE-CPI and RECIFE-MILP

In this section, we present an experimental analysis aimed to assess the
performance of RECIFE-CPI (CPI). Specifically, we consider RECIFE-MILP
(MILP) as a benchmark and we compare the two algorithms on five control
areas. Such a thorough comparison is very seldom proposed in the litera-
ture, if ever. However, we consider it pertinent here to verify whether and
how control areas with different characteristics may favour an algorithm in
particular.

In the following, we detail the characteristics of the five control areas and
traffic perturbation scenarios we tackle, we describe the experimental setting,
and we present results.

7.1. Control areas
The control areas we consider have different characteristics: a line with in-

termediate stops, a junction with mixed traffic, a passing station with typical
characteristics and two passenger terminal stations with high density traffic.

34

RSS-SER Gonesse GenStation Lille StLazare
Infrastructure
Length (km) 80 15 8 7 4,5
Routes 187 37 71 2409 84
Blocks 157 79 60 829 197
tds 236 89 34 299 212
Timetable
Trains/Day 237 336 400 589 1212
Routes/Train 13 (1-24) 7 (5-13) 18 12 (1-71) 5 (1-9)
tds/Route/Train 57 (5-97) 28 (16-34) 13 21 (9-33) 18 (13-25)

Table 5: Control area characteristics. For the last two rows, we indicate the average and,
in parentheses, minimum and maximum values observed. Remark that in GenStation all
trains have exactly 18 routes and all routes have exactly 13 tds’s.

Namely, they cover: the 80-km portion of the Paris-Le Havre line between
Rosny sur Seine and Saint-Etienne de Rouvray (RSS-SER), the Pierrefitte-
Gonesse junction north of Paris (Gonesse), an artificial generic station with
a very classic topology (GenStation), and the control areas including the
Lille-Flandres (Lille) and Paris–Saint-Lazare (StLazare) terminal stations.
Their characteristics are detailed in Table 5 and their layout is in Figure 8.
Additional comments on these characteristics are as follows:

• RSS-SER is a double-track line including ten small stations and only
a few possibilities for changing tracks between stations. The presence
of the relatively large stations at Oissel and St. Etienne du Rouvray,
though, implies that some trains may have up to 24 alternative routes,
which makes the rerouting problem quite challenging. These routes
are often very long: trains have routes 57 tds long, in average. The
difference here can be very large: the train with the shortest routes has
them including around five tds’s, while the one with the longest has
them made of about 97. The presence of mixed traffic, spanning from
freight to the high-speed trains, is a further challenge as running times
change quite significantly from one type of train to another.

• Gonesse presents the same peculiarity of mixed traffic. This peculiarity
is also particularly interesting for its infrastructure topology. Despite
its rather short length, this control area represents an interesting chal-
lenge as train routes are very articulated and they overlap in various
ways. The complex interlocking that makes this possible implies train

35

BonnièresRosny sur
Seine

Pont de
l'Arche

Val de
Reuil

Saint Pierre
Du Vauvray

Gaillon-
AubevoyeVernonPort

Villez

Oissel
St. Etienne
du Rouvray

(a) RSS-SER

(b) Gonesse

(c) GenStation

Haubourdin

Douai

Tournai

Valenciennes

Tourcoing

Comines

Armentières

LGV LGV

Lille Délivrance

(d) Lille

Mantes-la-Jolie

Versailles-Rive-Droite

Cergy

Ermont

St. Lazare

Pont Cardinet Clichy-Levallois

Asnieres

(e) StLazare

Figure 8: Infrastructure layout of the five control areas considered.

36

route decomposition in large numbers of tds’s: in average this number
is 28, about half than in RSS-SER although the infrastructure length
is about a fifth. The differences here are much smaller too, as the train
with the shortest routes have them including about 16 tds’s and this
value grows to a maximum of 34. Most of the trains here can span over
most of the infrastructure by changing their route.

• GenStation represents a station that can be very often found in reality.
Here, all trains have several alternative routes, and they overlap quite
substantially in their central part, i.e., in the immediate vicinity of the
platforms. Differently from the other control areas, all trains have the
same number of routes, and they are equally long in terms of tds’s. No
train starts or terminates its service in this control area: no turnaround
occurs here.

• Lille is a major terminal station with a rather articulated topology.
Here, a very large number of alternative routes is available for each
train, all with a number of tds’s comparable to Gonesse. As shown
in Figure 8d, the infrastructure is such that trains can use almost any
of the 17 platforms independently on their origin or destination line,
and often a few possibilities are available for connecting a platform to
a line track. These possibilities are often almost indistinguishable for
about half of their length, while they vary quite substantially when
getting closer to platforms. Being a terminal station, trains very often
meet others running in the opposite direction. Moreover, rolling-stock
reutilization relations exist between pairs or sets of trains: all trains are
subject to a turnaround. This further complicates traffic management,
as decisions made on different trains can be interdependent although
no conflict between these trains occurs.

• StLazare has similar complications: it is a terminal station where much
fewer train routes are available, but where the number of trains to be
dealt with is extremely high. Here, the infrastructure brings quite a
strong flow separation: trains travelling on a specific line can only use
a pair of alternative tracks to reach the station, and hence only a few
platforms (Figure 8e). This explains the much smaller number of routes
per train appearing in Table 5. Trains have routes of similar length to
Lille and Gonesse in terms of tds’s. Three small stations also belong
to this control area, where some trains make intermediate stops.

37

While data representing traffic in real control areas are protected by
confidentiality engagement, the instances concerning the GenStation one
are publicly available at the address: http://recife.univ-eiffel.fr/
sharedData/.

7.2. Traffic perturbation scenarios
For each of the five control areas, we generate 30 perturbation scenarios:

starting from the original daily timetable, 20% of randomly selected trains
are subject to a random entrance delay between 5 and 15 minutes. For the
real control areas, the timetable is an actual 24-hour one. For GenStation,
we generate the daily timetable by propagating the same pattern of trains
along the day. To cover a variety of instance sizes, for each perturbation
scenario, we select 13 instances. Each instance includes the first |T | trains
entering the control area from 6am, with |T | varying from 10 to 130 and
considering a ten train step. Therefore, we consider 390 instances (13 sets of
30 instances) for each control area, i.e., 1950 instances in total.

The specific time horizons considered for each infrastructure are as fol-
lows:

• For RSS-SER, the instances include trains entering the control area in
a time horizon between 6am and 5:47pm,

• For Gonesse, between 6am and 1:12pm,

• For GenStation between 6am and 11:31am,

• For Lille between 6am and 9:20am,

• For StLazare between 6am and 7:50am.

Indeed, the duration of these time horizons is very different across control
areas, going from less than two hours in StLazare, to 3 hours and a half in
Lille, to more than seven and almost eleven hours in Gonesse and RSS-SER.
Undoubtedly, tackling the rtRTMP on an 11-hour time horizon is not very
meaningful in practice, as perturbations occurring so far in time can hardly be
predicted. However, we consider increasing the number of trains consistently
across control areas interesting for comparing algorithmic performance.

38

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ● ● ● ● ●

 0

200000

400000

600000

50 100

#V
ar

ia
bl

es

MILP

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

 0

10000

20000

30000

40000

50000

50 100

Control area

●

●

●

●

●

RSS−SER

Gonesse

GenStation

Lille

StLazare

CPI

Figure 9: Average number of variables for each control area in MILP and CPI.

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ● ● ● ● ●

 0

 500000

1000000

50 100
#Trains

#C
on

st
ra

in
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

 0

30000

60000

90000

50 100
#Trains

Control area

●

●

●

●

●

RSS−SER

Gonesse

GenStation

Lille

StLazare

Figure 10: Average number of constraints for each control area in MILP and CPI.

7.3. Model size
Figures 9 and 10 show the average number of variables and constraints

in the second optimization step of MILP and CPI, i.e., when both rerouting
and rescheduling are considered.

First of all, let us remark that the scale of the vertical axis is different for
the four plots, so as to be able to see the difference between control areas.
For the number of both variables and constraints, MILP shows values that
are one order of magnitude larger than the ones of CPI. The difference is
not surprising if one considers that the number of disjunctive variables and
constraints in MILP grows exponentially in the number of trains. Moreover,
as mentioned in Section 6, time coherence is ensured considering running
times separately along each route, and this has a big impact when several

39

routes are available. This type of variables and constraints is actually the
main contributor to the observed values.

The order in which control areas appear is quite preserved in all obser-
vations. In particular, RSS-SER is the control area where the number of
variables and constraints is the highest, mostly due to its longest length:
here trains have many routes and routes have many tds’s, which explains
the extremely large number of time coherence relations to be ensured. Then
Gonesse, GenStation, Lille and StLazare follow, in this order. Their number
of variables are very similar for MILP, while a clear distinction is visible for
CPI and for the number of constraints. The difference among the routes that
can be used by trains may explain this order.In particular, as discussed in
Section 7.1:

• In StLazare all routes for a train are quite similar thanks to flow sepa-
ration,

• In Lille, they are similar at one end of the control area and span over
the whole station, on the other hand,

• In GenStation, the central part of the routes, around platforms, is the
area where most differences exist,

• In Gonesse routes can be different from the very beginning to the very
end.

To understand the link between these observations and the size of the models,
imagine that a train can use two routes that have 10 tds’s each, none of which
in common. For this train, both CPI and MILP need to ensure time coherence
on 20 tds’s. If another train has the same alternative routes, there will also be
constraints to ensure the non-overlap of different train utilizations on each of
them. If the two routes are equal on the first 5 tds’s, MILP will keep creating
20 variables and constraints for time coherence, while CPI only 15. As for
the non-overlap, only 15 tds’s will need to be considered by both models.

In summary, the difference among control areas is definitely remarkable.
However, most of this difference is dependent on continuous variables and
easy constraints. Hence, it does not translate into a relevant difference in the
efficiency of the two algorithms in the five control areas.

40

7.4. Experimental settings
As mentioned in Section 5.5 and 6, both CPI and MILP follow a two-step

approach: first a pure scheduling problem is solved, having each train using
the route planned in the timetable; then the routing and scheduling problem
is solved exploiting the first solution as a warm start. In this analysis, for each
instance, we set the first step time limit to 30 seconds, as done in Pellegrini
et al. (2015) and several following papers (Pellegrini et al., 2016; Samà et al.,
2016; Pellegrini et al., 2019). If a solution is proven optimal before this time
has elapsed, then the first step is stopped immediately. Moreover, if no fea-
sible solution is available after 30 seconds, the first step is continued until at
least one is found. The second step time limit is the complement to 180 sec-
onds of the time consumed in the first step. This value is typically considered
pertinent for this type of algorithms, which can be deployed to make traffic
management decisions under the control of a human dispatcher (Quaglietta
et al., 2016). In such a deployment, algorithms need to be sufficiently quick
to be able to respond promptly to the predicted traffic perturbations, but can
take a short time to do so as in any case human reaction is not instantaneous:
dispatchers need some time to validate or refuse decisions, and they cannot
be presented with a new set of decisions every few seconds. Three minutes
is considered a good compromise between response speed and solution space
exploration possibilities. We run all experiments on an Intel(R) Xeon(R)
CPU E5-2643 v4 @ 3.40GHz, 24 cores, 128go RAM. We use CPLEX 12.6 as
MILP solver and its CP optimizer for CPI.

7.5. Results
Table 6 shows the average objective function value obtained by CPI and

MILP for each control area and number of trains, after the first and the
second optimization step. Values in bold indicate that the corresponding
performance is significantly better than the one of the competitor according
to the Wilcoxon rank-sum test with a 95% confidence level. Recall that if
the difference between the two algorithms is significant, for example in favor
of CPI, it means that if we draw a novel sample from the same distribution
of results, i.e., if we solve a further instance with similar characteristics, we
can expect that CPI will perform better than MILP. If the difference is not
statistically significant, instead, we have no reason to expect a better per-
formance of one of them on the further sample: roughly speaking, half of
the times CPI will be better, and half of the times it will be MILP. Remark
that the significance of the difference is in no relation with the magnitude of

41

Table 6: Mean of objective values: minutes of total delay. Values are in bold if the
performance is significantly the best according to the Wilcoxon rank-sum test with a 95%
confidence level.

Trains
10 20 30 40 50 60 70 80 90 100 110 120 130

RSS-SER
CPI Step 1 57 98 121 185 215 238 290 306 357 396 431 441 496

Step 2 56 97 115 177 206 231 279 299 356 395 431 441 496

MILP Step 1 57 98 121 185 215 238 285 301 349 383 416 425 478
Step 2 56 97 118 182 214 238 285 301 349 383 416 425 478

Gonesse
CPI Step 1 22 39 61 74 93 127 153 167 196 215 247 257 280

Step 2 22 39 60 72 91 125 152 167 196 215 247 257 280

MILP Step 1 22 39 61 74 93 127 153 167 196 215 246 256 279
Step 2 22 39 59 73 92 126 153 167 196 215 246 256 279

GenStation
CPI Step 1 27 57 83 115 140 173 197 227 257 273 319 343 375

Step 2 24 53 77 105 127 159 180 209 238 259 315 343 375

MILP Step 1 27 57 83 115 140 173 197 227 257 273 319 343 375
Step 2 24 53 78 110 134 172 197 227 257 273 319 343 375

Lille
CPI Step 1 19 36 72 118 146 172 212 270 322 343 407 437 497

Step 2 18 30 62 103 133 160 191 248 290 328 403 435 491

MILP Step 1 19 36 72 118 144 169 204 247 281 304 356 377 413
Step 2 18 30 62 106 134 162 201 246 281 304 356 377 413

StLazare
CPI Step 1 46 71 127 160 204 262 295 340 411 463 509 574 631

Step 2 44 69 117 145 184 237 262 297 356 393 443 482 536

MILP Step 1 46 71 127 160 204 260 293 334 399 447 497 552 605
Step 2 44 69 117 145 183 236 262 307 391 443 497 551 605

this difference itself. Indeed, there are cases in which a statistically signif-
icant difference is in average very small. For example, in 50 train Gonesse
instances, CPI is significantly better than MILP although the difference is
in average of only one minute. However, the difference is in favor of CPI in
the majority of observations. Considering one control area at a time, we can
observe that:

• In RSS-SER the two algorithms are equivalent in step 1 up to 60 trains,

42

then CPI is worse. In step 2, CPI improves its solution up to 100
trains while MILP improves its solution up to 50 trains. This is why
CPI appears the best algorithm for instances with up to 80 trains. For
higher numbers, the improvement of CPI in step 2 is not sufficient
to compensate for the worse performance of the step 1, hence MILP
achieves the best performance,

• In Gonesse, although the algorithms perform differently in quite some
instances, the magnitude of the difference is so small that the average
objective function value is virtually indistinguishable,

• In GenStation, CPI and MILP are equivalent in step 1 for all instances.
In step 2, both algorithms improve their solution as in RSS-SER, with
CPI improving slightly more for instances from 20 trains to 110 trains
and MILP not improving at all for large ones (above 70 trains). The
performance regain of MILP is not visible here, differently from RSS-
SER, due to the higher tractability of the pure scheduling problem
(step 1) in this control area, which removes its advantage over CPI for
the largest instances,

• In Lille, the behavior is similar to the one in RSS-SER: the two algo-
rithms are equivalent in step 1 up to 40 trains, then CPI performance
gets worse, the difference reaching a value of 17% in average with the
130 train instances. In step 2, CPI improves its solution up to 130
trains while MILP improves its solution up to 80 trains. The differ-
ences in improvement between the algorithms in the two steps fully
explains the fact that for instances with more than 80 trains CPI no
longer gives the best solution after step 2. For example, with 90 train
instances, CPI finds step 1 solutions 13% worse than the ones of MILP;
then it improves them by 10% in step 2, while MILP does not manage
to improve over its own. However, a 3% average difference in favor of
MILP remains at the end.

• In StLazare, the algorithms are equivalent with up to 70 trains, then
CPI becomes the best. CPI fails to achieve the best results in the first
step for large instances. However, it strongly improves its solutions in
the second step, much more than MILP, and this absorbs the worse
scheduling performance. As for GenStation, the higher tractability of

43

Figure 11: MILP and CPI performance comparison: Best objective value (MILP) - Best
objective value (CPI). STEP 1: pure scheduling. STEP 2: scheduling and routing.

●● ●●● ●●

●

●
●

●

●

●

●

●● ●●● ●●

●
●

●●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●
●● ●●

●●

●
●●
●
●●
●

●●
●
●●

●

●

● ●

●●

●
●

●

●

●

●

●

●

Lille StLazare

RSS−SER Gonesse GenStation

0 20 40 60 80 100 120 0 20 40 60 80 100 120

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

0.00

0.01

0.02

0.03

−6

−4

−2

0

−150

−100

−50

0

−50

−40

−30

−20

−10

0

−200

−150

−100

−50

0

NbTrains

O
bj

ec
tiv

e
di

ffe
re

nc
e

(m
in

)

STEP 1

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●●
●●● ●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●
●

●●●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●● ●●●●●●●
●

●●
●●●●

●●

●

●

●
●

●●
●

●
●●●●

●
●

●

●

●

●

●

● ●

Lille StLazare

RSS−SER Gonesse GenStation

0 20 40 60 80 100 120 0 20 40 60 80 100 120

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

0

10

20

30

−5

0

5

0

50

100

150

−40

−20

0

20

−100

0

NbTrains

O
bj

ec
tiv

e
di

ffe
re

nc
e

(m
in

)

STEP 2

the scheduling problem in this control area removes the MILP advan-
tage over CPI for the largest instances.

Figure 11 graphically shows the comparison of the solution quality achieved
by CPI and MILP. A separate graphic is dedicated to each control area. In
each of them, a set of boxplots show the difference in the objective function
value obtained by MILP and CPI for each set of instances, i.e., for each num-
ber of trains: a box depicts the distribution of the obtained values, from the

44

25-th to the 75-th percentile, with a thick line in between to represent the
median. Whiskers show the presence of further relevant observations, while
dots stand for outliers. Negative values indicate better results returned by
MILP. The first set of five graphics show the performance of the first step of
each algorithm, when only scheduling is optimized. The second set of graph-
ics concerns the second step, when also rerouting is considered. This figure
confirms the observations made on Table 6, and it shows that the relations
on the average values are not due to distribution outliers. This representa-
tion highlights the fact that the relative performance of the two algorithms
is the same across control areas. What mostly differs is the threshold on the
number of trains for which this performance switches from being in favor of
CPI to being in favor of MILP. The switch in favor of MILP is only partially
visible in GenStation, where for the largest instances the two algorithms are
equivalent. It is even less detectable in StLazare. However, the trends fol-
lowed by the boxplots for these two control areas let us conjecture that a
further increase in the number of trains may eventually lead to the elsewhere
observed behavior.

In summary, these results show that CPI and MILP are equivalent for
small instances: they both find good scheduling solutions and manage to
improve them when also rerouting is possible. When the number of trains
increases and the instances become more and more difficult, the behavior
of CPI and MILP changes. On the one hand, CPI often fails to return the
optimal, or a very good sub-optimal, pure scheduling solution in the first step.
In the second step, it manages to improve this solution by adding rerouting,
up to a point in which the instances become too difficult to do so: for the
largest instances, the first step solution is equal to the final one. On the
other hand, MILP almost always returns the optimal solutions of the pure
scheduling problem in the first step, being often better than CPI. However,
its capability to improve this solution through the addition of rerouting is
worse than the one of CPI, as it starts failing any relevant improvement in
the second step already with intermediate numbers of trains. This is coherent
with the observations reported in the literature on the contribution of many
rerouting possibilities to the difficulty of instances for MILP (Pellegrini et al.,
2015). It is also in agreement with the observations made in Section 7.3 on
the number of variables and constraints. Indeed, MILP model size often
becomes huge even with intermediate numbers of trains, while CPI manages
to keep this size under control for larger instances.

Let us now consider the computation time used during step 1. The mean

45

computation time and a quality indicator for CPI relative to MILP solutions
at the end of step 1 are reported in Table 7. Computation time values smaller
than 30 seconds show that optimal solutions are found before the time limit
elapses. The CPI quality indicator Gap is the average percent deviation from
the optimal or the best solution produced by MILP algorithm at the end of
step 1.

The MILP algorithm uses much less than 30 seconds (0.2 to 10 seconds)
for almost all instances: it finds the optimal or near optimal solution for all
instances in step 1.

This happens much less often for CPI, which manages to complete so-
lution optimality proofs only for about one third of the instances. Even in
these instances, the difference in computation time with respect to MILP is
more than an order of magnitude.

In the sets of instances for which CPI almost never proves optimality
(computation time of 20 to 30 seconds in Table 7) in step 1, we can identify
three groups of instances:

• In the first group, the gap is above 1%, meaning that either CPI finds
the solution proven optimal by MILP but does not complete its own
proof, or it finds a solution whose quality is close to the MILP one. This
group includes the RSS-SER instances from 30 to 60 trains, the Gonesse
and Generic Junction instances over 60 and 70 trains, respectively, the
Lille instances from 30 to 40 trains and the StLazare instances from 30
to 50 trains. For almost all these instances, CPI also reaches better or
equivalent quality solutions after step 2.

• The second group of instances has a low gap value, between 1 % and
4%. The group includes RSS-SER instances from 70 to 130 trains, Lille
from 50 to 80 trains and StLazare from 60 to 130 trains. As the CPI
starting solution in step 2 is still close to the one of MILP, the efficiency
of CPI allows to return a better final solution than MILP for Lille and
StLazare instances but not for RSS-SER. A possible explanation can
be that RSS-SER has a corridor structure, while Lille and StLazare are
terminal stations. The routing dimension has probably less influence
on the quality of the solution for corridor infrastructure instances than
for terminal station instances. The former is “closer” to a scheduling
problem and therefore less convenient for CPI.

• The third group of instances has a significant gap value between 8 %

46

Table 7: Mean computation time of MILP and CPI at the end of step 1, and CPI gap.

#trains 10 20 30 40 50 60 70 80 90 100 110 120 130
RSS-SER

MILP CPU (s) 0.3 0.6 1.3 2 2.9 4.7 7.6 10.3 14.6 19.5 23.4 26 29.3
CPI CPU (s) 2.6 11.4 21.7 26.3 29.3 28.4 27.2 30 30 30 30 30 30
CPI Gap (%) 0 % 0 % 0 % 0 % 0 % 0 % 2 % 2 % 2 % 3 % 4 % 4 % 4 %

Gonesse
MILP CPU (s) 0.3 0.6 1.1 1.9 3.6 6.3 9.1 10.9 13.1 13.1 15.9 18.8 20.8
CPI CPU (s) 0.6 7 18.3 25.4 27.3 30 30 30 30 30 30 30 30
CPI Gap (%) 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Generic Junction
MILP CPU (s) 0.2 0.4 0.5 0.9 1.5 2.4 3.5 3.8 4.5 5.6 7.8 8.8 10.9
CPI CPU (s) 0.5 6.2 16.4 24.5 29.7 29.9 30 30 30 30 30 30 30
CPI Gap (%) 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Lille
MILP CPU (s) 0.2 0.3 0.6 1 1.8 2.8 5.6 15.7 24.2 27.2 27.8 29.8 29.3
CPI CPU (s) 0.4 13.1 25.7 29.1 30 30 30 30 30 30 30 30 30
CPI Gap (%) 0 % 0 % 0 % 0 % 2 % 2 % 4 % 8 % 13 % 11 % 13 % 14 % 17 %

StLazare
MILP CPU (s) 0.2 0.3 0.4 0.6 1 1.4 2 3.2 4.9 6.8 9.7 11.8 16.4
CPI CPU (s) 2 9.9 26.1 27.2 30 30 30 30 30 30 30 30 30
CPI Gap (%) 0 % 0 % 0 % 0 % 0 % 1 % 1 % 2 % 3 % 3 % 2 % 4 % 4 %

and 17%, it includes the Lille instances from 80 to 130 trains. The
efficiency of CPI in step 2 is not sufficient to reach the MILP solution
of step 1, therefore MILP always gives the best solution for this group
of instances.

To conclude on the effectiveness of RECIFE-CPI, we recall that the
RECIFE-MILP algorithm has been tested on several industrial projects and
presents very good performance resulting from many years of research, which
makes it a state-of-the-art model and algorithm for the rtRTMP. In short,
the overall results show that RECIFE-CPI has equivalent performance to
RECIFE-MILP in small-sized instances, better performance in intermediate-
sized instances, and worse performance on some larger-sized instances (RSS-
SER, Lille). Therefore, we cannot conclude that RECIFE-CPI outperforms
RECIFE-MILP, but we can conclude that it has very good performance and
shows some strengths that can be exploited in a hybridization approach.

8. RECIFE-CPI and RECIFE-MILP hybridization

The results presented in Section 7.5 suggest that CPI and MILP have
different strengths which make them alternatively the best option to solve

47

different instances. On the one hand, MILP appears to be better at solving
the pure scheduling problem in the first optimization step. On the other
hand, CPI appears more effective in dealing with the overall rerouting and
scheduling problem, when it is not penalized by the quality of the first step
solution.

These observations suggest that an hybridization of the two algorithms
may be the way to go to exploit their respective strengths. Several possibil-
ities can be imagined to do so. In this paper, we make a first step towards
a full hybridization by defining an algorithm that starts with the first opti-
mization step of MILP and uses the obtained solution as a warm start for
the second step of CPI. We name this algorithm Hybrid. Intuitively, Hybrid
exploits the pure scheduling efficiency of MILP and makes the best of the
rerouting ability of CPI, by warm starting it with an excellent solution and
having it running for a longer computational time than in the pure constraint
programming algorithm, as explained at the end of Section 7.5.

We test Hybrid in the same experimental setup as described in Section 7,
considering all five control areas and the increasing number of trains for each
of them.

8.1. Results
Figure 12 depicts the results of these experiments. For each control area,

a graphic represents the average performance of CPI, MILP and Hybrid for
each number of trains in an instance. For each set of instances, squares show
when algorithms find the optimal solution at the first step (abscissa equal to
0) and how much worse their solution is when they fail to do so (negative
abscissa value). Indeed, MILP almost always proves optimality, and hence
Hybrid too, while CPI returns suboptimal solutions for the largest instances.
These squares are joined to circles by horizontal lines. Circles show the per-
centage improvement achieved in the second step with respect to the optimal
first step solution. The longest the line, the larger the contribution of the
second step. These graphics depict the CPI and MILP behavior discussed in
Section 7.5. Moreover, they show that Hybrid combines the two algorithms’
strengths: it always finds the optimal pure scheduling solution in the first
step, and improves it in the second step unless for extremely large and com-
plex instances. Moreover, it exploits the short computational time used by
MILP in first step: in the second step it uses CPI for solving the rerouting
and scheduling problem, for a longer time than what CPI itself can do. The
additional time can be quite high, as shown in Table 7. The result is that

48

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

100

110

120

130

−3 0 3 6
Improvement %

#T
ra

in
s

RSS−SER

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

100

110

120

130

0 2 4
Improvement %

#T
ra

in
s

Gonesse

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

100

110

120

130

0.0 2.5 5.0 7.5 10.0
Improvement %

#T
ra

in
s

GenStation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

100

110

120

130

−20 −10 0 10
Improvement %

#T
ra

in
s

Lille

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

100

110

120

130

−5 0 5 10 15
Improvement %

#T
ra

in
s

StLazare

Model

●

●

●

CPI−step1

CPI

MILP−step1

MILP

Hybrid

Figure 12: Results of CPI, MILP and Hybrid: percentage improvement with respect to
the best solution found in the first optimization step.

49

Table 8: Results of the Wilcoxon rank-sum test on the difference of final solutions returned
by CPI, MILP and Hybrid. A letter indicates that the difference in the results is statisti-
cally significant in favor of Hybrid for a set of instance: M indicates that the difference is
significant when Hybrid is compared with MILP, C that it is such when the comparison
is made with CPI. Neither MILP nor CPI are ever significantly better than Hybrid.

trains
case study 20 30 40 50 60 70 80 90 100 110 120 130
RSS-SER M M M C,M C,M C,M C C C C
Gonesse M M C,M C C C
GenStation M M M M C,M C,M C,M C,M
Lille M C,M M C,M C,M C,M C C C
StLazare C,M C,M M M C,M M

Hybrid often achieves better results of both CPI and MILP, and it is never
outperformed. This is confirmed in Table 8, where we report the results of
the Wilcoxon rank-sum tests performed for each set of instances. Indeed, the
results are in many cases statistically better for Hybrid than for either CPI
or MILP, while the opposite never happens. The difference is more striking
for intermediate-size instances. When instances are small enough for CPI to
find the optimal solution in the first step and large enough for MILP not
to be able to improve in the second (e.g., RSS-SER with 40 to 60 trains),
Hybrid is better than MILP but not than CPI. As instances grow, it out-
performs both. Finally, when instances are too large both for CPI first step
and for MILP second step, Hybrid is better than CPI but not than MILP
(e.g., RSS-SET with more than 100 trains), of with whom it shares the pure
scheduling optimal solution returned at the end.

9. Conclusion

In this paper, we proposed a new Constraint Programming formulation
for the real-time Railway Traffic Management Problem. It is based on the
concept of time-interval variables which simplifies the modeling of alterna-
tive route choices and the blocking time constraints. The solution of this
formulation is the basis of a new algorithm named RECIFE-CPI.

We compared RECIFE-CPI with a state-of-the-art algorithm for the
rtRTMP, namely RECIFE-MILP. We performed this comparison in a thor-
ough experimental analysis based on data representing traffic perturbations
in four real French control areas and in a fictive one, which we name Generic

50

Station. We considered 13 sets of instances for each control area, with in-
creasing numbers of trains.

The results of this extremely large experimental analysis show that
RECIFE-CPI achieves results that are often comparable with the ones of
RECIFE-MILP. For largest instances, the former shows a weaker behavior
than the latter for solving pure scheduling problems, and a stronger one for
solving scheduling and routing ones. Despite the very different characteristics
of the cases studies, the relative performance of the two algorithms remains
substantially the same across them. What changes when considering differ-
ent control areas is the number of trains that corresponds to the threshold for
having one of the two algorithms performing well or badly for the scheduling
or routing problems: “large” instances have different numbers of trains in
different control areas, but similar algorithm behaviors are observable when
tackling them.

To make our results reproducible, we made the instances concerning the
Generic Station control area publicly available. The publication of rtRTMP
instances is extremely rare in the field, mostly due to confidentiality issues.
Such issues forbid publishing the instances representing the four real control
areas used in this paper. To the best of our knowledge, no public data consid-
ering a microscopic infrastructure representation exist. Hence, we consider
the use of the Generic Station instances particularly relevant in this paper,
although it lacks the charm of real data shared by the other control areas. In
the experimental analysis, we showed that the difficulty of these instances is
comparable to real ones with similar characteristics, i.e., representing traffic
in control areas where trains have many short alternative routes available.
For example, the Pierrefitte-Gonesse junction instances challenge our algo-
rithms in a way that is comparable to the Generic Station ones. In particular,
they are quite tractable when only scheduling is optimized: we are able to
find the optimal solution to instances including a very large number of trains
in a few seconds when they all travel along the route planned in the in-
frastructure. Instead, the instances become difficult when also rerouting is
considered. The published instances may hopefully become a test-bed for
future algorithm comparisons.

After detecting strengths and weaknesses of RECIFE-CPI and RECIFE-
MILP, we exploited the former to define a hybrid algorithm. It starts by
exploiting RECIFE-MILP pure scheduling strength, and ends by exploiting
RECIFE-CPI scheduling and routing one. This hybridization outperforms
the two original algorithms for many sets of instances, while the opposite

51

never happens. Nonetheless, for extremely large and complex instances, no
algorithm is capable of exploiting rerouting to improve over the pure schedul-
ing optimal solution in the available computational time.

Future work will be devoted to the investigation of further hybridiza-
tion possibilities between RECIFE-CPI and RECIFE-MILP. This may allow
pushing the boundaries on the characteristics of tractable instances, be it in
the number of trains or in the size and type of control areas managed.

Approaches used in other applications are relevant to consider. Among
them, those used for wire routing in VLSI design and communication net-
work routing may be particularly interesting. Indeed, as the rtRTMP, these
are NP-Hard combinatorial problems, which include constraints on limited re-
sources that must be shared by multiple entities (Lengauer, 1990; Chen et al.,
2000). Approaches to solving these problems may help in a pre-processing
phase to reduce the set of routes to the most promising ones for each train.
This may simplify the problem solution and allow the use of methods as, e.g.,
the approximation algorithms developed in Terlaky et al. (2008).

Finally, the CPI solution method used in this paper is a general-purpose
method. By making use of the specific properties of the rtRTMP, speed-
ups can be expected. Therefore, in the future we will develop tailored CPI
solution methods for the rtRTMP.

References

Albrecht, A., Howlett, P., Pudney, P., Vu, X., Zhou, P., 2016a. The key
principles of optimal train control – Part 1: Formulation of the model,
strategies of optimal type, evolutionary lines, location of optimal switching
points. Transportation Research Part B: Methodological 94, 482–508.

Albrecht, A., Howlett, P., Pudney, P., Vu, X., Zhou, P., 2016b. The key
principles of optimal train control – Part 2: Existence of an optimal strat-
egy, the local energy minimization principle, uniqueness, computational
techniques. Transportation Research Part B: Methodological 94, 509–538.

Albrecht, T., 2009. The influence of anticipating train driving on the dis-
patching process in railway conflict situations. Networks and Spatial Eco-
nomics 9, 85–101.

Albrecht, T., 2010. Reducing power peaks and energy consumption in rail

52

transit systems by simultaneous train running time control. WIT Trans-
actions on State-of-the-art in Science and Engineering 39.

Altazin, E., Dauzère-Pérès, S., Ramond, F., Tréfond, S., 2017. Rescheduling
through stop-skipping in dense railway systems. Transportation Research
Part C: Emerging Technologies 79, 73–84.

Altazin, E., Dauzère-Pérès, S., Ramond, F., Tréfond, S., 2020. A multi-
objective optimization-simulation approach for real time rescheduling in
dense railway systems. European Journal of Operational Research 286,
662–672.

Araya, S., Sone, S., 1984. Traffic dynamics of automated transit systems
with pre-established schedules. IEEE Transactions on Systems, Man, and
Cybernetics SMC-14, 677–687.

Blenkers, L., 2015. Railway disruption management,. Master’s thesis. Delft
Center Syst. Control, Delft Univ. Technol. Delft, The Netherlands.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L.,
Wagenaar, J., 2014. An overview of recovery models and algorithms for
real-time railway rescheduling. Transportation Research Part B: Method-
ological 63, 15 – 37.

Caimi, G., Fuchsberger, M., Laumanns, M., Lüthi, M., 2012. A model pre-
dictive control approach for discrete-time rescheduling in complex central
railway station areas. Computers & Operations Research 39, 2578 – 2593.

Cappart, Q., Schaus, P., 2017. Rescheduling railway traffic on real time
situations using time-interval variables, in: Salvagnin, D., Lombardi, M.
(Eds.), Integration of AI and OR Techniques in Constraint Programming,
Springer International Publishing, Cham. pp. 312–327.

Cavone, G., van den Boom, T., Blenkers, L., Dotoli, M., Seatzu, C., De Schut-
ter, B., 2022. An mpc-based rescheduling algorithm for disruptions and
disturbances in large-scale railway networks. IEEE Transactions on Au-
tomation Science and Engineering 19, 99–112.

Chen, S., Günlük, O., Yener, B., 2000. The multicast packing problem.
IEEE/ACM Transactions on Networking 8, 311–318.

53

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2010a. Centralized
versus distributed systems to reschedule trains in two dispatching areas.
Public Transport 2, 219–247.

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2010b. A tabu search
algorithm for rerouting trains during rail operations. Transportation Re-
search Part B: Methodological 44, 175–192.

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2012. Optimal inter-
area coordination of train rescheduling decisions. Transportation Research
Part E: Logistics and Transportation Review 48, 71–88. Select Papers from
the 19th International Symposium on Transportation and Traffic Theory.

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2014. Dispatching
and coordination in multi-area railway traffic management. Computers &
Operations Research 44, 146 – 160.

Corman, F., Meng, L., 2015. A review of online dynamic models and algo-
rithms for railway traffic management. IEEE Transactions on Intelligent
Transportation Systems 16, 1274–1284.

Cucala, A.P., Fernandez, A., de Cuadra, F., Pilo, E., 2007. An optimisation-
based traffic regulator for metro lines. WIT Transactions on The Built
Environment 96.

Cury, J., Gomide, F., Mendes, M., 1980. A methodology for generation of
optimal schedules for an underground railway system. IEEE Transactions
on Automatic Control 25, 217–222.

D’Ariano, A., Albrecht, T., 2006. Running time re-optimization during real-
time timetable perturbations. WIT Transactions on The Built Environ-
ment 88.

D’Ariano, A., Corman, F., Pacciarelli, D., Pranzo, M., 2008. Reordering and
local rerouting strategies to manage train traffic in real time. Transporta-
tion Science 42, 405–419.

D’Ariano, A., Pacciarelli, D., Pranzo, M., 2007. A branch and bound al-
gorithm for scheduling trains in a railway network. European Journal of
Operational Research 183, 643–657.

54

Diehl, M., Bock, H., Diedam, H., Wieber, P.B., 2006. Fast Motions in Biome-
chanics and Robotics: Optimization and Feedback Control. Springer Berlin
Heidelberg, Berlin, Heidelberg. chapter Fast Direct Multiple Shooting Al-
gorithms for Optimal Robot Control. pp. 65–93.

Fang, W., Yang, S., Yao, X., 2015. A survey on problem models and solution
approaches to rescheduling in railway networks. IEEE Transactions on
Intelligent Transportation Systems 16, 2997–3016.

Fernandez, A., Cucala, A.P., Vitoriano, B., de Cuadra, F., 2006. Predictive
traffic regulation for metro loop lines based on quadratic programming.
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of
Rail and Rapid Transit 220, 79–89.

Fischetti, M., Monaci, M., 2017. Using a general-purpose mixed-integer linear
programming solver for the practical solution of real-time train reschedul-
ing. European Journal of Operational Research 263, 258 – 264.

Fukumori, K., 1980. Fundamental scheme for train scheduling: Application
of range-constriction search. Technical Report A.I. Memo No. 596. Mas-
sachusetts Institute of Technology Artificial Intelligence Laboratory. USA.

García, C.E., Prett, D.M., Morari, M., 1989. Model predictive control: The-
ory and practice – a survey. Automatica 25, 335–348.

Goverde, R.M., Scheepmaker, G.M., Wang, P., 2021. Pseudospectral optimal
train control. European Journal of Operational Research 292, 353–375.

Hansen, I. A.; Pachl, J. (Ed.), 2008. Railway Timetable & Traffic - Analysis,
Modelling, Simulation. Eurailpress.

Hooker, J.N., van Hoeve, W.J., 2018. Constraint programming and opera-
tions research. Constraints 23, 172–195.

Howlett, P., 1990. An optimal strategy for the control of a train. The Journal
of the Australian Mathematical Society. Series B. Applied Mathematics 31,
454–471.

Howlett, P., 2000. The optimal control of a train. Annals of Operations
Research 98, 65–87.

55

Ingolitto, L., Barber, F., Tormos, P., Lova, A., Salido, M., Abril, M., 2004.
An efficient method to schedule new trains on a heavily loaded railway
network, in: Reyes, C., Gonzales, J. (Eds.), Advances in Artificial Intelli-
gence, IBERAMIA 2004, 9th Ibero-American Conference on AI, Springer
Verlag, Puebla, Mexico. pp. 164–173.

Isaai, M., Singh, M., 2000. An intelligent constraint-based search method
for a single-line passenger-train scheduling problems, in: The Internation
Conference on the Practical Application of Constraint Technologies and
Logic Programming, pp. 79–91.

Kersbergen, B., Rudan, J., van den Boom, T., De Schutter, B., 2016a. To-
wards railway traffic management using switching max-plus-linear systems.
Discrete Event Dynamic Systems 26, 183–223.

Kersbergen, B., van den Boom, T., De Schutter, B., 2016b. Distributed
model predictive control for railway traffic management. Transportation
Research Part C: Emerging Technologies 68, 462–489.

Khosravi, B., Bennell, J.A., Potts, C.N., 2012. Train Scheduling and
Rescheduling in the UK with a Modified Shifting Bottleneck Proce-
dure, in: Delling, D., Liberti, L. (Eds.), 12th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.
pp. 120–131.

Kreuger, P., Carlsson, M., Sjöland, T., Aström, E., 2001. Sequence dependent
task extensions for trip scheduling. Technical Report SICS-T-2001/14-SE.
Swedish Institute of Computer Science (SICS),.

Kumar, R., Sen, G., Kar, S., Tiwari, M.K., 2018. Station dispatching problem
for a large terminal: A constraint programming approach. INFORMS
Journal on Applied Analytics 48, 510–528.

Laborie, P., Godard, D., 2007. Application to single-mode scheduling prob-
lems., in: 3rd Multidisciplinary International Conference on Scheduling:
Theory and Applications (MISTA)., pp. 276–284.

Laborie, P., Rogerie, J., 2008. Reasoning with conditional time-intervals, in:
Twenty-First International FLAIRS Conference, pp. 555–560.

56

Laborie, P., Rogerie, J., 2016. Temporal linear relaxation in IBM ILOG CP
Optimizer. Journal of Scheduling 19, 391–400.

Laborie, P., Rogerie, J., Shaw, P., Vilím, P., 2018. IBM ILOG CP Optimizer
for scheduling. Constraints 23, 210–250.

Lamma, E., Mello, P., Milano, M., 1997. A distributed constraint-based
scheduler. Artificial Intelligence in Engineering 11, 91–105.

Lengauer, T., 1990. Combinatorial Algorithms for Integrated Circuit Lay-
out. XApplicable Theory in Computer Science. John Wiley & Sons ed.,
Vieweg+Teubner Verlag Wiesbaden.

Luan, X., Corman, F., Meng, L., 2017a. Non-discriminatory train dispatch-
ing in a rail transport market with multiple competing and collaborative
train operating companies. Transportation Research Part C: Emerging
Technologies 80, 148–174.

Luan, X., Corman, F., Meng, L., 2017b. Non-discriminatory train dispatch-
ing in a rail transport market with multiple competing and collaborative
train operating companies. Transportation Research Part C: Emerging
Technologies 80, 148–174.

Luan, X., Corman, F., Wang, Y., Meng, L., Lodewijks, G., 2017c. Integrated
optimization of traffic management and train control for rail networks,
in: 7th International Conference on Railway Operations Modelling and
Analysis - RailLille2017, Lille, France, pp. 1413–1432.

Luan, X., De Schutter, B., Meng, L., Corman, F., 2020. Decomposition and
distributed optimization of real-time traffic management for large-scale
railway networks. Transportation Research Part B: Methodological 141,
72 – 97.

Luan, X., Schutter, B.D., van den Boom, T., Corman, F., Lodewijks, G.,
2018a. Distributed optimization for real-time railway traffic management.
IFAC-PapersOnLine 51, 106–111. 15th IFAC Symposium on Control in
Transportation Systems CTS 2018.

Luan, X., Wang, Y., De Schutter, B., Meng, L., Lodewijks, G., Corman, F.,
2018b. Integration of real-time traffic management and train control for

57

rail networks - part 1: Optimization problems and solution approaches.
Transportation Research Part B: Methodological 115, 41–71.

Luan, X., Wang, Y., De Schutter, B., Meng, L., Lodewijks, G., Corman, F.,
2018c. Integration of real-time traffic management and train control for
rail networks - part 2: Extensions towards energy-efficient train operations.
Transportation Research Part B: Methodological 115, 72–94.

Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D., 2011. Railway track alloca-
tion: models and methods. OR Spectrum 33, 843–883.

Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.M., 2013. A set packing
inspired method for real-time junction train routing. Computers & Oper-
ations Research 40, 713–724.

Lüthi, M., 2009. Improving the Efficiency of Heavily Used Railway Net-
works through Integrated Real-Time Rescheduling. Diss. ETH No. 18615.
Institute for Operations Research, ETH Zurich.

Mannino, C., Mascis, A., 2009. Optimal real-time traffic control in metro
stations. Operations Research 57, 1026–1039.

Mascis, A., Pacciarelli, D., 2002. Job-shop scheduling with blocking and no-
wait constraints. European Journal of Operational Research 143, 498–517.

Mascis, A., Pacciarelli, D., Pranzo, M., 2002. Models and algorithms for
traffic management of rail networks. Technical Report DIA-74-2002. Di-
partimento di Informatica e Automazione, Universitá Roma Tre.

Mazzarello, M., Ottaviani, E., 2007. A traffic management system for real-
time traffic optimisation in railways. Transportation Research Part B:
Methodological 41, 246–274.

Meng, L., Zhou, X., 2014. Simultaneous train rerouting and rescheduling on
an n-track network: A model reformulation with network-based cumulative
flow variables. Transportation Research Part B: Methodological 67, 208 –
234.

Montrone, T., Pellegrini, P., Nobili, P., 2018. Real-time energy consump-
tion minimization in railway networks. Transportation Research Part D:
Transport and Environment 65, 524–539.

58

Oliveira, E.S., 2001. Solving Single-Track Railway Scheduling Problem Using
Constraint Programming. Ph.D. thesis. School of Computing - University
of Leeds.

Pellegrini, P., Marlière, G., Pesenti, R., Rodriguez, J., 2015. RECIFE-MILP:
An Effective MILP-Based Heuristic for the Real-Time Railway Traffic
Management Problem. IEEE Transactions on Intelligent Transportation
Systems 16, 2609–2619.

Pellegrini, P., Marlière, G., Rodriguez, J., 2014. Optimal train routing and
scheduling for managing traffic perturbations in complex junctions. Trans-
portation Research Part B: Methodological 59, 58–80.

Pellegrini, P., Marlière, G., Rodriguez, J., 2016. A detailed analysis of the ac-
tual impact of real-time railway traffic management optimization. Journal
of Rail Transport Planning & Management 6, 13–31.

Pellegrini, P., Pesenti, R., Rodriguez, J., 2019. Efficient train re-routing
and rescheduling: Valid inequalities and reformulation of RECIFE-MILP.
Transportation Research Part B: Methodological 120, 33 – 48.

Quaglietta, E., Pellegrini, P., Goverde, R.M., Albrecht, T., Jaekel, B., Mar-
liere, G., Rodriguez, J., Dollevoet, T., Ambrogio, B., Carcasole, D., Gi-
aroli, M., Nicholson, G., 2016. The ON-TIME real-time railway traffic
management framework: A proof-of-concept using a scalable standard-
ised data communication architecture. Transportation Research Part C:
Emerging Technologies 63, 23 – 50.

Reynolds, E., Ehrgott, M., Maher, S.J., Patman, A., , Wang, J.Y., 2020. A
multicommodity flow model for rerouting and retiming trains in real-time
to reduce reactionary delay in complex station areas. Optimization Online
, 1–37.

Rivier, R., Lucchini, L., Curchod, A., 2001. Analysing the capacity of railway
networks: Summing up the experience, in: 9 th World Conference on
Transportation Research, pp. 1–15.

Rodriguez, J., 2007a. A constraint programming model for real-time train
scheduling at junctions. Transportation Research Part B: Methodological
41, 231–245.

59

Rodriguez, J., 2007b. A study of the use of state resources in a constraint-
based model for routing and scheduling trains, in: 2nd International Sem-
inar on Railway Operations Modelling and Analysis, Hannover, Germany.
pp. 1–14.

Rodriguez, J., Delorme, X., Gandibleux, X., Marlière, G., Bartusiak, R.,
Degoutin, F., Sobieraj, S., 2007. RECIFE : modèles et outils pour l’analyse
de la capacité ferroviaire. Recherche Transports Sécurité 95, 19–36. (in
French).

Rodriguez, J., Kermad, L., 1998. Constraint programming for real-time train
circulation management problem in railway nodes, Computers in Railways
VI. WIT Transactions on The Built Environment 37.

Rodriguez, J., Marlière, G., Sobieraj, S., 2010. A constraint-based scheduling
model for optimal train dispatching, in: Joint Rail Conference, Urbana-
Champaign, Illinois, USA. pp. 399–406.

Samà, M., D’Ariano, A., Corman, F., Pacciarelli, D., 2017. A variable neigh-
bourhood search for fast train scheduling and routing during disturbed
railway traffic situations. Computers & Operations Research 78, 480–499.

Samà, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., Pacciarelli, D., 2016.
Ant colony optimization for the real-time train routing selection problem.
Transportation Research Part B: Methodological 85, 89–108.

Scheepmaker, G.M., Goverde, R.M., Kroon, L.G., 2017. Review of energy-
efficient train control and timetabling. European Journal of Operational
Research 257, 355–376.

Schutter, B.D., van den Boom, T., Hegyi, A., 2002. Model predictive con-
trol approach for recovery from delays in railway systems. Transportation
Research Record 1793, 15–20.

Söhlke, A., Rodrigues, R., 2022. Deliverable D8.2 Standardized and auto-
mated conflict handling solution. Technical Report. Shift2Rail - X2RAIL-4
project.

Strotmann, C., 2007. Railway scheduling problems and their decomposition.
Ph.D. thesis. Universität Osnabrück.

60

Terlaky, T., Vannelli, A., Zhang, H., 2008. On routing in VLSI design and
communication networks. Discrete Applied Mathematics 156, 2178–2194.

Toletti, A., Laumanns, M., Weidmann, U., 2020. Coordinated railway traf-
fic rescheduling with the resource conflict graph model. Journal of Rail
Transport Planning & Management 15, 100173.

Törnquist, J., Persson, J.A., 2007. N-tracked railway traffic re-scheduling
during disturbances. Transportation Research Part B: Methodological 41,
342–362.

Van Breusegem, V., Campion, G., Bastin, G., 1991. Traffic modeling and
state feedback control for metro lines. IEEE Transactions on Automatic
Control 36, 770–784.

van den Boom, T., De Schutter, B., 2006. Modelling and control of discrete
event systems using switching max-plus-linear systems. Control Engineer-
ing Practice 14, 1199–1211. The Seventh Workshop On Discrete Event
Systems (WODES2004).

Vilím, P., Barták, R., Čepek, O., 2005. Extension of O(N Log N) Filter-
ing Algorithms for the Unary Resource Constraint to Optional Activities.
Constraints 10, 403–425.

Vilím, P., Laborie, P., Shaw, P., 2015. Failure-directed search for constraint-
based scheduling, in: International Conference on AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems,
Springer, Cham. pp. 437–453.

Wang, P., Goverde, R.M., 2016. Multiple-phase train trajectory optimization
with signalling and operational constraints. Transportation Research Part
C: Emerging Technologies 69, 255–275.

Wang, P., Goverde, R.M., 2017. Multi-train trajectory optimization for en-
ergy efficiency and delay recovery on single-track railway lines. Transporta-
tion Research Part B: Methodological 105, 340–361.

Wang, X., Li, S., Tang, T., Yang, L., 2022a. Event-triggered predictive
control for automatic train regulation and passenger flow in metro rail
systems. IEEE Transactions on Intelligent Transportation Systems 23,
1782–1795.

61

Wang, Y., De Schutter, B., van den Boom, T.J.J., Ning, B., Tang, T.,
2014a. Efficient bilevel approach for urban rail transit operation with
stop-skipping. IEEE Transactions on Intelligent Transportation Systems
15, 2658–2670.

Wang, Y., De Schutter, B., van den Boom, T.J., Ning, B., 2013. Optimal
trajectory planning for trains – a pseudospectral method and a mixed
integer linear programming approach. Transportation Research Part C:
Emerging Technologies 29, 97–114.

Wang, Y., De Schutter, B., van den Boom, T.J., Ning, B., 2014b. Optimal
trajectory planning for trains under fixed and moving signaling systems
using mixed integer linear programming. Control Engineering Practice 22,
44–56.

Wang, Y., De Schutter, B., van den Boom, T.J., Ning, B., Tang, T., 2014c.
Origin-destination dependent train scheduling problem with stop-skipping
for urban rail transit systems, in: Proceedings of the 93rd Annual Meeting
of the Transportation Research Board, Washington, DC. pp. 14–188.

Wang, Y., Ning, B., Tang, T., van den Boom, T.J.J., De Schutter, B., 2015a.
Efficient real-time train scheduling for urban rail transit systems using
iterative convex programming. IEEE Transactions on Intelligent Trans-
portation Systems 16, 3337–3352.

Wang, Y., Tang, T., Ning, B., van den Boom, T.J., De Schutter, B., 2015b.
Passenger-demands-oriented train scheduling for an urban rail transit net-
work. Transportation Research Part C: Emerging Technologies 60, 1–23.

Wang, Y., Zhu, S., Li, S., Yang, L., De Schutter, B., 2022b. Hierarchical
model predictive control for on-line high-speed railway delay management
and train control in a dynamic operations environment. IEEE Transactions
on Control Systems Technology 30, 2344–2359.

Xu, P., Corman, F., Peng, Q., Luan, X., 2017. A train rescheduling model in-
tegrating speed management during disruptions of high-speed traffic under
a quasi-moving block system. Transportation Research Part B: Method-
ological 104, 638–666.

Yang, X., Chen, A., Li, X., Ning, B., Tang, T., 2015. An energy-efficient
scheduling approach to improve the utilization of regenerative energy for

62

metro systems. Transportation Research Part C: Emerging Technologies
57, 13–29.

Yang, X., Li, X., Ning, B., Tang, T., 2016. A survey on energy-efficient
train operation for urban rail transit. IEEE Transactions on Intelligent
Transportation Systems 17, 2–13.

Yin, J., Tang, T., Yang, L., Xun, J., Huang, Y., Gao, Z., 2017. Research and
development of automatic train operation for railway transportation sys-
tems: A survey. Transportation Research Part C: Emerging Technologies
85, 548–572.

63

