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Abstract

The detection of community structure is probably one of the hottest
trends in complex network research as it reveals the internal organization
of people, molecules or processes behind social, biological or computer
networks. .. The issue is to provide a network partition representative of
this organization so that each community presumably gathers nodes shar-
ing a common mission, purpose or property. Usually the identification is
based on the difference between the connectivity density of the interior and
the boundary of a community. Indeed, nodes sharing a common purpose
or property are expected to interact closely. Although this rule appears
mostly relevant, some fundamental scientific problems like disease module
detection highlight the inability to determine significantly the communi-
ties under this connectivity rule. The main reason is that the connectivity
density is not correlated to a shared property or purpose. Therefore, an-
other paradigm is required for properly formalize this issue in order to
meaningfully detect these communities. In this article we study the com-
munity formation from this new principle. Considering colors formally
figures the shared properties, the issue is thus to maximize group of nodes
with the same color within communities.. We study this novel community
framework by introducing new measurement called chromarity assessing
the quality of the community structure regarding this constraint. Next
we propose an algorithm solving the community structure detection based
on this new community formation paradigm.

Keywords: Community structure, Detection algorithm.

1 Introduction

Complex networks model component interactions in diverse real-world domains
as in sociology with social or friendships networks, computer science with WEB,
and biology with regulatory, metabolic or neural networks. Nodes of these net-
works are often arranged in closely tight groups called communities. These
communities delineate the organizational supports of function, property, pur-
pose or categories. They thus highlight a structure of the network providing



an organizational understanding behind the topology. Formally, the goal is to
identify a node partition of the nodes of the network. A community structure is
a partition of the vertices of a graph defined according rules structuring the ver-
tex distribution. Although there is no firm answer concerning these rules [15],
it is commonly admitted that the definition of a community relates to a differ-
ence in connection density between its interior and its boundary. The density of
connection between nodes inside a community must be higher than the density
of connection across communities. Such community obtained by this method is
called the topological community [11]. Community detection algorithms capture
this difference of connection density for detecting communities in a network [7,
16]. The quality of a community structure is evaluated by a measure assessing
this partitioning rule. A recognized standard is the modularity introduced by
Newmman [4]. The modularity is based on the comparison of the network with
a random one having the same topological characteristics than the original one
(i. €., same number of nodes, same node degree). Therefore a good measure
must be greater than a community structure having the same characteristics
but obtained by chance because this reveals an organizational bias. Finding a
community structure maximizing the modularity is NP-hard [3] and different
heuristics have been proposed for detecting the best community structure [2, 6,
7, 8].

While the concept of community is central in network science, the connection
density rule fails to significantly identify the meaningful community structure
of a network for some issues, thus restricting the applicability of community
detection algorithms. It is notably the case for disease module discovery. A
disease module groups genes which are mechanistically linked to the same patho-
phenotype.The study of the modularity of human disease would provide a causal
understanding of the pathogenesis strengthening the etiological explanation and
rationally determine clues for drug target discovery.

In [13], the authors carefully demonstrate that disease module are not topo-
logical module/community. By using three representative, methodologically
distinct algorithms on community structure detection based on density con-
nection, the authors show that the disease genes gathered in a community by
connection density method are drastically under-represented, thus prohibiting
the ability to assign communities to diseases. Moreover, they also show that
this lack of representativeness is not due to an insufficiency of knowledge about
genetic diseases, but rather to the inadequacy of the density connection method
to properly address the disease module. This empirical analysis is explained by
the authors by the fact that the disease proteins do not form particularly dense
subgraphs. This conclusion is also confirmed by other works on the disease
module domain [14, 18, 17] which propose alternative clustering methods based
on other rules than those governing topological community detection.

Because of its overarching importance in health, the identification of disease
modules clearly states the need to extend this framework for detecting com-
munity structures by including other categories of problems. Therefore, based
on the disease module, our objective is to generalize its principles from the
proposed method in order to characterize an alternative community detection



paradigm.

DIAMOND [13], GLADIATOR [18], and sCA [19] are three computational meth-
ods solving the disease module detection based on different approaches. How-
ever, they share some common features allowing us to state the fundamental
rules for finding disease module.

The genes implicated in a disease are retrieved from databases analysis as
oMIM([1, 12] for Mendelian diseases or ORPHANET [17] for orphan diseases. They
constitute the landmarks of the disease at molecular level and reciprocally a
fundamental property assigned to these genes from which the disease module
can be detected. Hence this property is central and monitor the community
structure detection.

A backbone of network biology lies on the “local hypothesis” stating that
genes or proteins involved in the same disease have a tendency to interact with
each other [10] and to cluster in the same neighborhood [5, 9]. Hence, all disease
related genes in a module are necessary connected together over a short distance.
Connectivity analysis depends on algorithmic methods, and two disease-related
genes may or may not be considered neighbors. DIAMOND examines the neigh-
borhood of gene by identifying a typical connection pattern that must differ to
random /null model connection. They are thus looking for a characteristic con-
nectivity pattern between disease genes. The connection rules of GLADIATOR
are based on the reproduction of connection obtained by phenotypic similar-
ity analysis, while SCA reconnects the disease seeds by few extra hidden nodes
qualified as seed connectors while complying with a short connectivity distance
between seeds.

All these algorithms aims at finding the largest modules encompassing the
greatest number of genes related to a disease, and stop when no improvements
are possible. Therefore the definition of a module relates here to largest number
of connected nodes which mostly share the same property.

Disease module detection exemplifies an important problem for community
structure inference where the condition underpinning the node partition is re-
lated to alternative criteria than connection density difference between the inte-
rior and the boundary of a community. Therefore, it seems greatly beneficial for
extending the scientific questioning on network community that the resolution
of this problem is achieved in a broader context than disease modules, impelling
to generalize the statement of this problem.

The common property which is responsible for the formation of the commu-
nity must be understood in a broad sense including a wide variety of situations
such as involvement in the same process or function, membership of a social
or ethnic group, identical characteristics, sharing a common topic of interest,
common purpose or mission etc., more generally any trait that can be shared
by a community and qualifying its members. This property will be formally
assimilated to a “color” leading to assigning the same color to the nodes having
the same property. Accordingly, the issue of chromatic community structure
detection is to find communities of connected nodes that maximize the density
of the major color within each.

Such problem statement explains why the connection density based algo-



rithms may fail to detect such communities because the nodes with the same
colors can be sparsely connected since only the connectedness prevails and po-
tentially separated by nodes differently colored. As there is no a priori relation-
ships between colors and connections, nodes with the same color can be located
through communities obtained by connection density rule.

In this article, we study the chromatic community structure detection prob-
lem and propose an algorithm for finding partition of communities. In Section 2
we mathematically formalize the problem. We then define in Section 3 the
chromarity which is a measure assessing the quality of a chromatic community
structure. We detail in Section 4 an algorithm finding a chromatic commu-
nity structure. The algorithm is then evaluated in Section 5 before concluding
(Section 6).

2 Formalizing the coloring

In this section we address the basic notions related graph coloring. Let G =
(V, E) be a graph where V is a set of vertices and E CV x V a set of edges, a
community p is a subset of V' (i.e., p C V) and a community structure P is a
partition of V, namely:

U pi=V AVpi,p; € Pipinp #0 = pi =p;.
piEP

A community structure based on color selection criteria is called a chromatic
community structure.

Coloring profile. Coloring assigns a color to each vertex of a graph which
is described by a coloring profile corresponding to an application from vertex
to color ¢ : V. — C where C denotes the set of colors. The set of colors C'
will be represented by an integral interval [1,r] where integers define colors.
For example ¢ = {1 — 1,2 — 1,3 — 2,4 — 3,5 — 3} assigns color 1 to
nodes 1,2, color 2 to node 3 and color 3 to nodes 4,5. The restriction of
the coloring to community denoted ¢, for community p € V is defined as:
cp ={v—=c(v) |vep}

If the vertices correspond to an integral interval V' = [1, n] then the coloring
profile can be described by a vector such that the index stands for a vertex label
and its corresponding value for a color (i.e., ¢(i) =k <= i~ k € ¢). For
example ¢ = {1 — 1,2 — 1,3 — 2,4 — 3,5 — 3} is described by the vector
(1,1,2,3,3).

Colored Graph. A colored graph is a 3—uple (V, E, ¢). The colored graph in
Figure 1 uses 3 colors C = [1, 3] where: green= 1, red= 2 and yellow= 3. From
its coloring profile:

c={1—»1,2—33—-1,4—25~1,6~ 3}



the vector representation is (1,3,1,2,1,3). Given the following chromatic com-
munity structure:

P = {pl = {17374a5}7p2 = {276}}7

, we deduce the following coloring profiles restricted to p1, ps:

ey ={1 = 1,253,425 1},¢5, = {2 3,6 = 3.

Colors
!
m2
3

4

Figure 1: Community structure of a colored graph.

Transparency. The absence of properties of a vertex is represented by the
transparency (denoted 0) since a color is assumed to qualify a property or an
attribute of a vertex. The transparency is not a color i.e., 0 ¢ C. Transparent
vertices are thus never involved when it comes to color, but the transparent
vertices still exist as vertices.

Chromatic function. A chromatic function x : (V — C) - C — N counts
the number of occurrences of each color in a coloring profile. The formal def-
inition of the chromatic function is based on the counting operator (Count)
which is a function counting the positions/nodes of each element corresponding
to values of a vector or a function. Count(X,y) specifically counts the number
of occurrences of element y in vector/function X:

Count(X,y) = {y — |[{i | X(i) =y}|}.
[X|
Count(X) = U Count(X, X (7).

i=1

The chromatic function is thus defined from a coloring profile ¢ as:

Xe = U Count(c, k) (1)
keC



The chromatic function of ¢ of the example in Figure 1 is:
Xe={1—3,2—1,3— 2}

For the following coloring profile ¢ = (0,0,1,2,1,0,1,3,0,3) with transparent
color, we also have the same chromatic function because the transparency is not
accounted as color by definition (1) since 0 ¢ C.

Finally, the density also includes the transparency since it corresponds to
the ratio of the number d of vertices with the same color by the number n of
vertices in a community (%) As example, from the previous coloring profile
with transparency, the density of color 1 (d = 3) is £ = 0.3.

Dominant color. A coloring profile with d vertices of the same color, will
be called a d—coloring profile. This notion is also applied to community from
their local coloring profile. A d—colorful community p implies that:

k€ C: xe, (k) =d. (2)

Notice that these coloring profiles may also have several subsets of vertices with
the same color of cardinality greater or equal to d. The graph in Figure 1 is
a 3—coloring profile for color 1, but also a 2—coloring profile for color 3, and
1—coloring profile for color 2.

Among the d—coloring profiles we specifically focus on the class of profiles
where d is the cardinality of the color occurring the most. These profiles are
said d—dominant by this main color. Hence a coloring profile is d—dominant if
and only if:

Fk e C:xe(k)=dAVE € C:x.(K) <d. (3)

In this case, color k € arg max ., is said dominant. In Figure 1 the domi-
nant color is 1 and the coloring profile is thus 3—dominant. By extension, a
community is said d—dominant if the restriction of the coloring profile to this
community is d—dominant. In Figure 1, p; is 3—dominant for color 1 and ps
is 2—dominant for color 3. Notice that several dominant colors may exist in a
coloring profile.

3 Chromarity

A meaningful chromatic community structure maximizes the occurrence of the
dominant color within each community. The quality of a chromatic community
structure is quantitatively assessed from a measure quantifying this maximiza-
tion. Accordingly, the density of the dominant color is worth considering as
a basic measure because it assesses the size of a dominant color relatively to
the size of the community, calculated as: mar;rcp. By contrast to the mere
count of the dominant color, the density allows comparison of communities of

different sizes by primarily analyzing the occupancy rate of a color within them.




Therefore it does not necessary privileged the larger communities but rather the
communities with an high occupancy rate of a specific color.

However, adopting the density as the basic measurement for assessing the
quality of a chromatic community structure leads to a trivial non informative
optimal solution restricting all communities to a single node. Inside each com-
munity the color of the single node therefore covers the entire community leading
to an optimal density of 1 for all communities, thus with an optimal overall mean
density of 1. This community structure however clearly tells us nothing of value
about community organization since all nodes are isolated,, and therefore no
informative structure is inferred. The single-node community division scenario
shows that merely maximizing the density of the dominant color is not a good
way for quantifying the intuitive notion of chromatic community structure.

A good division of a graph not only improves the dominant color density;
it is one having a higher density than one would expect by chance. Indeed,
situation that cannot be delivered by chance underpins an intentional or mech-
anistic organization. As a result, we can safely conclude that the structure of
the chromatic community excluding the chance provides a meaningful structure
because it clearly demonstrates intentional design.

The chromarity will quantify the measure of a community structure related
to chance. Informally, the chromarity assesses the expectation of obtaining a
random free density of dominant color. To define it, we will first evaluate the
probability of having a d—colored community of size n of a particular color
chosen among |C| = r colors by chance. This probability is the ratio of the
favorable cases to the possible cases. The number of the whole possible colored
communities is ™ corresponding to the cardinal of the complete enumeration
of the possible combinations of vertex coloring with color repetitions among r
colors. Concerning the favorable cases, two issues are addressed providing two
different chromarities here:

1. the enumeration of the d-colorful communities or color profiles of size n
with r colors;

2. the enumeration of the d—dominant colorful communities or colors profiles
of size n with r colors.

The first issue does not impose the domination but just the cardinality of a
subset of vertices with the same color while the second refers exactly to the
definition of a d—dominant coloring profile. The separation of the enumera-
tion problem in two issues is motivated by the computational complexity of the
resulting combinatorial formulas explained in Section 5. We thus need to enu-
merate the favorable colorful communities for each issue. Subsection 3.1 defines
the combinatorial formula enumerating the favorable colorful communities for
issue 1, while Subsection 3.2 determines it for issue 2.

3.1 Enumeration of d—colorful communities

Different coloring of d vertices are obtained using any color. Let Dy be the set of
colorful communities having d vertices of color k, the count of all communities



containing a d—color profile obviously corresponds to the cardinality of the union
of these sets, namely: ||J;_; Dk|. Some communities may have a d-color profile
for different colors, meaning that these sets intersect. The enumeration formula
of |Uy—; D is based on the Poincaré sieve (inclusion-exclusion principle), for
the cardinal of the union:

U o
k=1

T

=> (-1% > |D;y N---N D, NN Dy, |

k=1 1<ip <<y << S

For example let us considering 3 sets, from the Poincaré sieve the cardinal
is then (see Figure 2)

|D1 U Doy UD3| = |D1| + |D2| + |D3|
— (|D1 N D2| 4+ |Dy N D3| + | Dy N Ds)
+ |D1 N Doy ﬂDgl.

To obtain the formula enumerating the d—colorful communities, we thus
need to define a combinatoric formula for each set and each intersection of sets.

() — 1)~ Dy

Dy, N Do Ds N D3

Dy N D2N D3 (Z) (n;d) (r - Z)n—2d

D,

e

Figure 2: Ven diagram of the union of 3 sets of d—colorful communities.

Figure 2 shows the combinatorial formulas for all intersection cases of 3 sets
(see the Appendix for a detailed explanation of each formula). For 3 sets the
formula is thus:

Qo ()= ()

which can be simplified by setting r = 3 into:

() () )



considering that 0° = 1.
Theorem 1 provides the general enumeration formula deduced from the
Poincaré sieve once each intersection is combinatorically defined.

Theorem 1. The count of d—colorful communities of size n with r colors is
given by K function:

v

min(r,[ % | ) k—1(T n—kd
) ()" (el = B)
k(r,n,d) = Z (n—kkd)!(d!)k

k=1

The proof is in the Appendix O

3.2 Enumeration of the d—dominant colorful communities

The domination implies to include the dominance constraint in comparison to
the d—colorful communities enumeration, leading to specify the different equiva-
lence classes of communities complying with the dominations conditions 3. Each
class addresses the number of nodes for each color while fulfilling the dominance
condition. Since the conditions of domination are only based on the number
of vertices of the same color regardless the color, if two chromatic functions
of two communities p,q are equal up to a permutation on colors 7 : C' — C|
Xe, = TOXc, then these communities share the same domination property. Thus
they belong to the same equivalence class related to the color distribution.

We introduce the notion of chromatic signature o to capture this equivalence
on chromatic functions. A signature of a chromatic function is a vector of color
count corresponding to its ordered image (Definition 4)

op = Sort o Img ¥, (4)

Several chromatic functions may have the same signature. For example the
two chromatic functions: {1 — 0,2 — 3,3 — 2} and {1 — 3,2 — 0,3 — 2}
have the same chromatic signature which is: (0,2,3). The signatures are at
he heart of the combinatorial formula enumerating the d—dominant coloring
profiles by abstracting the chromatic functions. We can deduce that a signature
of a d—dominant color profile complies with the following conditions:

o(r)y=dA
; o(i)=nA 5)

Vi<i<r:o()<dA
Vi<i,j<r:i<j = o(i) <o(j).
A chromatic signature properly defines an equivalence class on communities

with regard to the domination property. Indeed, two communities with an equal
chromatic signature share the same domination property (i.e., o, =0, <



1
Communities m

Chromatic functioh‘s

r!

1
HsEImgoCount(o‘) SR

Chromatic signatures '." E

o-3

PARAMETERS: r = 3,n = 5,d =3. Two dominant signatures are deducted
(1,1,3) and (0, 2, 3) which respectively correspond to 3 and 6 chromatic func-
tion groups. 20 communities are associated with each chromatic function
of the first group and 10 for the second. A total of 120 communities are
3—dominant. The framed formulas correspond respectively to the number of
chromatic functions of a signature (under “Chromatic functions”) and to the
number of communities dominant for a chromatic function (near “Communi-
ties”).

Figure 3: Enumeration of 3—dominant communities of size 5 with 3 colors.
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p ~ q). Thus, each equivalence class specializing the property of domination
according to the count of each color leads to a specific signature (Figure 3).
Let S, 4 be the set of all possible dominant signatures (DSS) with respect to
parameters 7, n, d, this set is explicitly generated by collecting all the signatures
following Definition 5. It represents the core of the combinatorial formula enu-
merating the d—dominant colorful communities. The algorithm computing this
set is given in the Appendix.

Figure 3 shows the distribution of the dominant colored communities into
two equivalence classes distinguished by their color count. The communities are
first grouped according to the chromatic function equality and next according
to their signature equality by gathering the chromatic functions with the same
signature. Counting all the d—dominant colorful communities intuitively follows
this hierarchical division. From signatures, we first count the chromatic func-
tions corresponding to them and then for each chromatic function we count the
possible coloring profiles leading to this chromatic function. The final count of
the dominant colorful communities is the product of these two steps. Theorem 2
defines the count of the d—dominant communities.

Theorem 2. The count of all possible d—dominant communities of size n with
r colors is given by vy function:

1
y(r,n,d) = nlr! Z

0ESy n.d HSEImgOCount(o) s! H::l U('L)' '
The proof is in the Appendiz. -

3.3 Chromarity definition

From the enumeration of the (dominant) colorful communities, we can formally
define the chromarity which somehow defines the random-free color density ex-

pectation. The core chromarity (K) applies the measure to a single community
and provides a density weighted by the probability of the absence of chance.
The higher the chromarity, the less likely it is to happen by chance. We first fo-
cus on the probability of getting a coloring profile by chance. This corresponds
to the ratio of the favorable cases to the possible cases where the favorable
cases is given by k or « while the number of all possible colorful communities
is r™. Therefore, for a community p such that n = |p| with a coloring profile
cp distributing r colors into vertices of p, and considering the largest number of
vertices of the same color d = max x.,. These probabilities are respectively:

k(r,n,d r,n,d
o= (rn )apv=7( )

TTL

11



The probability of getting a random-free coloring profile is thus 1 —p,, or 1 —p,.
Therefore the core chromarities are defined as follows:

K, (r,n,d) = % (1 - W)

& rnyd) = & <1 - M) (6)

with r = |C|, n = [p|, d = max x.,

We have 0 < I.{kf(r,n,d) <1.

For a community reduced to a single vertex (i.e., n = d = 1) with the

maximal density of 1 we can verify that I.(,i(r, 1,1) = Ky(r,1,1) = 0. Sim-
ilarly, for a single color coloring (r = 1), the core chromarities are also null:
[.(H(l, n,n) = [.(7(1, n,n) = 0, (Proposition 1). These two results are consistent
with the facts that in a singleton community or when a single color is used all
the vertices of a community are necessary colored by a single color which can

thus be obviously obtained by chance.
Proposition 1. We have the following properties for I.(K and f(v-'

b I.{K(T? 17 1) = R”y({ry 1, 1) = 0

o K.(1,n,n) = K,(1,n,n) =0.
The proof is in the Appendiz. O

When p = 0 or p is only composed of transparent vertices, either |p| = 0 or

max x., is undefined, the density ma{% cannot be computed then preventing

to return a proper result for K. For these borderline cases, we do consider by
convention that I.((r,07d) = l.((nm —00) = 0 to maintain the consistency of
the measure.

The chromarity will be the mean of the core chromarity on a community
structure P:

 Yer Ka(C], Ipl, max )
N |P]

 Yer K5 (0] [pl, max xe,)
N |P]

We have 0 < K (P,c) <1land 0 < K, (P,c)<1.

K. (P,c)
(7)

K, (P,c)

4 Chromatic community structure detection
The chromatic community detection algorithm (CHROCODE) finds a partition of

a colored graph maximizing the chromarity K. The algorithm is divided in two
phases: first a partition grouping connected nodes of the same color is built,

12
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lug iy 0 AN

(V, III, IV, VII, 11}

{V, III, IV, VII}

The labels of the cluster of nodes that are vertices of the quotient graph are in Roman
while the nodes of the original graph are labeled in Arabic.
PARAMETERS: n = 25,0 = 2,r = 4.

Figure 4: CHROCODE algorithm steps.
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forming as partition of monochrome communities, and next these communities
are iteratively merged to increase the chromarity until no merges can improve
the solution. The input parameters of the algorithm are the colored graph
G, ¢, a neighborhood distance ¢, and a chromarity K, or K,. The algorithm
was originally inspired by the Louvain algorithm [6] although the specificity of
the chromatic community structure framework leads to a significantly different
program. CHROCODE is freely distributed in two open-source implementations:
in Python [21] and in Mathematica-Wolfram [20]. The algorithm is completely
detailed in the Appendix. In more detail, the tasks carried out during these two
stages are:

1) Connected monochrome community structure. From a colored graph
(V, E,c), a community is designed from a vertex seed by first integrating neigh-
boring vertices of the same color, then extending it by integrating their respec-
tive neighborhood having the same color and so on. Once no supplementary
vertices can be added, the current community is closed and stored. Another
vertex is then chosen as seed until no vertices are available. The resulting com-
munity structure P is composed of monochrome communities.

2) Fusion of monochrome communities. From the monochrome commu-
nities P previously obtained, we define a quotient graph ) where each commu-
nity becomes a node of this graph (Q = (P, Ep)). There exists a link between
two community-nodes if there already exists a link between some nodes com-
posing the respective communities (Ep = {(ps,p;) | 3(vi,vj) € E :v; € piAv; €
ps})-

Next the communities are merged to increase the chromarity. Iteratively, the
community p with the smallest core chromarity score is selected from P, and its
neighborhood NV of distance ¢ is computed (p € arg min,¢ p I.((|C|, |p|, max x.,)).
The algorithm evaluates whether merging p to a neighbor node will improve the
chromarity. p is finally merged with neighbor ¢ that maximally increase the
current chromarity. The node-communities located in the shortest path from p
to ¢ are also merged in order to fulfill the connectedness rule within the new
resulting community. Once the assembly of nodes is achieved they will now form
a new community-node corresponding to their union.

The quotient graph is then updated by replacing the merged nodes by this
new node-community and by updating the quotient graph. The process ends
when no merges improve the current chromarity.

Let (G, E, ¢) be a colored graph, the complexity of the first phase is in O(|E|)
since all nodes are visited from neighborhood to neighborhood to merge them
into monochrome communities. Now considering the worst case for monochrome
community reduced to a set of node singletons because the colors of all nodes are
different, and assuming that at each step the new community merges only two
communities, we deduce that the complexity is in O(|V|?(|E| + |[V]1log(|V]))).

Figure 4 shows the evolution steps of the algorithm. First the monochrome
community quotient graph is defined. Let us remark that two connected node-

14



communities have necessary a different color. Next the algorithm starts by
merging the reduced single-node communities into larger communities because
their chromarity is 0 constituting the lowest possible value. After, the com-
munities are grouped together for forming larger communities increasing the
chromarity since it evolves from 0.57 to 0.92.

Figure 5 shows the computation steps on a larger example of 50 nodes where
the curve describes the chromarity progression by indicating the community as-
semblies at each step and the community improvement (y—axis). The grid graph
was chosen because it provides a clean presentation of the final communities on
the graph but the algorithm can be applied to any graph.

fl -

0.8

Upper left: initial quotient graph of monochrome communities; lower right: the
colored graph where each final community contains the vertices with the same color
border; below each step point of the curve: the communities to be merged, a column
of roman numbers indicates a previously merged community.

PARAMETERS: n = 50,0 =2,r =4, K.

Figure 5: Chromatic community structure computation.

5 CHROCODE evaluation

CHROCODE will be analyzed with regard to three network topologies: small
world, scale free, and Erdos Reny. the exploitation of these different network
topologies allows us the assessment of their respective influence on the perfor-
mance of the algorithm.

15



5.1 Chromarity analysis

The choice of the chromarity K, or K, seemingly alters the community struc-
ture obtained by CHROCODE algorithm. How significant can this difference be?
This issue is crucial because the computational time between K, or K, could

drastically differ. The complexity of I'(H is in O(rn) while the complexity of

I.(A, depends on the cardinality of the DSS S, in O(|S|rn). Figure 6 shows the
evolution of the cardinality of the DSS by choosing optimally the parameters
r,n,d to maximize its growth. Notice that the optimal r isr =n —d+ 1.

The size of the DSS grows exponentially when n increases by selecting the
optimal parameters r,d (see Figure 6.1 ). However it is also worth noting that
this growth is limited if 7 remains small (< 10) (Figure 6.3) which is often the
case in practice.

1) n—evolution with optimal r and d.
ISI

1x108 F
800000 -
600000
400000 -

200000 -

il

20 40 60 s °
2) d—evolution 3) r—evolution
|S| 1S

15000 15000

10000 10000

5000 5000

o 10 20 30 40 50 o 10 20 30

n=>50,r=n—d+ 1. n = 50,d = 11.

-
=

50

Figure 6: Evolution of the cardinality of the DSS S.

Hence when the computation of the DSS is intractable due to its size, we
do wonder know if we can validly use K, instead of K,. To answer to this
question we compare the chromarities of the community structure computed by
CHROCODE using respectively K, and K as input ((Figure 7).

For each topology we generate 10 networks by increasing their size from 10 to
100 by 10. Therefore for each topology 100 networks are produced (300 networks
in total). For the benchmark, we use 4 colors (r = 4) and a neighborhood of
distance 2 (§ = 2). Based on these networks, we isolate the cases where the
resulting community structure computed by CHROCODE differs using K, or K,
leading to two distinct community structures depending on the used chromarity:
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1) Chromarity difference A based on CHROCODE computation.
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1) The analysis is achieved on 49 different cases (r = 4,6 = 2).

2) 1275 differences are computed since d never exceeds n. For the mean
difference computation (at right), the zero values are removed unless only
this value exists. The error bar represents the standard error.

Figure 7: Chromarity difference
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P, = CHROCODE(G, ¢, 0, K,;) and P, = CHROCODE(G, ¢, 0, K.,) with P, # P,.
The percent of networks where the community structures differ closely de-
pends on the topology. The small world topology induces more differences
than the other topologies. We determine the chromarity distance which is
the chromarity difference between the respective community structures: dx =
|K(Py,c) — K(Pg,c)| for both chromarities K, and K,. Even a community
structure is deduced from a specific chromarity we can compute the other chro-
marity on this structure. Figure 7.1 describes the observed distances. The
chromarity distance never exceeds 0.08 with the tested networks whatever the
topologies and the chosen chromarity. Therefore, the difference between the
chomarities depends on the network topologies but seemingly remains moder-
ate on the tested cases. .
Moreover, we have also directly evaluated the core chromarity distance Ay
by making n, d varying with the optimal parameter for r = n—d+1 (Figure 7.2).
This evaluation is focused on the difference between the chromarities and not
the impact on CHROCODE computation, providing a complementary approach to
the previous one. This evaluation shows that the difference is significant when

d is small and bounded by 0.23. The decrease of the mean of A K is exponential

and becomes negligible when n > 10 since A x < 0.05. Moreover when d > 5
we have A x < 10~° whatever the value of n.

In conclusion, from these two evaluations, the quality of the community
structures appears almost equivalent whatever the chromarity used. Hence,
the chromarities can be somehow considered practically similar although their
definition differ.

5.2 Network size sensitivity

The efficiency of the algorithm is sensitive to the network topology and its size.
Figure 8 clearly shows that the chromarity improves when the size increases
and the topology also accounts in the chromarity score. The best chromarity
is obtained on Erdés Reny topology. The curves of the chromarities are similar
because a real difference between them occur only when CHROCODE provides
different community structures according to the used chromarity. We have pre-
viously shown that that only few cases induced a difference and the chromarity
distance remains low (Figure 7.2).

5.3 Neighborhood distance

The variation of the distance of the neighborhood (§) also affects the final result.
Figure 9 shows the consequence of the variation of the neighborhood distance
from 1 to 10 on the chromarities with 10 networks of size 100 for each value of
6 on different topologies. for each trial CHROCODE was computed twice using
both chromarities and the community structure with the smallest chromaty is
kept when the result differs. We can observe that the optimal distance § differs
on the topologies. The optimal ¢ is 3 for Small world networks while it is 1 for
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Figure 8: Evolution of the chromarity w.r.t. the vertex size.

Scale Free, and the variation of 4 does not significantly affect the result for Erdos
Reny topology. It is also worth noticing that the variation is always stabilized
after =5 for all network trials.

Therefore, a possible improvement of the algorithm regardless the network
topology is to perform 5 tests by varying ¢ from 1 to 5 and to keep the structure
with the highest chromarity among these tests.
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The diagram reports the mean of the chromarity on 10 trials of networks of size 100
and the error-bars describe the standard error. A different network is generated for
each trial. (r =4,|V| = 100).

Figure 9: Impact of § on CHROCODE result.

6 Conclusion

We propose a new approach to detecting communities that relies on new cri-
teria to identify them. Instead of a difference in connection density between
its interior and its border, defining a community will maximize the density of
nodes sharing the same property. By assimilating property to color, we will
therefore seek to maximize the density of nodes of an identical color within each
community.
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This new paradigm provides an alternative approach to connectivity rule.
It takes on its full meaning in challenges where the connection of nodes shar-
ing the same property remains loose and therefore cannot be captured by an
examination of the connection density as has been shown for disease modules.

This clustering criterion appears natural and finds its application in problems
where the community organization is essentially based on the aggregation of
nodes sharing the same property without apparent correlation with the law of
connectivity.

We characterize two chromarity measures assessing the quality of a commu-
nity structure comparing the major color density with that which would have
been calculated for a random network with identical characteristics. High de-
gree of chromarity means that the community structure cannot have been the
result of chance confirming its organizational relevance. We have proposed a
CHROCODE heuristic solving this problem in polynomial time. The tests an-
alyzing the performance of this algorithm highlight the proximity of the two
chromarities as well as a very good performance of the algorithm.

A first perspective would be to improve the algorithm by refining the heuris-
tic criteria for better aggregating communities. Another perspective would be
to study how the grouping of nodes according to the major color rule could also
integrate connectivity between nodes of the same color. Indeed, sharing the
same property, these nodes could develop a particular connectivity structure
characterizing a connection pattern that can be specific to the shared property.
Such a perspective would allow recognition of a property-dependent community
through an hybrid model, combining the identical property recognition with
connectivity rules for detecting communities.
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Appendix

Proofs

Proof of Theorem 1. To combinatorially specify the cardinality of ||J;_, Dk,
we need to determine the cardinality of all the intersection sets | (-, D[, 1 <
m < r. We illustrate the characterization of the formulas on 3 sets before
generalizing it to ease the explanation. The main issue is to formulate the
cardinality of any intersection of set by a combinatorial formula.

Basically Dy, = {p | 3k € ¢ : x.,(k) = d} is a set of communities with d
vertices of color k. The different possible selections of d vertices among n is
given by (Z) The count of the rest of the profile once the color k is assigned to
vertices equals (r—1)"~¢, leading to the following combinatorial characterization

Of‘Dkl
n _

Let us remark that this formula can be applied for all the colors and the number
of possible used color is (7) (which is 3 for r = 3). We deduce that |D;|+|Da|+
1Da] = () () r — 1) = 3(3)2,

By extension, for the intersection of two sets Dy N D; = {p | x¢, (k) =
d A Xe,(j) = d} the cardinal is defined by first considering the selection of a
subset of size d for color k£ and next the selection of a size d vertices of color j
in the remaining n — d vertices. The following combinatorial formula formalizes
these two steps of vertices selection.

|Di N Dj| = (Z) (n 4 d) (r—2)" 2

Similarly, the number of possible color pairs is given by (g) (which is 3 for
r = 3). Then, we conclude that:

D1N\Dy|+|D1NDs|+|DanDs| = <;) <Z) (” B d> (r—2)"=2 = 3<Z> (” P d).

The same reasoning can be applied for the cardinal of the intersection of the
three sets |D1 N D2 N D3| and more generally for any intersection.

oo~ ()() ()

The formula holds under considering that 0° = 1 since (r — 3)"~3¢ = n—3d

which must not be null or undefined when n =3d e.g., forr=3,n=6,d =2
we have |Dy N Dy N D3| = 90. The formula defining the cardinal of the union of
the 3 sets is finally:
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|D1 U D2 U D3| = " " (7’ — 1)n7d
1/\d
™\ [n\ (n—d
_ —92 n—2d
) (@) (a2
™\ (n\ (n—d\ (n—2d ne3d
() (@) () (oo
The generalization to any number of colors based on the Poincaré sieve finally
leads to:
T T r k—1 n id
_ k—1 - n—kd
Ui =X e0()) (H( ) )><rk> .
k=1 k=1 i=0

By simplification of the product and by considering that the product is null if
rd > n the number of d— colorful communities of size n with r colors is finally
given by x function.

mln(

[ 4]) (71)]“71(;)11!(7’ _ k)nfkd

(n— kd) () -

k(r,n,d) =
k=1

O

Proof of Theorem 2. The enumeration of d—dominant communities is based on
DSS by applying the formula counting the number of permutations with repe-
tition. Considering m distributed on n > m positions having each k;,1 <7 <m
repetitions, the n elements having each k; repetitions such that Z:il k; = n,
let us recall that the number of permutation with repetition is:

n!

H:‘L ki!

Indeed, first we count the number of color profiles of size n for a specific
chromatic function. Since the vertices of the same color cannot be distinguished
in a community, the number of communities having the same chromatic function
corresponds to the number of permutations where the vertices of the same color
are repeated, that is: |

n

]

Notice that we can similarly define it using the signature o by H’“nila(k)' This
k=1 *
formula using the signature o will be used in the sequel.
Next we need to enumerate all the chromatic function related to a signature.

Let us remark that the number of chromatic function with the same signature
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is also obtained by the application of a permutation with repetition. The rep-
etition comes from the possible equality of the number of vertices for distinct
colors, thus decreasing the number of different chromatic functions. For exam-
ple in Figure 3, the number of chromatic functions for (1,1, 3) is 3 while it is 6
for (0,2, 3) because there is a repetition of the number 1 in the first and none
in the second. Therefore, the formula counting chromatic functions taking into
account the equal number of occurrences for different colors is:

r!

!
HsGImgoCount(J) S

Finally, the number of communities associated to a signature is then the
product of these two formulas, leading to:

nlr!

HsEImgoCount(o) s! ngl G(])'

This formula counts the number of communities having the same signature.
The total number of communities is the sum of this count for all signatures. Let
Sron,a be the DSS according to parameters r for the number of colors, n for the
community size and d for the maximal number of vertices of the same colors,
the formula counting the dominant communities is finally given by ~ function:

1
~v(r,n,d) = nlr! Z O

0ESr n,d HSEImgOCOunt(o’) s! 1_-[221 U(Z)' '

O
Proof of Proposition 1. We prove that I.(H(r, 1,1)= I.(V(n 1,1) =0.
e By definition of I.(H, we have:
i - d <1 k(r,n,d)
n rm
min(r,| % ) (—1)F= () nl(r— k)" ke
d Dk= =
N L n( kd)!(d)? set definition of k;
n T
(—-1)°(3)o!(r—0)*
=1- Oahe change d,n by 1;
T
= (1 — f) By considering that
" 20 =100 =1,(0) =
1,r>0.
=0

e By definition of I.(,Y, we have:
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(-22)

1— scImgoCount (o) 8! [ [1=1 o(4)!

d
n
d nlr! Zoesm,d il
n

TTL

17! Zaesr’m I

s€ImgoCount(o) s! Hf:l 0-(7’)’

=1-
rl

r—1
As S, 10 ={(0,---,0,1)}, we deduce that:
HsEImgoCount(a‘) sl =

Ul —L
. (r— 1)1
K’Y =1- T
r!
=1—
(r—1lr
r!
]

set definition of
Y3

set d=n,r =1;

(r— 1)1 and [])_, o(i)! = 1, thus leading to:

by simplification

by simplification

The proof that I%K(l, n,n) = K,(1,n,n) = 0 is similar and let to the reader. [
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CHROCODE Algorithm

The main variables and used functions are:

Veer(V) gets a vertex in V (randomly).

PATH(G) set of pathes of graph G.

SHORTESTPATH(E, p,q)  finds a shortest path between p, q.

P Community structure.

N Neighborhood of distance §.

up Boolean variable determining whether P must be updated.

The CHROCODE function is:
function CHROCODE(G = (V, E), ¢, 9, K)
W+ V;
while W # () do > Generate the monochrome communities.
v+ VGET(W); W «— W\ {v};
Pnew — {U}W = @3
while ppew # 0 do
w <— VGET(pnew); Pnew < Pnew \ {’Ll)},
p + pU{wk;
N+ {w' | (w,w’) € EAc(w') = c(v) ANw' & p};
Pnew ¢ Pnew U IV;
end while
W« W\ p;
P« PU{p};
end while
Ep «+{(p,p') | Fvep, I €p': (v,v') € E,p,p € P}
W « P;
while W # 0 do
p + arg min {K(g,c) |g € WhW « W\ {p};
N <+ {q|q€ Ep A1 < SHORTESTPATH(Ep,p,q) < d};
kmax < K(P, C); up < False;
for ¢ € N do > Find the merging of communities maximizing K in N.
SP < SHORTESTPATH(Ep, p, q);

b K((P\SP)U{U,,csppi} 0
if kmax < k then
up < True;
kmax — k? S-Pmax <~ SP7
end if
end for
if up then

> (P, Ep) is the quotient graph.

> Assemble the communities.

p= Upiespmax Pis > Merge the communities of the path.
P« (P\ SPmax) U {p}; > Update P
Ep + {(p,p') | Fv €p, T €p’ : (v,0') € E,p,p’ € P}; > quotient graph rebuilt
W « P;
end if
end while
return P;
end function
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Algorithm computing the Dominant set of signatures (DS.S)

We define . is the concatenation operator between two vectors, and a vector is
written (z1,--+,Zm).
function SuBSIG(r, n,d, o)
var : s
if n =0 then
T

—_——
s« {(0,---,0).0}
else if d = 0 then
s+ 0
else if r =1 An <d then
s+ {(n).c}
else if r = 0 then
if n =0 then
s+ {o}
else
s+ 0
end if
else
s+ 0
for d’ <— [%] to min(d,r) do
s+ sUSuBSIG(r—1,n—d,d,(d).0)
end for
end if
return s
end function

function FINDALLSIGS(7, 1, d)
var : S
if r =0 then
if n =0 then
S« {0} > a solution exists but empty
else
S« 0 > No solutions
end if
else
S < SuBSica(r —1,n —d,d, (d))
end if
return S
end function
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