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Raisonnement fondé sur un tableau compressé pour les Logiques de Description

Dans cet article, nous présentons un nouvel algorithme de raisonnement orienté but sur des ontologies d'expressivité SHIQ permettant les restrictions de cardinalité et les rôles inverses. Nous montrons qu'il s'exécute en ExpTime. En effet, dans le but de réduire la taille des modèles d'ontologie construits, notre algorithme utilise une structure, dite tableau compressé, composée de star-types, pour représenter intrinsèquement différents individus d'un modèle et ensuite compresser les individus équivalents dans un star-type. L'implémentation confirme que notre algorithme peut traiter des ontologies "difficiles" qui requièrent les raisonneurs existants de construire des modèles très larges. Nous proposons également une extension de l'algorithme à la logique SHOIQ permettant le traitement des nominaux.

Introduction

Les formalismes fondés sur les logiques de description (DL) telles que OWL [START_REF] Patel-Schneider | Owl web ontology language semantics and abstract syntax[END_REF] sont largement utilisés pour représenter des ontologies intégrées dans des applications dites sémantiques. Une caractéristique intéressante des ontologies dites DL est de supporter des services d'inférence automatisés qui permettent aux concepteurs de détecter certaines erreurs et aux utilisateurs de découvrir de nouvelles connaissances. Plusieurs travaux ont été dédiés au problème du raisonnement pour des ontologies en logique SHIQ capables de gérer les opérateurs logiques de base, les rôles inverse, la transitivité, l'inclusion et les restrictions de cardinalité ("au-moins", "au-plus"). Tobies a montré que le problème de la cohérence pour une ontologie SHIQ est ExpTime-complet [START_REF] Tobies | The complexity of reasoning with cardinality restrictions and nominals in expressive description logics[END_REF]. Horrocks et al. ont proposé une procédure de décision "tableau" pour SHIQ [START_REF] Horrocks | Practical reasoning for expressive description logics[END_REF] qui a été implémentée dans des raisonneurs tels que FaCT++ [START_REF] Tsarkov | FaCT++ description logic reasoner : System description[END_REF], Pellet [START_REF] Sirin | Pellet : a pratical OWL-DL reasoner[END_REF] et RACER [START_REF] Haarslev | Racer system description[END_REF]. Motik et al. ont développé de nouvelles techniques d'optimisation pour réduire les non déterminismes lors du raisonnement sur des ontologies volumineuses ayant des nominaux et des opérateurs sur les rôles [START_REF] Motik | Hypertableau reasoning for description logics[END_REF]. Ces optimisations ont été implémentées dans le raisonneur Her-miT [START_REF] Shearer | Her-miT : A Highly-Efficient OWL Reasoner[END_REF], [START_REF] Glimm | Hermit : An owl 2 ner[END_REF] et évaluées sur des ontologies très variées. Récemment, Nguyen a proposé un algorithme tableau ExpTime [START_REF] Linh | A tableau method with optimal complexity for deciding the description logic SHIQ[END_REF]. Sa méthode est fondée sur une technique de cache global qui utilise un graphe composé de noeuds OR et AND pour représenter les modèles. Pour réduire les non déterminismes liés aux restrictions de cardinalité, un système de contraintes d'inégalité a été conçu et une méthode de programmation linéaire entière a été utilisée pour vérifier si le système trouve une solution. A notre connaissance, cette méthode n'a pas encore été implémentée. De plus, l'extension de cet algorithme aux restrictions de cardinalité, au rôle inverse et aux nominaux n'est pas directe.

A notre connaissance, il n'existe pas de raisonneur fondé sur un algorithme orienté but ExpTime pour vérifier la cohérence d'une ontologie SHIQ avec des nombres encodés en binaire. Rappelons qu'un algorithme est dit orienté but s'il construit des structures représentant un modèle ontologique de manière monotonique. Le principe essentiel des algorithmes tableau est la construction d'un graphe étiqueté avec la signature d'une ontologie représentant les modèles et une condition de blocage garantissant leur terminaison. Comme une telle condition de blocage est fondée sur la répétition des labels pour détecter les noeuds bloqués, la taille des graphes construits est bornée par une fonction doublement exponentielle en fonction de la taille de l'ontologie.

Dans cet article, nous présentons un algorithme dont la construction est fondée sur les notions de star-types et frame introduites par Pratt-Hartmann lors de la conception d'un algorithme NExpTime pour la logique C 2 [START_REF] Pratt-Hartmann | Complexity of the twovariable fragment with counting quantifiers[END_REF]. Au lieu de construire explicitement un graphe représentant un modèle comme les procédures de décision orientées but le font, notre algorithme construit une structure, dite tableau-compressé composée de star-types, chacun représentant un ensemble d'individus avec leurs voisins. Nous montrons que cet algorithme s'exécute en NExpTime malgré l'encodage binaire des nombres indiqués dans les restrictions "aumoins". Notre algorithme est la conséquence de deux intuitions à savoir : (i) compression des individus similaires ; deux individus d'un modèle généré par un algorithme tableau sont dits similaires s'ils ont le même label et leurs voisins sont appariés par paire. Les individus similaires peuvent être regroupés dans un startype dont les rayons représentent les connexions possibles aux autres star-types. Puis, les relations de voisinage entre les star-types sont gérées par une fonction d'appariement qui permet à un star-type d'être connecté à d'autres via un rayon. Le nombre de startypes distincts construits ainsi est borné par une fonction doublement exponentielle en fonction de la taille de l'ontologie comme les nombres dans les restrictions "au-moins" sont codés en binaire. La Figure 1 montre comment compresser les noeuds aux deuxième et troisième niveaux de l'arbre dans deux star-types σ 1 et σ 2 . Ces noeuds sont compressibles du fait qu'ils ont le même label (a 1 ) et les mêmes relations avec leurs voisins ; (ii) retrait des star-types intégrables ; un star-type σ est dit intégrable dans un ensemble de star-types Σ si chaque rayon de σ appartient à l'ensemble des rayons d'un star-type de Σ. Dans ce cas, il n'est pas nécessaire d'ajouter σ dans Σ pour représenter un modèle. Il est donc suffisant de stocker dans un tableau-compressé un nombre exponentiel de star-types distincts puisque chaque star-type d'un tel tableau doit contenir un rayon qui n'est pas inclus dans un autre star-type de ce tableau. La figure 2 montre la capacité d'intégration d'un star-type σ 1 dans {σ 2 , σ 3 } par décomposition de σ 1 . Cette décomposition est possible car deux rayons ρ 1 (contenant un rôle L) et ρ 2 (contenant un rôle R) de σ 1 sont inclus dans σ 2 et σ 3 . Ceci permet de remplacer chaque connexion à partir d'un star-type ω vers σ 1 via ρ 1 ou ρ 2 par une nouvelle connexion de ω à σ 2 ou σ 3 .
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Cet article est organisé comme suit. La section 2 introduit une définition formelle SHIQ et les notations nécessaires pour définir les structures sur lesquelles est fondé notre algorithme. Dans la section 3, nous étendons certaines structures présentées par Pratt-Hartmann [START_REF] Pratt-Hartmann | Complexity of the twovariable fragment with counting quantifiers[END_REF] pour C 2 à SHIQ et nous fournissons une définition des tableaux compressés pour SHIQ. La section 4 décrit l'algorithme pour la vérification de la cohérence d'une ontologie SHIQ et montre qu'il s'exécute en ExpTime. Nous expérimentons aussi notre algorithme sur plusieurs ontologies qui peuvent requérir des algorithmes standard basés tableau construisant un modèle doublement exponentiel. La section 5 présente une implémentation de l'algorithme ainsi que quelques tests. Enfin, nous présentons une synthèse concernant les résultats obtenus ainsi que nos futurs travaux. Lors de la construction des structures pour représenter un modèle d'une ontologie, il est nécessaire d'ajouter de nouveaux concepts qui ne sont pas présents initialement dans l'ontologie. Les ensembles suivants encapsulent de tels concepts. Tous les concepts sont en forme normale négative (NNF), i.e., la négation apparaît uniquement au début des noms de concept. Tout SHIQ-concept peut être transformé en son équivalent NNF en utilisant les lois de DeMorgan, les dualités entre les restrictions existentielle et universelle et les dualités entre les restrictions "au-moins" et "auplus". nnf(C) peut être calculé en un temps polynomial en fonction de la taille de C [START_REF] Baader | Basic description logics[END_REF]. Pour chaque concept C, nous notons la nnf de C par nnf(C) et la nnf de ¬C par ¬C. Soit D un SHIQ-concept en NNF et (T , R) une ontologie. La fermeture CL(D) est définie comme le plus petit ensemble qui contient tous les sous-concepts de D incluant D. L'ensemble CL(D, R) est l'union des ensembles suivants :
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R -I = { x, y ∈ ∆ I × ∆ I | y, x ∈ R I } pour tout R ∈ R, et x, z ∈ S I , z, y ∈ S I implique x, y ∈ S I pour chaque S ∈ R + . Une interprétation I est un mo- dèle de R, notée I |= R, si R I ⊆ S I pour chaque R S ∈ R.
CL(D), { ¬C | C ∈ CL(D)}, {∀S.C | ∀R.C ∈ CL(D), S * R}, {∀S.C | ¬∀R.C ∈ CL(D), S * R} où S apparaît dans T ou R. L'ensemble CL(T , R) est l'union de tous les CL(nnf(¬C D), R) pour chaque C D ∈ T . Pour chaque restriction de concept "au-moins" ≥ nS.C apparaissant dans CL(nnf(¬C D), R), un ensemble de nouveaux noms de concepts {C i (≥nS.C) | 0 ≤ i ≤ log n + 1 } ainsi que leurs compléments sont ajoutés à CL(nnf(¬C D), R). Nous utilisons C I (≥nS.C) pour noter un sous-ensemble de l'union {C i (≥nS.C) | 0 ≤ i ≤ log n + 1 } ∪ {¬C i (≥nS.C) | 0 ≤ i ≤ log n + 1 } pour I ⊆ {0, • • • , log n + 1 } tel que C i (≥nS.C) ∈ C I (≥nS.C) ssi ¬C i (≥nS.C) / ∈ C I (≥nS.C) .
Par construction, la cardinalité de CL(T , R) reste polynomialement bornée par la taille de l'ontologie même si les entiers dans les restrictions "au-moins" sont codés en binaire.

3 Tableau-compressé pour SHIQ Cette section décrit une structure appelée tableaucompressé composée de star-types qui sera utilisée pour représenter un modèle d'une ontologie SHIQ. La construction de cette structure pour SHIQ est adaptée des notions de frame et star-type introduites par Pratt-Hartmann [START_REF] Pratt-Hartmann | Complexity of the twovariable fragment with counting quantifiers[END_REF] pour le fragment deux-variable de la logique du premier ordre des quantificateurs de cardinalité C 2 . La définition suivante décrit un startype générique dépendant seulement de la signature d'une ontologie SHIQ.

Définition 1 (star-type). Soit (T , R) une ontologie SHIQ, un star-type est une paire σ = λ(σ), ξ(σ) , où λ(σ) ∈ 2 CL(T ,R) est appelé core label, ξ(σ) = ( r 1 , l 1 , • • • , r d , l d ) est un d-tuple avec (r 1 , l 1 ) ∈ 2 R(T ,R) × 2 CL(T ,R) pour 1 ≤ i ≤ d. Une paire ρ = a 1 σ 1 a 1 a 1 a 1 a 1 a 1 σ 2 a 1 σ 3 a 1 a 1 a 1 a 1 L R L - R - L R L R Figure 3 -σ 1 et σ 2 sont appariés via 2 rayons conte- nant les rôles L et L -; σ 1 et σ 3 sont appariés via 2 rayons contenant les rôles R et R -. r(ρ), l(ρ) est un rayon de σ si r(ρ), l(ρ) = r i , l i pour 1 ≤ i ≤ d. -Un star-type σ est chromatique si ρ = ρ implique l(ρ) = l(ρ ) pour deux rayons ρ, ρ de σ. -Deux star-types σ, σ sont équivalents si λ(σ) = λ(σ ), et s'il y a une bijection π entre ξ(σ) et ξ(σ ) telle que π(ρ) = ρ implique r(ρ ) = r(ρ) et l(ρ ) = l(ρ).
Si un star-type σ est chromatique, ξ(σ) peut être considéré comme un ensemble de rayons du fait que leurs rayons sont distincts et non ordonnés. Nous pouvons voir un star-type σ comme l'ensemble des individus x satisfaisant tous les concepts dans λ(σ), et chaque rayon ρ de σ correspond à un individu "voisin" x i de x tel que r(ρ) soit le label du lien entre x et x i ; et x i satisfait tous les concepts dans l(ρ). Dans ce cas, nous disons que x satisfait σ. Dans la figure 3, les star-types σ 1 et σ 2 sont voisins. Il est possible qu'un star-type σ ait deux voisins star-types différents σ et σ via un rayon ρ. Dans ce cas, il y a au moins deux individus satisfaisant σ qui se connectent à deux individus satisfaisant σ et σ respectivement.

Définition 2 (star-type valide). Soit (T , R) une ontologie SHIQ. Soit σ un star-type pour (T , R) où σ = λ(σ), ξ(σ) . Le star-type σ est valide si σ est chromatique et les conditions suivantes sont satisfaites.

1. Si C D ∈ T alors nnf(¬C D) ∈ λ(σ). 2. {A, ¬A} ⊆ λ pour chaque nom de concept A où λ = λ(σ) ou λ = l(ρ) pour chaque ρ ∈ ξ(σ). 3. Si C 1 C 2 ∈ λ(σ) alors {C 1 , C 2 } ⊆ λ(σ). 4. Si C 1 C 2 ∈ λ(σ) alors {C 1 , C 2 } ∩ λ(σ) = ∅. 5. Si ∃R.C ∈ λ(σ) alors il y a un rayon ρ ∈ ξ(σ) tel que C ∈ l(ρ) et R ∈ r(ρ). 6. Pour chaque rayon ρ ∈ ξ(σ), si R ∈ r(ρ) et R * S alors S ∈ r(ρ). 7. Si ∀R.C ∈ λ(σ) et R ∈ r(ρ) pour un rayon ρ ∈ ξ(σ) alors C ∈ l(ρ). 8. Si ∀R.D ∈ λ(σ), S * R, Trans(S) et R ∈ r(ρ) pour un rayon ρ ∈ ξ(σ) alors ∀S.D ∈ l(ρ). 9. Si (≥ nS.C) ∈ λ(σ) alors il y a n rayons distincts ρ 1 , • • • , ρ n ∈ ξ(σ) tels que {C}∪C Ii (≥nS.C) ⊆ l(ρ i ), S ∈ r(ρ i ) pour tout 1 ≤ i ≤ n ; et I j , I k ⊆ {0, • • • , log n + 1 }, I j = I k pour tout 1 ≤ j < k ≤ n. 10. Si (≤ nS.C) ∈ λ(σ) alors il n'existe pas n + 1 rayons ρ 0 , • • • , ρ n ∈ ξ(σ) tel que C ∈ l(ρ i ) et S ∈ r(ρ i ) pour tout 0 ≤ i ≤ n. 11. Si (≤ nS.C) ∈ λ(σ) et il y a un rayon ρ ∈ ξ(σ) tel que S ∈ r(ρ) alors C ∈ l(ρ) ou ¬C ∈ l(ρ).
Si nous utilisons un star-type σ pour représenter un ensemble d'individus X d'un modèle ontologique, la validité de σ implique la satisfaction de tous les concepts dans λ(σ), i.e. chaque x ∈ X satisfait sémantiquement tous les concepts dans λ(σ). En fait, chaque condition dans Définition 2 représente les sémantiques d'un constructeur dans SHIQ. Notons que la condition 9 assure la propriété chromatique des startypes valides du fait que les concepts C I (≥nS.C) avec I ⊆ {0, • • • , log n + 1 } sont utilisés pour assigner un label distinct de concept à chaque rayon.

Définition 3 (Tableau-compressé). Soit (T , R) une ontologie SHIQ. Un tableau-compressé pour (T , R) est une paire T = N , Ω , où
1. N est un ensemble de star-types valides tel que σ ne soit pas équivalent à σ pour tout σ, σ ∈ N ; 2. pour chaque star-type σ ∈ N , il y a un rayon ρ ∈ ξ(σ) tel que ρ / ∈ ξ(σ ) pour tout σ ∈ N \ {σ} avec λ(σ ) = λ(σ) ; 3. Ω est une fonction appelée appariement qui associe chaque paire (σ, ρ) avec σ ∈ N , ρ ∈ ξ(σ) à un ensemble de paires

(σ 1 , ρ 1 ), • • • , (σ m , ρ m ) avec σ i ∈ N , ρ i ∈ ξ(σ i ) tel que l(ρ) = λ(σ i ), l(ρ i ) = λ(σ) et r -(ρ) = r(ρ i ) pour tout 1 ≤ i ≤ m où r -(ρ) = {Inv(R) | R ∈ r(ρ)}.
Dans ce cas, nous disons que ρ est apparié à ρ i .

Selon la condition 1 de la Définition 3, tous les star-types d'un tableau-compressé sont distincts. La condition 2 assure que |N | est borné par le nombre de triplets distincts (λ, r, λ R) . Il y a une relation entre un tableaucompressé et un arbre de complétion construit par un algorithme tableau. En effet, un tableau-compressé peut être obtenu d'un arbre de complétion en compressant les noeuds dont les voisins sont appariés par paire. Inversement, une fonction d'appariement comme décrite par la condition 3 fournit une possibilité d'extension d'un tableau-compressé à un arbre de complétion. Cette fonction d'appariement peut être considérée comme une généralisation de la condition de blocage de différents algorithmes tableau tel que le blocage d'ancêtre [START_REF] Horrocks | A tableau decision procedure for SHOIQ[END_REF], le blocage "n'importe où" [START_REF] Motik | Hypertableau reasoning for description logics[END_REF] car l'arc connectant un noeud bloquant à son prédécesseur est apparié à un arc connectant le noeud bloqué à son prédécesseur. De plus, nous n'avons pas besoin de stocker dans un tableau-compressé un star-type σ qui est intégrable dans d'autres star-types σ , σ (i.e. ξ(σ) ⊆ ξ(σ )∪ξ(σ )) comme décrit en section 2 du fait que chaque Ω(σ, ρ) peut être remplacé par Ω(σ , ρ) ou Ω(σ , ρ). Dans ce cas, si σ est enlevé du tableau, toutes les conditions de la Définition 3 restent vraies. -Si s 

) avec λ, λ ∈ 2 CL(T ,R) et r ∈ 2 R(T ,
∈ C I alors C ∈ λ(σ(s)) avec C ∈ 2 CL(T ,R) . Pour chaque concept (≥ n i R i .C i ) ∈ λ(σ), nous notons S (≥niRi.Ci) (s) = {t 1 ni , • • • , t ni ni } ⊆ ∆ tel que s, t j ni ∈ R I i et {C i , C Ij (≥niRi.Ci) } ⊆ λ(σ(t j ni )) avec I j ⊆ {0, • • • , log n i + 1 } pour 1 ≤ j ≤ n i , et I j = I j pour 1 ≤ j < j ≤ n i . -Pour chaque t ∈ (≥nR.C)∈L(s) S (≥nR.C) (s),

Construction de tableaux-compressés

La section précédente a fourni les propriétés d'un tableau-compressé qui nous permet de caractériser un modèle d'une ontologie SHIQ. Nous présentons ici un algorithme orienté but pour la vérification de la cohérence d'une ontologie SHIQ en essayant de construire un tableau-compressé.

Avant de décrire l'algorithme en détail, nous définissons les structures de données suivantes : SAT est un ensemble de star-types valides ; UNSAT est un ensemble de star-types invalides (ou non saturés), i. 6 return NO;

de triplets (l 1 , r 1 , l 1 ) tels que (l 1 , r 1 , l 1 ) ∈ MATCHED si et seulement si (l 1 , r 1 , l 1 ) ∈ TR(σ) avec σ ∈ SAT et il existe un autre triplet (l 2 , r 2 , l 2 ) ∈ MATCHED avec l 1 = l 2 , l 2 = l 1 et r 1 = r - 2 .
Pour deux star-types σ, σ avec τ ∈ TR(σ), τ ∈ TR(σ ), nous pouvons former un duo (σ, τ ), (σ , τ ) . Si τ et τ sont appariés selon la Définition 3, il est appelé un duo apparié, un duo non apparié autrement. UNMATCHED est un ensemble de duos non appariés (σ, τ ), (σ , τ ) tel que σ, σ ∈ SAT ∪ UNSAT. PROCESSED est un sousensemble de UNMATCHED. Tous ces ensembles sont initialisés à vide. Ils seront modifiés de façon monotonique par les procédures suivantes.

- 
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, • • • , X k-1 avec X i ∈ {B i , ¬B i } qui représente une valeur binaire b k-1 • • • b 0 alors les deux successeurs doivent contenir les concepts Y 0 , • • • , Y k-1 avec Y i ∈ {B i , ¬B i } qui représente la valeur binaire b k-1 • • • b 0 + 1.
Plus précisément, les axiomes (5) garantissent que si le bit du poids faible est modifié de 0 en 1 alors les autres bits restent inchangés. Quant aux les axiomes [START_REF] Horrocks | Practical reasoning for expressive description logics[END_REF], ils garantissent que si tous les i bits du poids faible sont modifiés de 1 en 0 et le bit de rang (i + 1) de 0 en 1 alors les autres bits doivent rester inchangés. Ces propriétés forcent l'incrémentation des nombres binaires correspondant aux labels des noeuds de la racine jusqu'aux feuilles. La Figure 5 présente T FAT-2 . Notons que, dans le label des noeuds, nous ne mentionnons pas les concepts ¬C D ajoutés pour chaque axiome C D. Pour la rendre plus lisible, nous définissons les labels de noeud comme suit.

Y 1 = ∃L.(¬B 0 C D), Y 2 = ∃L.(¬B 0 C ¬D), Z 1 = ∃L.(B 0 ¬B 1 C D), Z 2 = ∃L.(B 0 ¬B 1 C ¬D), X 0 = {B 0 , B 1 , C, Y 1 , Y 2 , ∀L.B 1 , ∀R.B 1 }, X 1 = {¬B 0 , B 1 , C, D, Z 1 , Z 2 }, X 2 = {¬B 0 , B 1 , C, ¬D, Z 1 , Z 2 }, X 3 = {B 0 , ¬B 1 , C, D, Y 1 , Y 2 , ∀L.(¬B 1 ), ∀R.(¬B 1 )}, X 4 = {B 0 , ¬B 1 , C, ¬D, Y 1 , Y 2 , ∀L.(¬B 1 ), ∀R.(¬B 1 )}, X 5 = {¬B 0 , ¬B 1 , C, D}, X 6 = {¬B 0 , ¬B 1 , C, ¬D}. (B 0 • • • B k-1 C)(a) (1) 
C 0≤i≤k-1 (B i ¬B i ) (2) B 0 C ∃L.(¬B 0 C D) ∃R.(¬B 0 C ¬D) ( 3 
)
¬B 0 • • • ¬B i-1 B i C ∃L.(B 0 • • • B i-1 ¬B i C D) ∃R.(B 0 • • • B i-1 ¬B i C ¬D) pour 1 ≤ i ≤ k -1 (4) B 0 X i ∃S.¬B 0 ∃S.¬X i ⊥ pour S ∈ {L, R}, X i ∈ {B i , ¬B i } for 0 < i ≤ k -1 (5) 0≤l≤i-1 (¬B l ∃S.B l ) B i ∃S.¬B i X j ∃S.¬X j ⊥ X j ∈ {B j , ¬B j }, S ∈ {L, R}, 0 < i < j ≤ k -1 (6) 
Notons qu'il y a (k-1) axiomes définis par (4), 2(k-1) axiomes définis par( 5) et 4Σ k-1 i=1 i(k -i) axiomes définis par [START_REF] Horrocks | Practical reasoning for expressive description logics[END_REF]. Ceci implique que FAT-k est constituée de 3 + 3(k -1) + 4Σ k-1 i=1 i(k -i) axiomes. Si nous exécutons l'Algorithme 1 pour FAT-k, il y a au moins 4 star-types générés pour chaque niveau de T FAT-k . Dès lors, nous pouvons obtenir un tableaucompressé qui est composé d'au moins 4 × 2 k de startypes. La Figure 5 Prouvons maintenant que l'Algorithme 1 est une procédure de décision pour vérifier la cohérence d'une ontologie SHIQ. Arrêt Dans la description des procédures, nous avons prouvé qu'elles se terminent. Complétude Si une ontologie (T , R) est cohérente alors l'Algorithme 1 peut construire un tableaucompressé T = N , Ω . Avant d'argumenter, nous voudrions mettre en exergue une subtilité relative à la gestion non-déterministe dans la preuve. Quand l'algorithme traite un non-déterminisme (e.g. -rule), il peut faire un "mauvais" choix alors qu'un meilleur choix doit exister dans le tableau-compressé. Dans ce cas, nous allons montrer que l'algorithme peut toujours revenir en arrière pour faire un "bon" choix.

Soient = |(T , R)|, n = |2 CL(T ,R) | et m = |2 R(T ,R) |. Ceci implique que n, m ≤ O(2 ).
Selon le Lemme 1, (T , R) a un tableau-compressé T = N , Ω . Nous utilisons une fonction π pour maintenir les relations entre les star-types de T et ceux dans SAT et de UNMATCHED \ PROCESSED construits par l'algorithme. Grâce à cette fonction, nous pouvons obtenir un tableau-compressé quand l'algorithme se termine. L'algorithme (avec Pavingduo) commence par construire un duo valide (un tel duo peut toujours être initialisé à partir d'un startype et d'un rayon) noté (ω 1 , ν 1 ), (ω 2 , ν 2 ) . L'algorithme met dans MATCHED deux triplets ρ 1 , ρ 2 , dans SAT deux star-types σ 1 , σ 2 , dans UNSAT les startypes générés par les règles non-déterministes et dans UNMATCHED les duos créés à partir des star-types SAT ∪ UNSAT via les triplets restants (qui sont différents de ρ 1 , ρ 2 ). Nous définissons π(σ 1 ) = σ 1 et π(σ 2 ) = σ 2 tel que σ 1 , σ 2 ∈ N soient appariés dans T (de tels star-types existent toujours dans T ), et σ i est inclus dans σ i pour 1 ≤ i ≤ 2, noté σ i ≺ σ i , ce qui signifie que λ(σ i ) ⊆ λ(σ i ) et qu'il y a une injection δ de TR(σ i ) à TR(σ i ) telle que, pour chaque ρ ∈ TR(σ i ), nous avons r(ρ) ⊆ r(δ(ρ)) et l(ρ) ⊆ l(δ(ρ)).

Supposons que l'algorithme extrait de UNMATCHED \ PROCESSED un duo (ω 1 , ν 1 ), (ω 2 , ν 2 ) tel que π(ω 1 ) = ω 1 et π(ω 2 ) = ω 2 soient respectés (nous devons montrer que cette propriété est respectée après chaque mise-à-jour de π, i.e. π il met en correspondance dans T seulement les star-types dans les duos appartenant à UNMATCHED \ PROCESSED). La procédure Paving-duo commence par paver ce duo en appelant Saturating-star-type afin de satisfaire ω 1 et ω 2 en préservant leurs appariements. Cette procédure génère de (ω 1 , ν 1 ), (ω 2 , ν 2 ) un nouveau duo pavé noté (σ 1 , ρ 1 ), (σ 2 , ρ 2 ) . Quand une règle déterministe est appliquée à ω i , σ i ≺ ω i est respecté. Dans ce cas, nous changeons π(ω i ) = ω i en π(σ i ) = ω i (1 ≤ i ≤ 2). Supposons qu'une règle non-déterministe est appliquée à ω i . Nous considérons alors les deux possibilités suivantes : (i) l'algorithme fait un "mauvais" choix tel que σ i ≺ ω i ne soit plus respecté. Selon la description de la procédure Saturating-star-type, un nouveau star-type σ i est ajouté à UNSAT tel que σ i ≺ ω i soit respecté. Dans ce cas, nous changeons π(ω i ) = ω i en π(σ i ) = ω i ; (ii) l'algorithme fait un "bon" choix tel que σ i ≺ ω i est respecté. Dans ce cas, nous changeons π(ω i ) = ω i en π(σ i ) = ω i , et σ i est ajouté à SAT. Comme ci-dessus, l'algorithme met à jour MATCHED, SAT (voire UNSAT), UNMATCHED, et ajoute (ω 1 , ν 1 ), (ω 2 , ν 2 ) à PROCESSED. Par monocité de la saturation, le duo (σ 1 , ρ 1 ), (σ 2 , ρ 2 ) qui a été ajouté à UNMATCHED n'appartient pas à PROCESSED. Ceci assure que la fonction π met en correspondance seulement les star-types dans SAT et de UNMATCHED \ PROCESSED à T . L'algorithme s'arrête quand UNMATCHED \ PROCESSED = ∅ ; soit quand chaque triplet ρ ∈ TR(σ) de chaque σ ∈ SAT est apparié à un autre triplet ρ ∈ TR(σ ) avec σ ∈ SAT (autrement, UNMATCHED \ PROCESSED = ∅). Par conséquent, l'algorithme a construit un tableau-compressé du fait que T est un tableau-compressé. 

Expérimentations

Nous avons implémenté un prototype, appelé Staré, fondé sur l'Algorithme 1. Dans sa version actuelle, il fournit uniquement un service de vérification de cohérence d'ontologie. Nous avons utilisé les raisonneurs HermiT-1.3.8 et Pellet-2.3.3 comme implémentations L'objectif de Staré est de montrer que l'Algorithme 1 fonctionne sur des ontologies "difficiles" qui pourraient requérir des raisonneurs existants comme Her-miT [START_REF] Shearer | Her-miT : A Highly-Efficient OWL Reasoner[END_REF], [START_REF] Glimm | Hermit : An owl 2 ner[END_REF] et Pellet [START_REF] Sirin | Pellet : a pratical OWL-DL reasoner[END_REF] de construire de très grands modèles. Les résultats obtenus montrent que Staré devient meilleur que les autres raisonneurs pour les ontologies FAT-8, FAT-10 bien que Staré consomme beaucoup plus de mémoire. Cependant, il est moins bon que les autres raisonneurs lors de calcul sur des ontologies impliquant de nombreux non déterminismes. Nous pensons que la consommation mémoire de Staré est causée par le stockage des structures des star-types 
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Conclusion et discussion

Nous avons présenté un algorithme de vérification de la cohérence d'une ontologie SHIQ et montré qu'il s'exécute en ExpTime en fonction de la taille de l'ontologie. La conception de cet algorithme est fondé sur les deux idées principales suivantes : (i) la compression d'individus similaires pour former un star-type et le retrait de ceux qui peuvent être contenus dans un ensemble de star-types ; (ii) la seconde qui est cruciale est la réduction d'un nombre doublement exponentiel de star-types distincts d'un tableau-compressé en un nombre exponentiel de star-types distincts. Nous avons implémenté notre algorithme dans Staré et effectué des test sur des ontologies pour lesquelles les raisonneurs existants peuvent générer de larges modèles. Les résultats expérimentaux obtenus confirment que notre algorithme peut éviter une construction de modèles doublement exponentiels en fonction de la taille des entrées. Cependant, la question ouverte restante est comment la représentation compacte des modèles ré-sultant de l'algorithme se répercute sur une réduction éventuelle des non-déterminismes ?

Une implémentation d'autres services d'inférence comme l'implication logique, la classification est en cours. Nous croyons que de tels services fondés sur notre algorithme peut gérer des ontologies "difficiles" si chaque vérification pour une implication logique C D ne devrait pas entraîner la construction de beaucoup plus de star-types. Nous pensons que plus de structures seront mises en cache au bon moment plus facilement elles seront réutilisées pour construire différents tableau-compressés lors de la classification d'une ontologie.

La logique SHOIQ est une extension de SHIQ en y ajoutant des nominaux, i.e. 

Figure 1 -

 1 Figure 1 -Un arbre de complétion construit par un algorithme tableau en utilisant le blocage par paire (à gauche) ; star-types obtenus par compression (à droite)

Figure 2 - 2 Préliminaires

 22 Figure 2 -Star-type σ 1 intégrable à l'ensemble des star-types {σ 2 , σ 3 }

Soit

  C un ensemble non vide de noms de concepts. L'ensemble de SHIQ-concepts est défini par récurrence comme le plus petit ensemble contenant tout C dans C, , C D, C D, ¬C, ∃R.C, ∀R.C, (≤ n S.C) et (≥ n S.C) où n est un entier positif, C et D sont des SHIQ-concepts, R est un SHIQrôle et S est un rôle simple par rapport à une hiérarchie de rôles. Nous notons ⊥ pour ¬ . La fonction d'interprétation • I d'une interprétation I = (∆ I , • I ) associe chaque nom de concept à un sous-ensemble de ∆ I telle que I = ∆ I , (C D) I = C I ∩ D I , (C D) I = C I ∪ D I , (¬C) I = ∆ I \C I , (∃R.C) I = {x ∈ ∆ I | ∃y ∈ ∆ I , x, y ∈ R I ∧ y ∈ C I }, (∀R.C) I = {x ∈ ∆ I | ∀y ∈ ∆ I , x, y ∈ R I ⇒ y ∈ C I }, (≥ n S.C) I = {x ∈ ∆ I | |{y ∈ C I | x, y ∈ S I }| ≥ n}, (≤ n S.C) I = {x ∈ ∆ I | |{y ∈ C I | x, y ∈ S I }| ≤ n} où |S| représente la cardinalité d'un ensemble S. Un axiome C D est appelé une inclusion générale de concept(GCI) où C, D sont SHIQ-concepts (éventuellement complexes), et un ensemble fini de GCIs est appelé une terminologie T . Une interprétation I satisfait une GCI C D, notée I |= (C D), si C I ⊆ D I . Une interprétation I est un modèle de T , notée I |= T , si I satisfait chaque GCI dans T . Une paire (T , R) est dite une ontologie SHIQ, notée O = (T , R), si R est une hiérarchie de rôles SHIQ et T est une terminologie SHIQ. Une ontologie O = (T , R) est dite cohérente s'il existe un modèle I à la fois de T et de R, i.e., I |= T et I |= R. Nous utilisons R(T , R) pour noter l'ensemble de tous les noms de rôle apparaissant dans T , R avec leur inverse.

Lemme 1 .

 1 Soit (T , R) une ontologie SHIQ. (T , R) est cohérente ssi (T , R) a un tableau-compressé. Résumé de preuve. Supposons qu'il y ait un tableau-compressé T = N , Ω for (T , R). Grâce à la fonction d'appariement Ω, nous pouvons passer par les star-types pour construire un modèle en forme d'arbre par "démêlage". Inversement, supposons qu'il y ait un modèle (∆, . I ) pour (T , R). Pour chaque s ∈ ∆, nous définissons un star-type σ(s) valide comme suit :

  nous ajoutons un rayon ρ = r, l à ξ(σ(s)) et ρ = r -, l à ξ(σ(t)) tel que l = λ(σ(t)), l = λ(σ(s)) et r = {S | (s, t) ∈ S I ∧ R * S}. Dans ce cas, nous ajoutons (ρ , σ(t)) à Ω(ρ, σ(s)) et (ρ, σ(s)) à Ω(ρ , σ(t)). -Si σ(s) ≡ σ(s ) alors σ peut être enlevé et Ω reste une fonction d'appariement. De plus, si ξ(σ) ⊆ ξ(σ 1 ) ∪ • • • ∪ ξ(σ m ) alors σ peut être enlevé et Ω reste aussi une fonction d'appariement.

1 :1 3 Appeler 4 if

 134 e. toute les conditions de la Définition 1 ne sont pas satisfaites. Donc, SAT ∩ UNSAT = ∅. Pour chaque σ ∈ SAT ∪ UNSAT, nous définissons un ensemble de triplets TR(σ) = {(l , r, l) | λ = λ(σ), r = r(ρ), l = l(ρ), ρ ∈ ξ(σ)}. TRIPLE est l'union de tous les TR(σ) pour σ ∈ SAT ∪ UNSAT. MATCHED est un ensemble Algorithm Vérification de la cohérence d'une ontologie Input : Une ontologie SHIQ (T , R) Output: Cohérence de (T , R) Créer un duo (σ 1 , ρ 1 ), (σ 2 , ρ 2 ) et appeler Paving-duo pour le paver ; 2 foreach (σ, ρ), (σ , ρ ) ∈ UNMATCHED \ PROCESSED do Paving-duo pour paver (σ, ρ), (σ , ρ ) ; Detecting-compressed-tableau trouve un tableau-compressé then 5 return YES;

  montre un tableau-compressé pour T FAT-2 . Il est constitué de 11 star-types σ i (0 ≤ i ≤ 10). Les lignes en pointillé représentent l'appariement entre deux star-types via deux rayons. Nous observons que le star-type σ 8 (σ 9 , σ 4 , ou σ 5 ) représente les noeuds b 1 et b 5 (b 2 et b 6 , b 3 et b 7 , ou b 4 et b 8 , respectivement) de l'arbre de la Figure 5.

  Comme un triplet est composé de deux labels de concept et un label de rôle, |TRIPLE| ≤ n 2 m ≤ O(2 ). Si les nombres dans les restrictions "au-moins" sont codés en binaire alors |SAT|, |UNSAT| ≤ O(2 2 ). Cependant, la procédure Embedding-star-type assure que chaque star-type σ ∈ SAT ∪ UNSAT doit contenir un triplet qui n'est pas inclus dans les autres startypes. Ainsi, |SAT|, |UNSAT| ≤ O(|TRIPLE|) ≤ O(2 ). De plus, nous obtenons |UNMATCHED| ≤ (|SAT| + |UNSAT|)|TRIPLE| ≤ O(2 ) par construction. Chaque itération dans la boucle (ligne 2) de l'Algorithme 1 déplace un élément de UNMATCHED vers PROCESSED. Par conséquent, le nombre d'itérations de la boucle est borné par O(2 ). Correction Si l'Algorithme 1 peut construire un tableau-compressé T = N , Ω pour une ontologie (T , R) alors elle est cohérente. C'est une conséquence directe du Lemme 1.

Théorème 1 .

 1 Soit (T , R) une ontologie SHIQ. L'Algorithme 1 vérifie la cohérence de (T , R) et s'exécute en ExpTime en fonction de la taille de l'ontologie (T , R). Résumé de preuve. Nous avons prouvé que l'Algorithme 1 vérifie la cohérence de (T , R). Pour prouver qu'il s'exécute en ExpTime de la taille de (T , R), nous avons besoin de montrer que le nombre d'itérations de la boucle de l'Algorithme 1 est borné par O(2 ) avec = |(T , R)| et chaque procédure Saturating-star-type, Paving-duo, Detectingcompressed-tableau s'exécutent en ExpTime. En effet, le nombre d'itérations de la boucle de l'Algorithme 1 est borné par O(2 ) si |UNMATCHED| ≤ O(2 ) et PROCESSED augmente après chaque itération. La procédure Saturating-star-type s'exécute en ExpTime puisque |λ(σ)| ≤ O( ) ; Paving-duo s'exécute en ExpTime puisque Saturating-startype s'exécute en ExpTime (puisque le cardinal du label de core de chaque startype est borné par ), |UNMATCHED| ≤ O(2 ) et aucun duo UNMATCHED\ PROCESSED n'est choisi deux fois. Enfin, Detectingcompressed-tableau s'exécute en ExpTime puisque |SAT| ≤ O(2 ).

  qu'elle permet d'exprimer un concept comme une liste d'individus {o 1 , • • • , o k }. Par conséquent, un algorithme pour raisonner en SHOIQ doit gérer les concepts tels que∃R.{o}, ∀R.{o} qui devraient propager les nominaux sur des structures représentant les modèles. Si chaque nominal doit être unique dans un modèle, i.e. |{o} I | = 1 pour une interprétationI, la propagation des nominaux peut amener à fusionner des structures qui représentent le même nominal. De plus, l'unicité des nominaux peut entraîner des conditions de blocage plus difficiles à satisfaire du fait que les parties duplicables d'une structure pour représenter un modèle ne doivent pas contenir de nominaux. En ayant ceci à l'esprit, nous pouvons outrepasser ces difficultés (i) en fusionnant les star-types qui contiennent le même nominal ; et (ii) en détectant un sous-ensemble de star-types valides, appelés cercle, tel que chaque star-type d'un cercle contient aucun nominal et s'apparie avec un autre star-type du même cercle via chaque rayon. Dans ce cas, nous pouvons concevoir un modèle à partir d'un tel cercle si chaque star-type d'un cercle peut être dupliqué à l'infini. Donc, une ontologie SHOIQ est cohérente si un cercle est détecté dans un ensemble de star-types valides. Nous prévoyons d'étendre Staré pour traiter SHOIQ et fournir d'autres services d'inférence tels l'implication logique et que la classification. Une autre extension de Staré vise à fournir un nouveau service d'inférence qui calcule des modèles représentatifs d'une ontologie. Par exemple, Dong et al. [2] ont proposé un algorithme pour la révision d'ontologie qui requiert la construction de différents modèles au lieu d'un seul. Un tel service d'inférence essaie de retrouver la cohérence d'une ontologie en la révisant par adjonction de nouveaux axiomes incompatibles avec les axiomes déjà existants. Ceci requiert un algorithme de révision pour calculer un ensemble de modèles représentatifs caractérisant les sémantiques d'un ontologie. Un tel service sera très utile pour une approche qui nécessite d'approximer sémantiquement une ontologie par une autre.

  Donc, τ et τ sont appariés et le duo est pavé via τ et τ . Cette procédure appelle Saturating-star-type pour saturer les startypes σ et σ tout en préservant l'appariement du duo. Si aucune paire de star-types n'est apparié aux autres (τ, σ) de UNMATCHED \ PROCESSED. Sinon, elle retourne un duo apparié (τ 1 , σ 1 ), (τ 2 , σ 2 ) de (τ, σ), (τ , σ ) . Dans ce cas, il ajoute τ 1 , τ 2 à MATCHED et met à jour SAT, UNSAT et UNMATCHED. Enfin, il ajoute (τ, σ) à PROCESSED. -Embedding-star-type Cette procédure est appelée quand un nouveau star-type σ doit être ajouté à SAT ou UNSAT. Elle vérifie si la condition 2 de la Définition 3 est satisfaite. Si la condition n'est pas respectée, σ n'est pas ajouté dans SAT ou UNSAT.

	pro-
	priété chromatique d'un star-type peut remplacer
	la relation d'inégalité utilisée dans les algorithmes
	tableau pour éviter de fusionner des voisins créés
	par la ≥-règle. En appliquant les règles non déter-
	ministes correspondant aux propriétés 4, 10 and
	11 dans la Définition 2, les star-types non satu-
	rés peuvent être ajoutés à UNSAT. Par exemple,
	en appliquant la règle correspondante à la pro-
	priété 10, deux rayons peuvent être choisis pour
	être fusionnés. Les autres choix de rayons pour
	une fusion peuvent entraîner la création de nou-
	veaux star-types ajoutés dans UNSAT et mis	à
	jour dans UNMATCHED.	

Saturating-star-type Pour chaque propriété de la Définition 2, nous définissons une règle pour saturer un star-type. Ces règles agissent comme des règles d'expansion d'algorithme tableau

[START_REF] Horrocks | Practical reasoning for expressive description logics[END_REF]

. Par exemple, pour chaque star-type σ si ∃R.C ∈ λ(σ) et il n'y a pas de triplet (l , r, l) ∈ TR(σ) tel que R ∈ r et C ∈ l alors nous ajoutons un rayon (r, l) à ξ(σ) avec R ∈ r et C ∈ l. Notons que la -Paving-duo Cette procédure commence en choisissant une paire (τ, σ) à partir de UNMATCHED \ PROCESSED. Puis, elle crée un nouveau startype σ ayant seulement un triplet τ = (l, r -, l ) si τ = (l , r, l), et un duo (τ, σ), (τ , σ ) . -Detecting-compressed-tableau Pour chaque mise à jour de SAT, la procédure vérifie si un tableau-compressé est trouvé dans cet ensemble. Ceci permet de terminer l'algorithme sans considérer tous les cas de non déterminisme. Une implémentation naïve travaille ainsi. La procédure commence en créant une copie SAT de SAT, en traversant chaque duo de UNMATCHED pour trouver les triplets τ non appariés et enlevant de SAT tous les star-types σ contenant τ . Ensuite, il enlève de SAT tous les star-types σ contenant un triplet qui appartient à un startype précédemment retiré, et ainsi de suite. Un tableau-compressé est détecté si SAT reste non vide après retrait des star-types par cette procédure. Par construction, chaque triplet τ ∈ TR(σ) est apparié à un autre triplet τ ∈ TR(σ ) avec σ, σ ∈ SAT . Ceci implique qu'une fonction d'appariement comme décrite dans la condition 3 de la Définition 3 peut être définie à partir des startypes restants dans SAT . Nous avons implémenté une version optimisée de cette procédure qui indexe les star-types obtenus lors de vérifications précédentes.

  • • • B k-1 C) dans son core. Un arbre de complétion T FAT-k de profondeur 2 k (i.e., ayant 2 2 k feuilles) est construit par un algorithme tableau[START_REF] Horrocks | Practical reasoning for expressive description logics[END_REF] pour FAT-k. Chaque noeud à un niveau i < 2 k de T FAT-k a un label correspondant à la valeur binaire de i si nous utilisons les concepts B 0 ,• • • , B k-1 , ¬B 0 , • • • , ¬B k-1 pour représenter des chiffres binaires : B i pour 0 et ¬B i pour 1. Par exemple, si i = 3 et k = 4 alors le label du noeud au niveau i contient B 3 , B 2 , ¬B 1 , ¬B

	pelle les procédures décrites ci-dessus. Pour illustrer
	les star-types générés par l'algorithme et comment ils
	sont appariés pour former un tableau-compressé, nous
	considérons les ontologies, appelées FAT-n, constituées
	ds axiomes (2)-(6). L'assertion (1) indique seulement
	que l'algorithme commence par la création d'un star-
	type avec le concept (B 0

Arbre de complétion pour l'ontologie FAT-2 L'algorithme 1 est le programme principal qui ap-0 . Les axiomes (1), (

3

) et

[START_REF] Haarslev | Racer system description[END_REF] 

propage C à chaque noeud de T FAT-k . En particulier, l'axiome (2) impose que chaque noeud contienne exclusivement B i ou ¬B i pour 0 ≤ i ≤ k-1. Les axiomes (3) et (

4

) permettent que l'algorithme génère à partir de chaque noeud un L-successeur et un R-successeur. Ces deux successeurs ne sont pas "fusionnable" du fait que l'un contient D et l'autre contient ¬D. Les axiomes (

5

) et (6) assurent que s'il y a un noeud courant contenant les concepts X 0

Table 1 -

 1 5 -Tableau-compressé pour l'ontologie FAT-2 de référence en Java des algorithmes tableau ou hypertableau pour SHIQ.Nous avons créé des ontologies "artificielles" comme décrites en Section 4, nommées FAT-n avec n ∈ {5, 7, 10} pour tester Staré. De plus, nous avons effectué des expériences pour tester sa consommation de mémoire avec des ontologies existantes telles que GALEN-doctored dérivée de full-galen1 .La Table1donne les caractéristiques des ontologies utilisées pour les tests et la Table 2 les résultats obtenus. Tous les tests ont été effectué sur un ordinateur DELL avec 8 processeurs Intel 3.4GHz et 32Gb RAM sous Ubuntu. Caractéristiques des ontologies

	Ontologie	Caractéristiques
		Concepts Roles Axioms
	FAT-5	9	2	48
	FAT-7	11	2	94
	FAT-10	14	2	193
	Galen-doctored	2748	413	3937

Table 2 -

 2 Résultats des tests (nous écrivons -si le raisonneur met plus de 15 minutes)

	Ontologie	Temps de vérification (en sec.)
		Staré HermiT	Pellet
	FAT-5	4	2	2
	FAT-7	47	130	118
	FAT-8	202	1245	1530
	FAT-10	3101	-	-
	Galen-doctored	3	1	2
	et des triplets qui ne sont pas dans les modèles. A
	contrario des raisonneurs fondés sur les algorithmes
	tableau qui stockent seulement les structures néces-
	saires et redémarrent la construction des noeuds d'un
	tableau quand un clash apparaît, Staré rejette juste les
	star-types contenant un clash et stocke ceux qui ont
	mené au clash. Staré consomme beaucoup de mémoire
	pour stocker les strustures qu'il peut potentiellement
	réutiliser plus tard.			
	Nous avons aussi testé Staré sur des ontologies vo-
	lumineuses telles que full-galen qui a donné des ré-
	sultats moins intéressants. En effet, Staré doit trai-
	ter dans ce cas 1951 axiomes généraux qui peuvent
	lui exiger de construire beaucoup de star-types avant
	de trouver un tableau-compressé. Ces axiomes doivent
	être absorbés par une technique d'absorption implé-
	mentée dans HermiT et Pellet. Ce mauvais comporte-
	ment de Staré relatif à la gestion du non-déterminisme
	pourrait s'expliquer par l'absence de techniques avan-
	cées comme l'absorption binaire, normalisation
	d'axiomes dans sa version actuelle.