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Abstract With the increased need for data confidentiality in various applica-
tions of our daily life, homomorphic encryption (HE) has emerged as a promis-
ing cryptographic topic. HE enables to perform computations directly on en-
crypted data (ciphertexts) without decryption in advance. Since the results of
calculations remain encrypted and can only be decrypted by the data owner,
confidentiality is guaranteed and any third party can operate on ciphertexts
without access to decrypted data (plaintexts). Applying a homomorphic cryp-
tosystem in a real-world application depends on its resource efficiency. Several
works compared different HE schemes and gave the stakes of this research
field. However, the existing works either do not deal with recently proposed HE
schemes (such as CKKS) or focus only on one type of HE. In this paper, we con-
duct an extensive comparison and evaluation of homomorphic cryptosystems’
performance based on their experimental results. The study covers all three
families of HE, including several notable schemes such as BFV, BGV, FHEW,
TFHE, CKKS, RSA, El-Gamal, and Paillier, as well as their implementation
specification in widely used HE libraries, namely Microsoft SEAL, PALISADE,
and HElib. In addition, we also discuss the resilience of HE schemes to differ-
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ent kind of attacks such as Indistinguishability under chosen-plaintext attack
and integer factorization attacks on classical and quantum computers.

Keywords Cryptography · Homomorphic encryption · Performance evalua-
tion · Information Security · Privacy

1 Introduction

For a long time, information security has always been a controversial topic due
to its importance in technology particularly and in society generally. When
implementing a technological tool or service, the first and foremost concern of
researchers is about the applicable security that it can provide.

By the unavoidable data growth in nearly all organizations, the demand
for data storage and computation has been increasing significantly over the
past few decades. A traditional infrastructure for data management, such as
in-house or local services, can only offer a limited storage and access controls.
In the Internet-based world, this method is no longer applicable since a huge
amount of sensitive data is produced every second from business transactions.
One potential solution for this problem is to seek a third-party expert, i.e.,
cloud computing providers, outside of the company to place its trust. However,
to put this paradigm into practice, we need to deal with one of its biggest
challenges: data confidentiality.

In this situation, cryptography has come to the forefront to provide both
data confidentiality and data operations for this outsourcing problem. As the
foundation of modern security systems, cryptography helps to ease the concern
of data leakage to an untrusted third party or server side. Data must now be
encrypted by the user before being sent to the server. Later, after retrieving
the encrypted result from the server, only the user can decrypt it using his
secret key and get its value. Although this technique would preserve the data
privacy, the encrypted data is not meaningful for the server, so it is not able
to maintain its computation efficiency. That was why for that moment, a new
cryptographic topic, called Homomorphic Encryption, got a major attention
when it allows to perform certain computable functions on the encrypted data
while keeping the characteristics of the function and format of the cipher-
texts. In [1], A. Acar et al. present this process on Figure 1, where C is a
client and S is a server. Following this survey, in terms of the number of al-
lowed operations on encrypted data, HE can be classified into three types: (1)
Partially Homomorphic Encryption (PHE) allows only one type of operation
to be performed an unlimited number of times. (2) Somewhat Homomorphic
Encryption (SWHE) allows some types of operations with a limited number of
times. (3) Fully Homomorphic Encryption (FHE) allows an unlimited number
of operations for an unlimited number of times. Figure 2 presents the most
known HE-based systems and their timeline, while their application scenarios
are demonstrated in Table 1.

So far, there are many HE schemes that have been introduced. Within the
scope of the paper, we concentrate on the ones which are the most widely used
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Fig. 1: A simple client-server HE scenario [1]

Fig. 2: Timeline of several important HE schemes

in cryptography applications and serve as the basis for other schemes. Being
proposed in 1978, RSA is one of the first public-key encryption methods for
securing communication on the Internet, inspired by Diffie-Hellman’s research
([2], 1976). Little while later, El-Gamal ([3], 1985) and Paillier cryptosystems
([4], 1999) were introduced respectively, marking an important milestone for
PHE. The calculation on ciphertexts remained limited until C. Gentry pre-
sented the first FHE scheme ([5], 2009), using bootstrapping technique. Tech-
nically, the bootstrapping method is an intermediate procedure to refresh a
ciphertext with large error to be a new one with smaller error, so that it
allows more computations. This is also how the SWHE scheme is converted
into a fully homomorphic one. Three years later, based on the Gentry’s work,
two main FHE schemes to perform exact computations over finite fields and
integers were born, Brakerski-Gentry-Vaikuntanathan (BGV) [6] and Braker-
ski/ Fan-Vercauteren (BFV) [7]. The latest newcomer to join SWHE is CKKS
([8], 2016), which allows to perform computations over approximated num-
bers. CKKS is an essential element of the HE family, where it complements
previous schemes by natively dealing with real and complex numbers.

Although FHE schemes are efficient and secure, they are not very practi-
cal in real-life contexts since Gentry’s bootstrapping procedure requires heavy
computations to refresh noisy ciphertexts and keep computing on encrypted
data. In 2014, Ducas and Micciancio [9] introduced a new method to homomor-
phically compute simple bit operations, and refresh (bootstrap) the resulting
output, called “Fastest Homomorphic Encryption in the West” (FHEW). Ac-
cording to the authors, FHEW can improve the time required to bootstrap
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Scheme Application

RSA, 1978 [15]
Banking and credit card transaction (Parmar et al.,
[16])

ElGamal, 1985 [3] In Hybrid Systems (Parmar et al., [16])
Paillier, 1999 [4] E-Voting (Parmar et al., [16])

BGN, 2005 [17]
A Novel IoT Data Protection Scheme Based on BGN
Cryptosystem (S. Halder et al., [18])

BGV, 2011 [6]
For the Security of Integer Polynomials (Parmar et al.,
[16])

BFV, 2012 [7]
A fast oblivious linear evaluation (OLE) protocol (Leo
de Castro [19])

CKKS, 2016 [8]
Homomorphic Machine Learning Big Data Pipeline for
the Financial Services Sector (Masters et al., [20])

FHEW, 2014 [9]
TFHE: Fast Fully Homomorphic Encryption over the
Torus (Chillotti et al., [10])

TFHE, 2020 [10]
An homomorphic LWE based E-voting Scheme
(Chillotti et al., [21])

Table 1: HE schemes and their applications

the ciphertext, which is homomorphic evaluation of a NAND gate “in less
than a second”. In 2020, an improvement of FHEW was initially proposed by
I. Chillotti et al. [10], which described a fast fully homomorphic encryption
scheme over the torus (TFHE) and revisited FHE based on GSW ([11], 2013).
Following Ducas et al. [12], the most important difference between TFHE and
FHEW is that TFHE uses (an optimized version of) the FHEW accumula-
tors to implement a ring variant of the bootstrapping procedure described
in [13], rather than [14]. Thanks this difference and other optimizations, the
bootstrapping runtime is reduced to less than 0.1 second. All of these improve-
ments marked a milestone in the FHE implementation, as well as contributed
greatly to bridging the gap between FHE security and its efficiency in practice.

The rest of the paper is structured as follows: section 2 reviews some of
the related works in the similar field, regarding the performance evaluation of
different HE schemes. The most important properties of HE schemes and their
libraries are discussed in section 3. Then, section 4 and section 5 respectively
elaborate the implementation method and results of evaluation analysis. In
section 6, a discussion on the security of HE under notable security notions
and Shor’s quantum algorithm is given. Finally, section 7 presents conclusions
and indicates directions of future work.

2 Related work

As previously mentioned, one of the related works is a survey conducted by A.
Acar et al. in 2018 [1] that covers important PHE, SWHE, and all the major
FHE schemes. Similarly, the survey of P. Martins et al. (2017) [22] presents
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fundamental concepts of FHE schemes and their performance, mainly from
an engineering perspective, refraining from introducing complex mathemati-
cal definitions. These works, however, do not mention CKKS encryption [8], an
usefully practical HE proposed recently in 2016 for computing real and com-
plex input numbers. Lately, a study of Kim et al. [23], published in 2021, imple-
ments their improved variants of BFV and BGV in PALISADE and evaluates
their experimental performance for several benchmark computations. From a
same point of view, Lepoint and Naehrig in [24] offer theoretical and prac-
tical comparisons of different HE schemes, as well as explain how to choose
parameters to ensure algorithms’ correctness and security. Even so, the pa-
pers delve deeply into the mathematics, making them more suitable for expert
readers and mathematicians. In contrast, the survey conducted by Alaya et al.
[25] makes a easy-to-understand comparison of advantages and limitations of
different HE algorithms. Unfortunately, it only presents the theoretical infor-
mation of the schemes, while implementation aspects have not been brought
up. Most recently, Sidorov et al. [26] published a paper on performance analysis
of HE in several libraries, but the paper does not specify which homomorphic
schemes were used in each library, either the input parameters. In opposition
to [26], (Migliore et al. [27]) proposes a study of the current best solutions for
setting up parameters of HE schemes, but only approaches of SWHE schemes.

Considering the related works in the field and their scopes summarized in
Table 2, it is obvious that among existing HE surveys, they either do not study
newborn schemes (such as CKKS, FHEW, TFHE) or do not cover all three
HE families. As a result, there is still a need in this field for a comprehensively
up-to-date survey that provides key concepts of the main encryption schemes
in all three HE categories, together with their experimental performance com-
parisons. The survey needs to be practical and show newly interested users
how to build their own HE-based projects in popular HE libraries.

Our contribution: Our work aims to provide readers with fundamen-
tal principles of HE schemes without delving too deep into the mathematics.
Furthermore, the paper conducts a comprehensively theoretical and practical
comparison of important HE schemes, covering all three HE categories: FHE,
SWHE, and PHE. For different HE schemes in each family, we analyse their
input parameters, together with their constraints, and then compare them to-
gether. This hands-on experience helps unprofessional practitioners distinguish
libraries’ properties and makes them easy to apply in building their own HE-
based projects. In addition, we provide experimental results on performance
evaluation of each HE scheme in most-used libraries such as SEAL [28], PAL-
ISADE [29], HELib [30], and HEAAN [31]. Although PHE schemes are now
not available in mentioned open-source libraries, our own implementations of
Paillier, El-Gamal, and RSA are used as partially homomorphic cryptosys-
tems in the experimental study. For each execution case, we also come up
with assessments and results’ explanations. Furthermore, in the last part, we
deliver a concrete discussion on the security of aforementioned schemes against
IND-CPA, IND-CCA, as well as integer factorization attacks on classical and
quantum computers.
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Authors Description
Scope

Schemes Libraries

C. Fontaine
et al., 2007
[32]

Providing nonspecialists with a
survey of HE techniques

- -

T. Lepoint
et al., 2014
[24]

Conducting a comparison of FV
and YASHE schemes and ex-
plaining how to choose parame-
ters to ensure correctness and se-
curity against lattice attacks

BGV
YASHE

FLINT

V. Migliore
et al., 2016
[27]

Proposing a study of the current
best solutions, providing a deep
analysis of how to setup and size
their parameters

BFV
SHIELD

-

P. Martins
et al., 2017
[22]

Studying SWHE and FHE
schemes supported by their
performance and security from
an engineering standpoint

BGV
BFV

Paillier
El-Gamal

-

A. Acar et
al., 2018 [1]

Providing a comprehensive sur-
vey of the main FHE, PHE and
SWHE schemes, including the
FHE implementations

RSA
Paillier

El-Gamal

SEAL
HELib

B. Alaya et
al., 2020
[25]

Presenting different HE cryp-
tosystems, joined with a final
comparison between the adopted
techniques

- -

A. Kim et
al., 2021
[23]

Revisiting BGV and BFV, to-
gether with proposing an im-
proved variant of BFV

BGV
BFV

PALISADE

C. Zaraket
et al., 2021
[33]

Proposing SAVHO homomorphic
scheme and its performance anal-
ysis in comparison with Pailler
cryptosystem

Paillier
SAVHO

SageMath

V. Sidorov
et al., 2022
[26]

Conducting an extensive study
of homomorphic cryptosystems’
performance for practical data
processing

Paillier
El-Gamal

SEAL
PyAono
HELib

S. J.
Mohamme
et al., 2022
[34]

Evaluating performance of RSA,
ElGamal, and Paillier homomor-
phic encryption algorithms

RSA
El-Gamal
Paillier

-

D.
Micciancio
et al., 2022
[12]

Presenting a unified framework
that includes the original and ex-
tended variants of both FHEW
and TFHE cryptosystems

FHEW
TFHE

PALISADE

Table 2: Related works and their scopes

3 Background

3.1 Libraries

HElib (Homomorphic-Encryption Library) [30] is the first open source li-
brary implementing HE. Being published in 2013, it focuses on effective use
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of BGV and CKKS schemes, together with ciphertext packing techniques and
the Gentry-Halevi-Smart optimizations. HElib is still under development by
Shai Halevi (IBM), Victor Shoup (NYU, IBM) and available on github [35].
In 2018, the authors implemented several algorithmic improvements, includ-
ing Faster Homomorphic Linear Transformations [36], that made HElib 30–75
times faster than those previously built for typical parameters.

PALISADE [29] is an open-source C++ project that provides efficient
implementations of lattice cryptography building blocks. The library sup-
ports varied HE schemes, such as: BGV, BFV, CKKS, FHEW, and TFHE.
In addition, it also supports multi-party extensions of certain schemes and
related cryptography primitives, namely digital signature schemes, proxy re-
encryption, and program obfuscation. PALISADE can be found on github

[37]. According to the newest PALISADE’s announcement, the PALISADE
community has merged the PALISADE project into the next-gen OpenFHE
open-source FHE software library. OpenFHE ([38], 2022) has all of the features
of PALISADE, merged with selected capabilities of HElib and HEAAN.

SEAL (Simple Encrypted Arithmetic Library) [28] is another HE library,
developed by the Cryptography and Privacy Research Group at Microsoft.
According to his author, Kim Laine, the first version of SEAL was released
in 2015 with the specific goal of providing a well-engineered and documented
HE library. SEAL was designed to use both by experts and by non-experts
with little or no cryptographic background. The updated version of Microsoft
SEAL, which is available on github [39], has implemented various forms of HE
schemes, including BGV, BFV, and CKKS. Besides, there is a SEAL version in
Python, called SEAL-Python [40]. This is a Python wrapper implementation
of the SEAL library, using pybind11 [41].

HE scheme/Library SEAL PALISADE HElib HEAAN

BFV ✓ ✓
BGV ✓ ✓ ✓
CKKS ✓ ✓ ✓ ✓
FHEW ✓
TFHE ✓

Table 3: HE schemes in available HE libraries

To have an extensive comparison for CKKS encryption, apart from these
three mentioned libraries, we also measure its running time in HEAAN li-
brary [31], developed in 2016 by its own authors. HEAAN (Homomorphic
Encryption for Arithmetic of Approximate Numbers) is an open-source cross
platform software library which implements the approximate HE scheme pro-
posed by Cheon, Kim, Kim and Song (CKKS). HEAAN executes only CKKS
schemes with its complete properties. Following its owners, the library allows
additions and multiplications to be performed by fixed point arithmetics and
approximate operations between rational numbers. Table 3 illustrates the dis-
tribution of several encryption schemes in each library.
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To study the advantages and drawbacks of aforementioned libraries, we
define a set of criteria. The first criterion is whether the library is open source.
It is important for the transparency reason and could be a drawback for not
open-sourced libraries. Ease of use criterion of the library means that it is
easy to integrate with existing systems and have clear documentation and
examples. The library should also have a well-designed API and be easy to
use for developers. The compatibility criterion explains the dependence of the
library for a specific platform and/or hardware. For example, if the system
is based on a particular operating system or hardware platform, the library
should be compatible with that platform. The reliability criterion indicates
that the library implementation is stable with minimal bugs. Based on these
criteria, Table 4 presents the comparison study while the more + sign means
that the library meets more of the criterion.

Library/Criteria Open source Ease of use Compatibility Reliability

SEAL ✓ ++ +++ ++
PALISADE ✓ + ++ +

HElib ✓ ++ +++ ++
HEAAN ✓ + + +

Table 4: HE libraries comparison

All four libraries are open source and freely available under permissive
licenses. This means that they can be used, modified, and distributed by de-
velopers without restriction. For ease of use purpose, the four libraries offer
abstractions of the details of the HE schemes. HElib is known for its ease of
use because it is currently well documented. HElib and PALISADE are pri-
marily designed for x86-based CPUs compatibility, while SEAL and HEAAN
can be used on a wider range of platforms, including ARM-based CPUs. For
reliability, the four discussed libraries are reliable and well-tested. However,
HElib and SEAL are more mature and have been used in production systems
for several years, while PALISADE and HEAAN are newer and still be un-
dergoing active development. For the compatibility feature, Microsoft SEAL
has been built on various platforms (Windows, Linux, macOS/iOS, Android,
and FreeBSD), while HEAAN is checked working well on Ubuntu. In addition,
PALISADE and HElib are adaptable with Linux, MacOS, and Windows. The
previous versions of Helib have also included Fedora, CentOS, and macOS
Mojave. Although all four libraries are compatible with various operating sys-
tems, they differ in their performance. The performance of implemented HE
schemes in these libraries will be discussed in Section 5.

3.2 Homomorphic encryption schemes

In this part, we explain basic properties of HE, followed by a brief description of
some notable PHE, SWHE, and FHE schemes. An HE scheme is based on five
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main homomorphic operations: Key generation (KeyGen), Encryption (Enc),
Decryption (Dec), Homomorphic addition (Add), and Homomorphic multipli-
cation (Mult).

The performance evaluation of mentioned schemes will be detailed in sec-
tion 5. But first of all, we define a homomorphic encryption. As per [1], an
encryption scheme is called homomorphic over an operation “⋆” (e.g., Add,
Mult) if it supports the following equation:

E(m1) ⋆ E(m2) = E(m1 ⋆ m2),∀m1,m2 ∈M,

where E is the encryption algorithm and M is the set of all possible messages.

3.2.1 RSA

This HE was first introduced by Rivest et al. [15]. The security of the cryp-
tosystem relies on the practical hardness of factoring the product of two large
prime numbers [42], called the factoring problem. Given a security parameter
λ, RSA is defined as follows:

– KeyGen(λ): First, two large prime numbers (p and q) are randomly chosen,
then N = pq and ϕ(N) = (p − 1)(q − 1) are computed. The secret large
integer d is picked such that gcd(d, ϕ(N)) = 1. The last public component
e is calculated by computing the multiplicative inverse of d (i.e., ed ≡ 1
mod ϕ(N)). Finally, set the public key pk = (e,N), and the secret key
sk = (d, p, q).

– Enc(pk,m ∈ ZN ): The message m is an integer between 0 and N − 1. The
encryption of m is c, such that: c = E(m) = me (mod N).

– Dec(sk, c): The message m can be recovered from the ciphertext c by:
m = cd (mod N).

– Mult(c1, c2): c1c2 = E(m1)E(m2) = [me
1 (mod N)][me

2 (mod N)]
= (m1m2)

e (mod N) = E(m1m2).

3.2.2 El-Gamal

The encryption system is a widely-used HE in public-key cryptography,
proposed by T. ElGamal in 1985 [3]. The advent of El-Gamal algorithm is
based on the Diffie–Hellman key exchange, while its security strength is relied
on the hardness of solving discrete logarithms.

– KeyGen(λ): Firstly a cyclic group G of order N and its generator g ∈ Z∗
N

are generated. After randomly drawing an integer x from {1, . . . , N − 1},
h = gx is computed. The public key pk consists of (G,N, g, h), while sk = x
is kept secret.

– Enc(pk,m ∈ ZN ): A message m is encrypted by choosing an integer y
randomly from {1, . . . , N − 1}, then computing s = hy. the output of the
encryption is a ciphertext c = (c1, c2), where c1 = gy and c2 = ms.

– Dec(sk, c): To decrypt the ciphertext, firstly s′ = cx1 needs to be calculated.
Next, m is recovered by m = c2s

′−1.
– Mult(c1, c2):

c1c2 = E(m1)E(m2) = (gx1 ,m1h
x1)·(gx2 ,m2h

x2) = (gx1+x2 ,m1m2h
x1+x2)

= E(m1m2).
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3.2.3 Paillier

The encryption of Paillier (1999) [4] is an additively homomorphic cryp-
tosystem, which is based on the composite residuosity problem and gathers
many good properties.

– KeyGen(λ): Two primes numbers p, q of k bits are randomly generated such
that N = pq and ρ = N−1 (mod ϕ(N)), where ϕ(N) = (p− 1)(q− 1). One
can publish pk = N and sk = ρ.

– Enc(pk,m ∈ ZN ): To encrypt a messagem, first an integer r from {1, . . . , N−
1} is chosen randomly. The output is the ciphertext c = (1+mN)rN (modN2).

– Dec(sk, c): To recover the message m, r = cρ (mod N) is computed. Then

m = (cr−N (mod N2))−1
N .

– Add(c1, c2):
c1c2 = E(m1)E(m2) = (1+m1N)rN1 (1+m2N)rN2 (mod N2) = [1+(m1+
m2)N +m1m2N

2](r1r2)
N (mod N2) = [1 + (m1 +m2)N ]rN (mod N2) =

E(m1 +m2).

3.2.4 BFV

In 2012, J. Fan and F. Vercauteren [7] modified the scheme proposed by
Brakerski [43] from the learning-with-errors (LWE) setting to the Ring-LWE
setting. By using a simple modulus switching trick, BFV (so-called FV) pro-
vides a more efficient approach and also simplifies the analysis of the boot-
strapping step. The security of BFV-type cryptosystems is based on the LWE
over rings (or RLWE) assumption [44]. The RLWE(λ, q, χ) assumption states
that it is very hard to distinguish two distributions (a, b = a · s+ e) and (a, u),
where a, s, and u are randomly selected from Rq and e is selected from an
error distribution χ, referencing security parameter λ. This assumption has
been proved hard over ideal lattices [45].

Let R = Z[x]/f(x) be a ring of polynomials in which the operations of
BFV will be performed, where f(x) = xN +1 is a cyclotomic polynomial with
N being a power of 2. The ring is used to define the RLWE problem with
coefficients in Zq, denoted by Rq = Zq[x]/f(x). Additionally, the message
space is defined as Rt for an integer t > 1.

– KeyGen(λ): For a B-bounded distribution χ over the ring R, a vector of
secret key sk = s is sampled s ← χ. The public key is defined by: pk =
([−(a · s+ e)]q, a), where e← χ and a← Rq.

– Enc(pk,m ∈ Rt): Given a plain message m, let p0 = pk[0], p1 = pk[1], and
draw u, e1, e2 ← χ, the ciphertext is: c = ([p0 ·u+e1+∆ ·m]q, [p1 ·u+e2]),
where ∆ = ⌊q/t⌋.

– Dec(sk, c): Let c = (c0, c1) be an encrypted message. The decryption re-

turns m such as m =
[⌊

t
q [c0 + c1 · s]q

⌉]
t
.

– Add(c1, c2): Let c1, c2 be two encrypted messages such that c1 = (c10, c11)
and c2 = (c20, c21). The addition of two digits is c = ([c10 + c20]q, [c11 +
c21]q).
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– Mult(c1, c2): By multplying two ciphertexts c1(s) and c2(s), the result is
c1(s) · c2(s) = c′0+ c′1 ·s+ c′2 ·s2. One encountered problem is that resulting
ciphertext has size 3 (degree 2) and must be reduced to a size 2 (degree
1) [7]. This process is called relinearization. To start, a relinearization key
rlk is generated by choosing an integer p and sampling a new a← Rpq and
e← χ′(χ′ ̸= χ) satisfying rlk = ([−(a · s+ e) + p · s2]pq, a). The output is
relinearizated to 1-degree ciphertext: ([c0 + c2,0]q, [c1 + c2,1]q), where:

c0 =
[⌊ t · (c10 · c20)

q

⌉]
q

c1 =
[⌊ t · (c10 · c21 + c11 · c20)

q

⌉]
q

c2 =
[⌊ t · (c11 · c21)

q

⌉]
q

(c2,0, c2,1) =
([⌊c2 · rlk[0]

p

⌉]
q
,
[⌊c2 · rlk[1]

p

⌉]
q

)
3.2.5 BGV

BGV encryption was invented in 2011 by Brakerski, Gentry, and Vaikun-
tanathan [6]. BGV is a levelled FHE that works for both an LWE and an
RLWE. A levelled FHE means that the parameters of the scheme depend
(polynomially) on the maximum number of multiplications that can be exe-
cuted (called level L). The hardness of the scheme is also based on RLWE
problem [45]. To keep the ciphertext error within a given bound, they used
the technique of modulus switching as introduced in [46]. This modulo reduc-
tion maps a ciphertext c defined in a ring Rq, to a ring Rq′ while preserving
correctness, where q′ < q [47]. By combining the modulus switching method
with the bootstrapping procedure after performing desired operations on the
ciphertext, BGV scheme can be turned into FHE [48].

In original BGV, public key and switch keys are matrices. A detailed expla-
nation of the scheme can be found in [49]. Given a security parameter λ, level
L, and plaintext modulus p. First step is to generate L large primes q0, . . . qL−1

satisfying q0 < · · · < qL−1.

– KeyGen(λ, χ, L): A vector s is selected randomly as a sk. Then b = −(a ·s+
p · e) (mod qL−1) is computed, where a← RqL−1

, e← χ. The public key is
(a, b). Next, the switch keys (a0, b0, t0, 0), . . . , (aL−1, bL−1, tL−1, L− 1) will
be computed, where bi = −(ai · s+ p · ei − ti · s2) (mod ti · qi), ai ← Rqi ,
ei ← χ, and ti is an integer.

– Enc(pk,m ∈ Zp): A plaintext m can be encrypted by E(m) = (c0, c1) =
((b·v+p·e0+m) (mod qL−1), (a·v+p·e1) (mod qL−1)), where each element
of vector v, vi ∈ {0, 1,−1} and e0, e1 ← χ. We have c = (c0, c1, L − 1) is
the initial ciphertext.

– Dec(sk, c): A ciphertext c = (c0, c1, i), i = [0, L − 1] can be decrypted to
find its plaintext m by m = c0 + c1 · s (mod qi) (mod p).
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Fig. 3: Algorithms in CKKS [50]

– Add(c1, c2): The addition of two ciphertexts of a same level c1 = (c10, c11, i)
and c2 = (c20, c21, i) is computed by c = ((c10 + c20) (mod qi), (c11 +
c21) (mod qi)).

– Mult(c1, c2): Similarly to BFV method, the first step is to compute a
degree-2 ciphertext, where we denote c1(s)·c2(s) = c′0+c′1 ·s+c′2 ·s2. The re-
linearization procedure results a compressed ciphertext with degree 1: c∗ =
(c∗0, c

∗
1), where c

∗
0 = tic

′
0+bi ·c′2 (mod tiqi) and c∗1 = tic

′
1+ai ·c′2 (mod tiqi),

with the switch key (ai, bi, ti, i). The ciphertext c∗ will be mapped to
c ∈ Rqi−1

as the output by SwitchModulus method.
– SwitchModulus(c = (c0, c1, i)): Supposing to have two modulus qi and qj

where i > j, and a ciphertext c in ring Rqi , we calculate modulo inverse
element rj =

qj
qi

in qj . The new ciphertext in ring Rqj is defined by c =

(c0, c1, j) = (c0rj (mod qj), c1rj (mod qj), j).

3.2.6 CKKS

As mentioned in the previous section, CKKS, a HE for approximate arith-
metic, was introduced in 2016 in [8]. What makes CKKS draw attention to
many researchers is that it allows to perform approximate additions and mul-
tiplications of ciphertexts, where its plaintexts can be vectors of real and com-
plex values. This has been done by encoding and decoding method, where the
inputs are converted from CN/2 × R to R = Z[x]/(xN + 1) and vice versa [8].
In this step, we need to use a rounding technique, which might destroy some
significant numbers. Thus, if we had an initial vector of real or complex values
z, roughly speaking it will be multiplied by a scale ∆ > 0 during encoding
and then divided by ∆ during decoding to keep a precision of 1

∆ . Figure 3
describes all algorithms in CKKS scheme [50].

As well as many other HE schemes, the foundation of CKKS is also the
RLWE problem. Similarly to previously presented schemes, in this part, we
simply describe the five main algorithms of CKKS. To start, it begins with a
integer p > 0, number of multiplication L, and modulus q0. For 0 < l ≤ L, we
define ql = plq0.

– KeyGen(λ, qL): First, a vector s is sampled from a set of signed binary
vectors in {0, 1,−1}N whose Hamming weight is exactly an integer h. Next,
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a ← RqL , and e ← χ. We set the secret key sk = (1, s), pk = (b, a) ∈ R2
qL

with b = −as + e (mod qL). We choose an integer P , set a′ ← RP ·qL ,
e′ ← χ, and evk = (b′, a′) ∈ R2

P ·qL with b′ = −a′s+ e′ +Ps2 (mod P · qL).
– Enc(pk,m): Given a distribution ZO(ρ) draws each entry in the vector

from {0, 1,−1}N , with probability ρ/2 for each of −1 and +1, and proba-
bility being zero 1−ρ. To encrypt a polynomial m, we sample polynomials
v ← ZO(0.5), e0, e1 ← χ, then output the ciphertext c = v · pk + (m +
e0, e1) (mod qL).

– Dec(sk, c): For a ciphertext c = (b, a) ∈ R2
ql
, the approximate result m′ of

the plaintext m can be recovered by m′ = m+ e = b+ a · s (mod ql).
– Add(c1, c2): For c1, c2 ∈ R2

ql
, its addition is c = c1 + c2 (mod ql).

– Mult(evk, c1, c2): Similarly to introduced HE scheme, the multiplication
of CKKS also accompanies a relinearlization step. For c1 = (b1, a1), c2 =
(b2, a2) ∈ R2

ql
, let (c′0, c

′
1, c

′
2) = (b1b2, a1b2 + a2b1, a1a2) (mod ql). After

being relinearlizated, it outputs a degree-1 ciphertext c = (c′0, c
′
1) + ⌊P−1 ·

c′2 · evk⌉ (mod ql).
One problem produced is that underlying value contained in the plaintext
and ciphertext is ∆ · z as mentioned above. So after multiplying two ci-
phertexts c1, c2, the result holds z1 ·z2 ·∆2. By doing many multiplications,
the resulting ciphertext will have grown exponentially. To reduce its size,
Rescale RSl→l′ is introduced with its goal being to actually keep the scale
constant, and also reduce the noise present in the ciphertext.

– RSl→l′(c): For a ciphertext c ∈ R2
ql

at level l > l′, we output c′ =
⌊ ql′

ql
c
⌉
∈

(mod ql′).

3.2.7 TFHE/FHEW

FHEW [9] and TFHE [10] have joined FHE family since 2014, where TFHE
is an improvement of FHEW that significantly reduces the running time of the
bootstrapping process. Like other FHE schemes, FHEW/TFHE’s hardness is
based on RLWE assumption. Using the similar mentioned notation, a cipher-
text in FHEW/TFHE cryptosystem encrypting a message m ∈ Rt under key
s ∈ Rq is c = (a, b) = (a, a · s + e + m), with a ← Rq and e ← χ chosen
from a discrete Gaussian distribution. The decryption is done by computing
b−a ·s = e+m and evaluating an appropriate decoding function to correct the
error e and recover the message m [12]. One example of the decoding function
is scaling m by a factor ∆ = ⌊q/t⌋ as BFV scheme, which is described in 3.2.4.
Being inherited the properties of RLWE, TFHE/FHEW is also homomorphi-
cally additive and multiplicative. The development that makes TFHE/FHEW
a breakthrough in FHE timeline is bootstrapping technique. In FHEW setting,
given an LWE ciphertext (a, b), an encryption E(m) of the same message under
a different encryption scheme E is computed by homomorphically evaluating
the LWE decryption procedure on the encrypted key E(m) to yield⌊

2(b− a · E(s))/q
⌉

mod 2 ≃ E(m).
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In other words, the result of the computation is also an encryption E(m) of
the message, but with smaller noise. D. Micciancio et al. [12] showed that the
noise of the output ciphertext E(m) only depends on the noise of E(s), but
not on the noise of the ciphertext (a, b).

To accelerate bootstraping procedure, following FHEW authors, one needs
a homomorphic accumulator ACC holding values from Zq and supporting a
quadruple of algorithms (E, Initialize, Update, Extract) together with
moduli t, q, where E and Extract may require key material related to an
LWE key s as follows:

1. Initialize: ACC← b, setting the content of ACC to any known value b ∈ Zq;

2. Update: ACC
+← c · E(s), modifying the content of the accumulator from

ACC[v] to ACC[v + c · s], where c, s ∈ Zq, and s is given encrypted under E;

3. Extract: f(ACC), returning an encryption Ẽ(f(v)) of function f applied
to the current content of the accumulator ACC[v], where f is a “rounding”
function from Zq to Zt.

Suppose ek = E(s) = (E(s1), . . . , E(sn)) and a = (a1, . . . , an), the bootstrap-
ping procedure is presented in algorithm 1.

Algorithm 1: Arithmetic bootstrapping using an accumulator ACC
and rounding function f [12]

1 Bootstrap(ek = (E(si))i, (a, b));
2 ACC ← b ;
3 for i = 1, . . . , n do
4 ci = −ai mod q;

5 ACC
+← ci · eki

6 end
7 return f(ACC)

As per [51], there are two competing bootstrapping approaches to FHEW-
like schemes: the AP bootstrapping method [14] which is the basis of the
original FHEW scheme, and the GINX bootstrapping method [13], adopted
by TFHE. D. Micciancio and Y. Polyakov in [12] pointed out that the differ-
ence between these two implementations is that the former supports the basic

update procedure ACC
+← E(s) for arbitrary s ∈ Zq, whereas the latter sup-

ports basic updates ACC
+← c ·E(s) with c ∈ Zq being arbitrary, but s ∈ {0, 1}

is a single bit.
The detailed explanation of bootstrapping technique is complex and re-

quires much mathematical background. As presented at the beginning, in the
scope of our work, we aim to provide readers and newly interested users with
fundamental principles of HE schemes without delving too deep into the math-
ematics. Thus, for expert readers and mathematicians, a complete description
of the bootstrapping method can be found in their original papers at [9] and
[10].
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Symbol Description

p The plaintext modulus of BGV, BFV schemes

Q
The maximum ciphertext modulus, the initial ciphertext
modulus after encryption

m The cyclotomic order of the ring R
N The degree of the ring R (N = ϕ(m))
n The number of slots or messages encoded in one ciphertext

L
Multiplication depth, the number of multiplications can be
executed

∆
Scaling factor in CKKS scheme, multiplied to the floating-
point number of the message to convert to integer number.

Table 5: Used notations

4 Experimental implementation

The main focus of our work is to compare the performance of each available
scheme in different libraries. For this reason, in each library, we build our
own “simple” project as a regular end-user. Each project is corresponding to
one scheme, which includes five main homomorphic operations: KeyGen, Enc,
Dec, Add, and Mult. The execution time needed to perform each operation
will be recorded and then compared to each other. Every program collecting
the performance metrics is carried out on an average commodity computer
equipped with an Intel(R) Core(TM) i7-10700 CPU running at 2.90GHz under
Ubuntu 20.04. In the results presented in the next section, Table 5 lists some
useful notations.

To ensure the consistency in test results, every experiment is executed
according to the strategy below:

– The time unit is microseconds (µs);
– Each operation was executed in 1000 iterations and the time presented is

its average;
– The parameters are chosen to ensure the 128-bit encryption security level;
– The time measured of encryption operation includes the execution time of

random values for message inputs, together with encoding and decoding
timings for batching;

– Bootstrapping is not applied.

Depending on different HE schemes’ properties, chosen plaintext will be dif-
fered. BFV and BGV schemes allow modular arithmetic on encrypted inte-
gers, while CKKS supports homomorphic operations on real or complex ones.
Within the scope of the paper, plaintext batching technique is applied for all
evaluated FHE and SWHE schemes. The main idea behind batching concept
is to pack n plaintexts/messages into one ciphertext for parallel processing.
Here the first element of the batch is drawn randomly from a uniform distri-
bution over the same range p, and the remaining elements are set to be 0. The
diversity in input setting for each scheme will be explained with greater detail
in section 5.
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SEAL-Python PALISADE
Languages Python C++

Parameters

p changeable changeable
N changeable changeable
L not changeable changeable
Q not changeable not changeable

Batching n = N n = N
Condition p = 1 (mod 2n), p is a prime number

Table 6: Differences in libraries’ setups

5 Evaluation and results

5.1 Fully homomorphic encryption

5.1.1 BFV

Although BFV scheme is available in both SEAL and PALISADE as men-
tioned in Table 3, they also have their differences in the implementation, in-
dicated in Table 6. PALISADE allows users to change the parameters p,N,L
as inputs, whereas SEAL-Python keeps L unchangeable from the user side.
To accelerate the batching technique, the two libraries require that the chosen
plaintext modulus p needs to be a prime number and congruent to 1 (mod 2n).
This is the condition to operate on n packed integers in a SIMD (Single In-
struction, Multiple Data) manner [28]. In order to assess the relative practical
efficiency of two libraries for BFV encryption, different implementations are
done with the same input parameters and working environment given in Ta-
ble 7.

p log2Q required N

1032193 109 4096
1032193 218 8192
786433 438 16384
786433 881 32768

(a) SEAL

p (log2Q,L) required N

1032193 (120,1) 4096
1032193 (180, 2), (180, 3) 8192
786433 (240,4), (300,5), (300,6), (360,7), (360,8), (420,9) 16384
786433 (480,10), . . . , (780,19), (840,20), (840,21) 32768

(b) PALISADE

Table 7: BFV’s input parameters in PALISADE and SEAL

Unlike SEAL, PALISADE can calculate required N and Q based on chosen
L and p to ensure a security level of 128 bits. In contrast, SEAL sets 128-bit
encryption security level as default and allows users to enter N . SEAL then
displays satisfied Q and p with the entered inputs. Table 7 contains many
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options for PALISADE’s inputs with the same p and N in order to have 128-
bit security. However, to have fair comparison between these two, the value
of Q in PALISADE is chosen to be close to the one in SEAL. In Table 8, we
provide timings for five main cryptographic functions, using the parameters
recommended in Table 7.

HE parameters
KeyGen Enc Dec Add Mult

N log2Q

4096 109 1028.119 1263.528 276.045 1.298 3274.257
8192 218 3003.509 3269.548 1179.682 144.531 11663.16
16384 438 10260.45 11378.441 5434.016 415.662 54918.967
32768 881 40251.496 41297.274 17442.857 1536.587 246427.201

(a) SEAL

HE parameters
KeyGen Enc Dec Add Mult

N log2Q

4096 120 1137.556 1160.459 283.99 0.237 4296.438
8192 180 3170.82 2881.717 921.646 187.703 13585.75
16384 420 13507.743 11288.5535 3298.9775 1086.105 76565.506
32768 840 55941.007 45587.262 17171.713 7046.362 427795.343

(b) PALISADE

Table 8: Horizontal comparison of BFV’s execution time

After examining these tables, it is clear that the ciphertext dimension N
has a significant effect on BFV’s performance. In most cases, the running
times of decryption and addition are less than the others. In general, when N
increases, the execution times of all operations are increased, especially mul-
tiplication, which approximately grows up 4 times compared to the previous
N in both two libraries. However, in particular, the mean multiplication ex-
ecution time of SEAL is less than that of PALISADE. One explanation for
this is that the latter always counts the relinearization procedure whenever
doing multiplication (EvalMult function), while in the former, it is separately
computed. Within the scope of our experiments, the decryption is executed
only on a fresh ciphertext without doing multiplication before. Therefore, it is
not necessary to do relinearization step. That is why the timing in SEAL does
not involve relinearization.

In Figure 4, we depict experimental results in vertical comparison, where
timings are illustrated based on each operation. It is obvious that the mean
execution times of all cryptographic functions in two libraries are close to each
other, but SEAL is still performing better. While the rest are almost similar,
the biggest variance is displayed in multiplication time, where N = 32768,
SEAL is approximately 2 times faster than PALISADE.

5.1.2 BGV

Unlike BFV, all three libraries SEAL, PALISADE, and HElib have imple-
mented BGV. Generally, in doing the experiments, the encryption parameters
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Fig. 4: Vertical comparison of BFV’s execution time

of BGV, namely p,Q,N , and security level, are kept unchanged, compared
to BFV. The number of slots in one batch is n = N = ϕ(m), except for the
last case of Helib where N = 32768 and n = 8192 as indicated in Table 9.
This number is impacted by several parameters, including the maximum sup-
ported computation depth of the circuit (L) [30]. As L is varied to allow more
computation, it also affects the cost of the computation. Additionally, in prac-
tical implementation, some technical definitions have been introduced in HE
libraries, noise budget is one of them. According to A. Kim [28], noise budget
(invariant) is defined as the total amount of noise we have left until decryp-
tion will fail. To be more precise, the BGV implementation for each library is
specified as follows.

PALISADE: In the library, noise budget is managed by a method called
ModReduceInPlace, a method for reducing modulus of ciphertext and the
private key used for encryption [29]. As explained above, in our scope of eval-
uation, this function will not be included. For BGV multiplication, the BFV
operation of EvalMult is reused, so key-switching or relinearlization is already
added. Besides, other properties of BGV implementation are remained the
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HE parameters
KeyGen Enc Dec Add Mult

N log2Q

4096 109 2424.838 1091.586 259.842 42.541 1508.681
8192 218 11426.94 3137.433 992.5 79.952 6673.09
16384 438 70869.416 11179.579 3791.998 292.17 35650.547
32768 881 433638.89 41716.827 18156.642 866.2635 215414.681

(a) SEAL

HE parameters
KeyGen Enc Dec Add Mult

N log2Q

4096 96 3023.297 1145.76 368.375 42.116 570.952
8192 144 10981.757 3043.417 1007.424 57.322 2396.688
16384 240 51708.9 8902.513 3546.961 289.751 13642.014
32768 480 376273.9767 34662.558 20727.674 3313.547 116248.311

(b) PALISADE

HE parameters
KeyGen Enc Dec Add Mult

N log2Q

4096 100 168300.764 2257.432 138092.51 32.064 2347.865
8192 100 470367.195 4533.877 549616.633 480.44 4492.487
16384 100 1348552.91 9917.878 2265994 289.706 10778.79
32768 100 1967110.87 14080.4445 2340201.2 209.039 17477.661

(c) HElib

Table 9: Horizontal comparison of BGV’s execution time

N Add Matrices KeyGen Enc Dec Add Mult

4096
No 4882.369 2229.431 138098.495 120.27 2093.809
Yes 168300.764 2257.432 138092.51 32.064 2347.865

8192
No 9903.988 4637.854 548176.341 389.5065 5463.149
Yes 470367.195 4533.877 549616.633 480.44 4492.487

16384
No 20361.114 9418.236 2213333.56 577.842 11731.862
Yes 1348552.91 9917.878 2265994 289.706 10778.79

32768
No 39825.16 13217.164 2373608.58 1039.197 21059.138
Yes 1967110.87 14080.4445 2340201.2 209.039 17477.661

Table 10: HElib with different inputs

same as BFV’s, such as the solution to calculate required N , Q, as well as the
condition of inputs as mentioned in Table 6.

HElib: Helib allows to calculate its security level based on p, m, and
bits (the number of bits of the modulus chain). When bits increase, its
execution time is also raised up. Thus, in the comparison with other libraries
as demonstrated on Table 9, we choose these variables such that the security
level is close to or at least 128 bits.

Table 9 shows that the performance of HElib can be considered as good as
the other two libraries if the timings of key generation and decryption were not
such slow. To explain this, we need to examine the execution of key-switching
matrices addSome1DMatrices in KeyGen process. Table 10 displays the dif-
ferentiation in running time of computing or not the addSome1DMatrices

function. Without adding this procedure, key generation has been much less
time-consuming. For instance, in case N = 32768, it took almost 2 seconds to
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p (log2Q,L) required N

1032193 (96,1) 4096
1032193 (144, 2), (192, 3) 8192
786433 (240,4), (288,5), (336,6), (384,7), (432,8) 16384
786433 (480,9), (528, 10), (576,11),. . . (768,15), (816,16), (17,864) 32768

Table 11: BGV inputs for 128-bit security level in PALISADE

N L log2Q KeyGen Enc Dec Add Mult

8192
2 144 10981.757 3043.417 1007.424 57.322 2396.688
3 192 18055.952 3662.841667 1499.093333 77.27016667 3906.558667

16384
4 240 51708.9 8902.513 3546.961 289.751 13642.014
8 432 151107.142 13704.344 9176.451 1203.262 44985.406

32768
9 480 376273.9767 34662.558 20727.674 3313.547 116248.311
17 864 1138783.22 58661.984 52499.905 3221.175 362749.472

Table 12: PALISADE with different inputs

generate its key pair with addSome1DMatrices, whereas this process costed
only 40 milliseconds approximately without it.

In contrast, key-switching matrices have not been mentioned in SEAL and
PALISADE. Instead, PALISADE calculates required N and Q as illustrated
in Table 11.

The different pairs of L and Q in each line have the same level of secu-
rity. Hence, in the horizontal comparison of Table 9, we selected PALISADE
results with lower (L, Q) to compare with others. On the other hand, Ta-
ble 12 contains the timing results when implementing the lowest and highest
pairs of (L,Q) in each particular case of N value. Based on its behaviors, (L,
Q) shows an impressing effect on PALISADE’s execution time, especially on
KeyGen procedure. For instance, at the same level N = 32768, L = 17 took
more than 1 second to generate key pair, whereas 0.3 seconds is its cost when
L = 9. Last but not least, Figure 5 exposes the visibly vertical comparison of
the two based on timings of each operation.

A deep analysis of the Figure 5 and Table 9 shows that the SEAL and
PALISADE are performing much better than the HElib for KeyGen and Dec

operations. In contrast, Helib running time is the best in multiplication and
encryption. On the other hand, PALISADE and SEAL have equally good
performance in all operations. Although there is dissimilarity between them
in multiplication and addition, since the actual time counted in µs, it is not
really a great distance.

5.1.3 TFHE/FHEW

The FHEW fully homomorphic encryption [9] and its TFHE variant [10] are
the well-known methods to compute simple bit operations on encrypted data.
TFHE and FHEW are both Ring-LWE encryption, followed by a bootstrap-
ping procedure. Since bootstrapping notations are different from the notations
in previous parts, first we define them as follows.
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Fig. 5: Vertical comparison of BGV’s execution time

Parameter set n N q Q

STD128 512 1024 512 27
STD128 AP 512 1024 512 27
STD192 512 2048 512 37
STD256 1024 2048 1024 29
STD128Q 512 2048 512 50
STD192Q 1024 2048 1024 35
STD256Q 1024 2048 1024 27

Table 13: Parameter sets for of FHEW/AP and TFHE/GINX in PALISADE

– n, lattice parameter for the LWE scheme;
– N , ring dimension for RLWE;
– q, LWE modulus;
– Q, RLWE modulus used in the core bootstrapping procedure based on an

accumulator.
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Parameter set
KeyGen NAND

AP [ms] GINX [ms] AP [ms] GINX [ms]

STD128 4131.241 1020.15 211.7 148.87
STD128 AP 3213.657 977.524 167.19 120.89
STD192 8034.154 1837.621 773.335 504.65
STD256 31390.548 4884.21 899.59 614.28
STD128Q 10303.304 2584.294 546.265 389.05
STD192Q 17484.524 3074.128 714.29 498.95
STD256Q - 2463.208 - 1421.81

Table 14: Comparison on execution time of FHEW/AP and TFHE/ GINX

Both AP/FHEW and GINX/TFHE are implemented in PALISADE (now
OpenFHE). Based on proposed parameter sets by D. Micciancio et al. [12]
and PALISADE configuration, we conduct the experiments with different val-
ues as shown on Table 13. PALISADE provides several parameter sets corre-
sponding to various levels of security: STD128, STD192, STD256, STD128 AP,
STD128Q, STD192Q, and STD256Q, where “STD” means HE security stan-
dard in [52], and “Q” stands for the quantum attack estimates. For example,
STD128 is HE standard set with more than 128 bits of security with reference
to classical computer attacks, while STD128Q is the same as STD128 secu-
rity but with reference to quantum computer attacks. For the 128-bit security,
STD128 AP is added, which supports a more efficient option with dg = 3,
while STD128 is with dg = 4, where dg is the number of digits that integers
(mod Q) are broken into.

The method to conduct experiments for TFHE/FHEW is similar to pre-
vious experimental implementations in PALISADE as presented in section 4.
In particular, for each scheme we build a project as a regular end-user. Since
FHEW and TFHE can evaluate arbitrary Boolean circuits on encrypted data
by bootstrapping after each gate evaluation [12], we focus on performing and
comparing two main operations: key generation (KeyGen) and NAND-gate
evaluation (NAND). The former includes generating refresh and switching keys,
while the latter is evaluating a NAND gate. A NAND gate is functionally com-
plete. Hence, every possible Boolean circuit can be realized with combinational
logic made entirely of NAND gates. Every experiment collecting the perfor-
mance metrics is carried out on an average computer equipped with an 12th
Gen Intel(R) Core(TM) i5-1245U CPU running at max 4.4GHz under Ubuntu
22.04. We compiled PALISADE v1.11.6 with the compiler clang version 14.0.0.

Based on proposed parameter sets on 13, the runtime results are summa-
rized in Table 14 counted by milliseconds (ms). The number of security bits
has a great impact on the running time of both two cryptosystems. It is un-
derstandable that the increase in security level leads to the increase in KeyGen

and gate-evaluation timings in both two schemes. This is most clearly shown
in the fact that the system was not able to compute any results for FHEW/AP
when STD256Q is reached. In general, GINX bootstrapping method provides
better performance when it always produces bootstrapping keys and evaluates
the NAND gate much faster than AP. Talking about this, TFHE authors [10]
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(log2Q,L) required N

(101,1) 8192
(140,2), (181,3), (221,4), (261,5), (301,6) 16384
(341,7), (381,8) 32768

Table 15: CKKS input parameters in PALISADE

explained that they used a smaller bootstrapping key than the one in AP. In
their experiment, using 16MB bootstrapping key instead of 1GB, the running
time of FHEW bootstrapping is decreased from 690ms to 13ms single core, but
still preserving the security parameter. Comparing the two, Y. Lee et al. [51]
stated that GINX/TFHE bootstrapping uses much smaller evaluation keys,
but it restricts the scheme’s applicability because it is directly applicable only
to binary secret keys. On the other hand, AP/FHEW supports arbitrary se-
cret key distributions, which is critical for a number of important applications,
such as threshold and some multi-key HE schemes.

5.2 Somewhat homomorphic encryption

The CKKS scheme is called leveled homomorphic encryption, an “extended”
form of SWHE. In contrast to BFV and BGV encryption, where exact values
are necessary, CKKS allows both additions and multiplications on encrypted
complex numbers, but yields only approximate results [28]. According to A.
Kim [39], one should take advantage of CKKS encryption in applications such
as summing up encrypted real numbers, evaluating machine learning models
on encrypted data, or computing distances of encrypted locations. As a result,
CKKS scheme has been implemented in four HE libraries as communicated
in Table 3. To perform experiments with CKKS, in addition to the default
setting mentioned above, the input parameters are the same for all libraries,
where:

– Scaling factor ∆ = 240;
– For batching technique, n = N/2.

In this encryption, there is no condition of plaintexts. Based on its properties,
we chose inputs as real numbers. The method to draw packed messages keeps
unchanged as discussed in section 4.

PALISADE: The ring dimension of the HE scheme is chosen following
the security standards. Hence, to meet a requirement of 128-bit security level,
the minimum value of N is 8192. In Table 15, we presents the detail of input
parameters.

SEAL: Like other CKKS implementation, SEAL does not use the plaintext-
modulus parameter p. Moreover, instead of providing a ciphertext modulus Q,
users working with CKKS must provide a modulus chain of prime sizes (e.g.,
q = [60, 40, 40, 60]) [39]. The number of moduli is equal to the number of iter-
ations/multiplications. Additionally, the log2Q bit as shown in Table 7 is kept
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N log2Q Modulus chain KeyGen Enc Dec Add Mult

8192
160 60, 40, 60 2179.13 3206.887 50.54 128.72 178.348
200 60, 40, 40, 60 2507.607 3910.8775 109.5735 271.207 452.792

16384
200 60, 40, 40, 60 5034.227 8548.111 221.213 317.991 774.644
432 60, [39]*8, 60 11959.254 18847.575 721.076 1777.956 2077.872

32768
200 60,40,40,60 10215.043 18231.808 781.699 529.59975 1414.666
881 [55]*15,56 39749.74 66061.559 2589.904 2221.2535 4741.014

Table 16: SEAL’s comparison for different modulus composition

unchanged, but now it is corresponding to the maximal sum of these primes,
called CoeffModulus.

Before going to the evaluation part of different libraries’ performance, Ta-
ble 16 illustrates how SEAL behaves sensitively with ciphertext modulus and
its modulus composition for each value of N . Although addition and decryp-
tion time are not changed significantly, the calculation time is climbed up more
than 2 times in the three remaining operations.

HElib: One of the most advantages of working with HElib is its transfor-
mation of complex mathematical calculations in order to be easier and more
understandable for non-expert practitioners. For example, to add two cipher-
texts cipher a and cipher b, HElib supports to simply declare a new one
as a sum of the two: Ctxt cipher add ab = cipher a; cipher add ab +=

cipher b. There is no need to specify technical steps such as relinearization or
rescaling. Being different from other libraries, HElib allows users to calculate
encryption security level based on input parameters. Table 17 contains the
experimental results with the encryption security sec level being the closest
to 128-bit level, while still preserving HElib’s usage recommendation.

HEAAN: The last library was developed by its own authors. HEAAN
takes advantage of fully built-in algorithms, where it is able to deal with com-
plex numbers. An input message in HEAAN can consist of n complex numbers,
where n ≤ N/2.
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HE parameters
KeyGen Enc Dec Add Mult

N log2Q

8192 200 2507.607 3910.8775 109.5735 271.207 452.792
16384 432 11959.254 18847.575 721.076 1777.956 2077.872
32768 881 39749.74 66061.559 2589.904 2221.2535 4741.014

(a) SEAL

HE parameters
KeyGen Enc Dec Add Mult

N log2Q

8192 102 2305.699 2652.975 21650.503 81.117 3129.505
16384 141 6542.385 7093.977 51639.085 194.05 9584.286
32768 342 31630.72 29936.449 248985.192 3291.783 66603.916

(b) PALISADE

HE parameters
KeyGen Enc Dec Add Mult

N (log2Q,sec level)

8192 (119,157.866) 11008.069 2659.019 22065.082 272.865 19712.186
16384 (358,129.741) 91768.896 8252.838 107935.827 1502.701 104850.697
32768 (558,128.851) 164575.383 23730.201 364743.317 11576.171 215878.991

(c) HElib

HE parameters
KeyGen Enc Dec Add Mult

N log2Q

8192 119 2282102.44 634268.04 41491.42 39877.65 614878.85
16384 358 2294477.86 624440.22 93658.41 17826.4 994892.6
32768 558 2251482.12 657943.99 114587.91 45690.59 1332368.41

(d) HEAAN

Table 17: Horizontal comparison of CKKS’s execution time

By analyzing different results displayed in Figure 6, one can see that
overall performance of HEAAN and Helib are quite slower than SEAL and
PALISADE. In overall, SEAL owns the best performance, while HEAAN
is much more time-consuming compared to the others. Considering PAL-
ISADE’s presentation in both Table 17 and Figure 6, it is obvious that its
most time-consuming procedure is decryption and multiplication. One rea-
son needed to bring up is that, the relinearization step is always included
in multiplication function EvalMult. Moreover, for the decryption process
(cc->Decrypt(keys.secretKey, cMul, &result)), calculated time of rescal-
ing algorithm is also taken into account. In contrast, SEAL does not include
relinearization and re-scaling schemes in multiplication and decryption re-
spectively. Instead, it can be done by coding separately with two functions:
evaluator.relinearize inplace and evaluator.rescale to next inplace.

5.3 Partially homomorphic encryption

This part presents our own implementations of partially homomorphic cryp-
tosystems, including Paillier (additive), El-Gamal (multiplicative), and RSA
(multiplicative). The source code is available at github [53]. Table 18 and
Figure 7 illustrate horizontal and vertical comparison results respectively. Ac-
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Fig. 6: Vertical comparison of CKKS’s execution time

cording to PHE’s properties as introduced in section 1, one PHE scheme can
possess four following operations: Key generation, encryption, decryption, and
addition/multiplication. Unlike FHE and SWHE, here the inputs are identi-
fied as p (plaintext modulus) and log2N (the number of bits of N), where N
is one factor in public (encryption) keys. For each cryptosystem, we measure
the execution time when selecting pairs of (log2N, p) in the similar manner
of selecting (log2Q, p) in FHE. In addition, we execute the second situation
where p is in ZN and the bits of N are so large such that they can reach 128-bit
security level as stated in [54]. As same as the previous implementations, the
time unit is microseconds; each operation was executed in 1000 iterations and
the timings presented are its average. The implementations are set up follow-
ing their original papers: Paillier [4], El-Gamal[3], and RSA [15]. Table 18 and
Figure 7 demonstrate the experimental results.

5.3.1 Paillier encryption

In Paillier cryptosystem, although the input is N , the cipher space or ci-
phertext modulus is N2 (see section 3). In spite of that, generally the algo-
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rithm performs all four operations very well as shown in Table 18. In the
second situation, when both p and N increase, there is no much difference in
time execution of Add. However, for three others, they are both climbed up.
Particularly, when N is 4096 bits, the average time for one KeyGen is almost
4.3 seconds.

5.3.2 El-Gamal encryption

Table 18 indicates that all three operations of encryption, decryption, and
multiplication in El-Gamal method have a better performance compared to
Paillier. Apart from that, KeyGen appears to be a very time-consuming pro-
cedure. The cryptosystem needs more than 5 seconds to generate key pairs if
log2N = 881, not mention to say that it needs more than 15 minutes when
log2N = 3072 or more. Regarding to this problem, its author Taher ElGamal
explained that in any of the cryptographic systems based on discrete loga-
rithms like El-Gamal, N must be chosen such that N−1 has at least one large
prime factor [3]. If N − 1 has only small prime factors, computing discrete
logarithms would be easy [55]. Hence, our implementation is set up such that
this condition is satisfied. N is considered as a safe prime if (N − 1)/2 is also
a prime.

5.3.3 RSA encryption

It is clearly seen in Figure 7 that RSA has represented the best performance
among the three PHE schemes, even in case of very large ciphertext space. As
its authors stated in [15], the secret key d in RSA is very easy to choose, which
is relatively prime to ϕ(N), where N = pq. To be more specific, any prime
number greater than max(p, q) will do. This is one of the reasons why RSA
does not take much time to generate keys like El-Gamal encryption and why
it is commonly used in practice.

In Figure 7, the first graph on the top-left side displays the running time
of Addition (Add) in Paillier and Multiplication (Mult) for the remaining two
cryptosystems. Although the difference among them is demonstrated visibly,
it is still considered as marginally small for the time unit is in µs.

6 On the Security of HE

6.1 HE under security notions

All four general-purpose libraries presented in the paper were based on RLWE-
based systems. The most interesting advantage of LWE or RLWE is that it is
considered as one of the hardest problems to solve in practical time for even
post-quantum algorithms [45]. However, this does not mean that RLWE-based
HE schemes are totally secure. In fact, to prove security of encryption algo-
rithms, two security models commonly referred are IND-CPA and IND-CCA,
standing for Indistinguishability under chosen plaintext attack and Indistin-
guishability under chosen ciphertext attack respectively. For IND-CCA, there
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HE parameters
KeyGen Enc Dec Mult

p log2N

1032193 109 1484.324 1.062 5.399 2.237
1032193 218 1931.446 1.669 7.803 0.396
786433 438 3490.179 2.496 37.265 0.853
786433 881 8366.837 6.865 205.38825 2.178
ZN 3072 180255.34 61.599 6327.537 2.934
ZN 4096 433348.8 88.372 14327.857 9.792

(a) RSA encryption

HE parameters
KeyGen Enc Dec Mult

p log2N

1032193 109 31063.45 4.486 4.336 3.151
1032193 218 135618.53 16.748 15.476 9.74
786433 438 773368.775 66.794 32.56 18.388
786433 881 5354554.333 403.448 203.718 8.651
ZN 3072 >15 minutes
ZN 4096 >15 minutes

(b) El-Gamal encryption

HE parameters
KeyGen Enc Dec Add

p log2N

1032193 109 1072.014 265.509 6.738 4.255
1032193 218 1537.688 279.664 22.872 4.053
786433 438 3081.14 367.893 141.012 6.08
786433 881 7903.175 1013.957 950.735 10.868
ZN 3072 183774.01 20237.659 26364.306 232.136
ZN 4096 4297885.6 42868.889 55843.731 212.978

(c) Paillier encryption

Table 18: Horizontal comparison of PHE’s execution time

100 200 300 400 500 600 700 800 900

log
2
 N

0

2

4

6

8

10

12

14

16

18

20

T
im

e
 (

s
)

PHE Addition/Multiplication

Paillier: Add

ElGamal: Mult

RSA: Mult

100 200 300 400 500 600 700 800 900

log
2
 N

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
 (

s
)

PHE decryption

Paillier

ElGamal

RSA

100 200 300 400 500 600 700 800 900

log
2
 N

0

200

400

600

800

1000

1200

T
im

e
 (

s
)

PHE encryption

Paillier

ElGamal

RSA

100 200 300 400 500 600 700 800 900

log
2
 N

0

1

2

3

4

5

6

T
im

e
 (

s
)

106 PHE key generation

Paillier

ElGamal

RSA

Fig. 7: Vertical comparison of PHE’s execution time



A Survey on Implementations of Homomorphic Encryption Schemes 29

are IND-CCA1 and IND-CCA2. The former is Indistinguishability under non-
adaptive chosen ciphertext attack, while the latter is the adaptive one.

Fig. 8: IND - CPA security notion

IND-CPA is modeled by a game between an adversary (A) and a verifier
(V) as illustrated in Figure 8. In general, after generating pk, sk, and other
security parameters of an encryption system, V sends pk to A. From this point,
A is free to perform any computations using pk. A then chooses two different
plaintexts a, b and send them to V. V computes encryption of a or b uniformly
at random and sends A the result, called challenge. Finally, A needs to conclude
the received value is the encryption of a or b. The cryptosystem is said to be
secure in terms of IND-CPA if no adversary can output the correct value with
probability significantly better than 1

2 . Likewise, the definition of IND-CCA is
similar to IND-CPA, but here in both IND-CCA1 and IND-CCA2, the attacker
can ask for the decryption of any ciphertexts, except the challenge that the
verifier sent. In particular, IND-CCA1 and IND-CCA2 all allow the attacker
to make queries to the decryption oracle to decrypt any arbitrary ciphertexts
before the step 3 in Figure 8, when the verifier sends the challenge to the
adversary. However, after the step 3, the adversary may not make further
calls to the decryption device in IND-CCA1, while it is allowed in IND-CCA2.
The security under IND-CCA2 implies the security under IND-CCA1, and the
security under IND-CCA1 also implies the security under IND-CPA. In other
words, an encryption scheme which is IND-CCA2 secure is both IND-CCA1
and IND-CPA secure.

6.1.1 RLWE - based FHE and SWHE schemes

In 1999, Bellare et al. [56] proved that all homomorphic encryption schemes
are not secure against IND-CCA2 attacks. Subsequently, although IND-CCA2
is the strongest of the three security definitions, it is universally acknowledged
that IND-CCA1 is the strongest security notion for HE. Apart from these
three, Chenal and Tang [57] mentioned one variation of these security notions,
called key recovery attacks. Following the authors, the key recovery attack is
stronger than a typical IND-CCA1 and allows an adversary to recover the
private keys through a number of decryption oracle queries.

Table 19 lists several FHE and SWHE schemes presented in our work
and corresponding attacks, together with their related papers. It is obvious



30 Doan Thi Van Thao* et al.

Scheme IND-CPA IND-CCA1 Key recover attack

BFV

✓ Fauzi et al. [58]

Z. Peng [59]
BGV Chenal and Tang [57]
CKKS Li et al. [60]
FHEW Chenal and Tang [57]
TFHE Chenal and Tang [57]

Table 19: Security of several FHE and SWHE schemes

that three schemes are secure against IND-CPA attacks [58]; however, they
all suffers from IND-CCA1 and key recover attacks. According to Fauzi et
al., the key recovering attack as presented by Chenal and Tang also works on
a on several schemes based on (R)LWE, and FHEW/TFHE is one of them.
When the decryption is computed as a rounding function that maps elements
from Rq into the plaintext space, it is vulnerable to an attacker who asks for
decryptions of c = (ei, b), where ei ∈ Rn is the unit vector with 1 at position i
and 0 everywhere else. As a consequence, this leaks information on secret si.

6.1.2 PHE schemes

In contrast to FHE and SWHE, one of PHE schemes, namely RSA, is weak
even under IND-CPA norm. The reason is that Schoolbook RSA is determinis-
tic. Therefore, comparing to IND-CPA model in Figure 8, to guess the correct
output at step 4, the adversary can compute ae (mod N) and be (mod N)
then check which one is matched to the verifier’s challenge. Thus, RSA is not
IND-CPA secure, which also implies that it is not IND-CCA secure either.
Unlike RSA, Paillier encryption is IND-CPA secure under Decisional Compos-
ite Residuosity (DCR) Assumption [61]. To be more precise, Armknecht et al.
[62] proved that Paillier scheme is secure against IND-CCA1 attacks if and
only if DCRSCCR is hard, where SCCR is Subgroup Computational Compos-
ite Residuosity problem [4]. Similar to Paillier system, El-Gamal encryption
scheme is also known as being IND-CPA secure under the decisional Diffie-
Hellman assumption [63]. However, when discussing the security of El-Gamal
under IND-CCA1, Wu and Stinson [64] supposed that it is conjectured, but
there has been no formal proof.

Integer factorization problem (IFP). Apart from attacks on security
notions, IFP is also worth discussing in our context when we have the security
of both RSA and Paillier cryptosystems depending on factoring problem. Given
a composite number N , The IFP is defined as finding two integers p and q
such that pq = N . Once p and q are discovered, it can be shown that RSA and
Paillier encryption are insecure (see section 3). Two of widely used algorithms
to factor an integer, as well as to be the basis of other factorization methods,
are Pollard’s rho and Pollard’s p − 1, invented by John Pollard in 1974 -
1975 [65]. Our implementation and experimental results of each method are
presented in detail at [66].
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With complexity of time and space O(
√
N) by the birthday paradox, Pol-

lard’s rho relies on several important mathematical concepts, one of them is
cycle-finding algorithm.

Algorithm 2: Pollard’s rho algorithm using Floyd’s cycle detection
Input: a composite number N , a bound B for the number of iterations
Output: a nontrivial factor of N or failure

1 x← 2 ; // Set x = x0 = 2 to be the initial value

2 y ← 2 ; // Set y = x0 = 2
3 d← 1 ;
4 i← 0 ;
5 while d = 1 OR d = N do
6 if i ≥ B then
7 return failure; // Maximum number of iterations reached

8 end
9 x← f(x) ; // x = xi

10 y ← f(f(y)) ; // y = x2i

11 d← gcd(|x− y|, N) ;
12 i← i+ 1 ;

13 end
14 if d = 1 OR d = N then
15 return failure ;
16 end
17 else
18 return d ;
19 end

To reduce the memory cost, Pollard applied the idea of Floyd’s cycle de-
tection algorithm (see algorithm 2): two pointers x and y are used; pointer x
holds the values of xi’s and pointer y holds the values of x2i’s. Each iteration
updates the values of x and y by computing f(x) and f(f(y)), then checks if
gcd(xi − x2i, N) = gcd(x− y,N) is a nontrivial factor of N . This reduces the
memory cost to O(1). Assuming f is a random function, then the expected
number of evaluations to the function f performed by Pollard’s rho algorithm
is O(√p) = O( 4

√
N), where p is the smallest prime factor of N . We present

experimental results of Pollard’s rho algorithm on our classical laptop with
the following three numbers:

n1 = 1125939825397831601

(a 60-bit RSA modulus)

n2 = 925276410789441750962080530947

(a 100-bit RSA modulus)

n3 = 11579208923731619542357098500868790785326998

4665640564039457584007913129639937

(Fermat number F8 = 22
8

+ 1)
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Input number Average running time (s) Standard deviation

n1 0.0054 0.0016
n2 5.9370 3.3053
n3 67.0664 43.6244

Table 20: Average running time with different initial values

Input number Running time (s) Digits in factor

n4 970 20
n5 819 20
n6 27.1042 20

Table 21: Running time to find medium-size factor

For each run we use the same function f(x) = x2 + 1 mod N and same
maximum number of iterations B = 108. The results are in Table 20.

Table 21 shows the running time and size of factor when we run the algo-
rithm with B = 1010 to find a medium-size factor (around 20 digits) of some
worst-case numbers:

n4 = 237130450584081431781941097598542348001

= 15351399207396244631× 15446829789289363271

(a 128-bit RSA modulus)

n5 = 304075290252258958535257891241265214597

= 18229633569899862109× 16680274405204585033

(a 128-bit RSA modulus)

n6 = 34!− 1

= 295232799039604140847618609643519999999

= 10398560889846739639× 28391697867333973241

It can be seen that Pollard’s rho takes a lot of time to find a factor of
medium size. The second method to factor N is Pollard’s p − 1 algorithm,
which is based on Fermat’s Little Theorem [65]. Unlike the previous method,
the possibility of finding a factor p of given size is not determined solely by its
size, but rather by the smoothness of p − 1 (see algorithm 3). There are two
cases of failure: d = 1 or d = N . In the first case, aM − 1 is co-prime with N ,
which implies that the search bound B is too small, and thus one should rerun
the algorithm with a larger B. In the second case, d = N implies that N has a
B-smooth prime factor p, but the randomized base a has order less than p− 1
modulo p (hence omitted for gcd computation in the loop from line 8 to 11).
In this case we choose another base a and restart the whole process. Here, to
improve the algorithm’s performance, we implement the two-stage variant of
Pollard’s p− 1 (the detail is presented in [66]). The second-stage is performed
by choosing a second bound B2 > B, normally B2 = 100B. While Pollard’s
rho takes much time to find a factor of medium size, our implementation of the
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Algorithm 3: Pollard’s p− 1 algorithm
Input: a composite number N , a bound B
Output: a nontrivial factor of N or failure

1 Choose a positive integer base a randomly between 1 and N ;
2 Compute d = gcd(a,N);
3 if d ̸= 1 then
4 return d;
5 end
6 for prime numbers pi ≤ B do
7 q ← 1;
8 while q ≤ B do
9 a← api mod N ;

10 q ← q × pi;

11 end
12 c← a− 1;
13 d← gcd(c,N);
14 if d ̸= 1 AND d ̸= N then
15 return d;
16 end
17 if d = N then
18 Go to line 1 and choose a new value for a;
19 end

20 end
21 if d = 1 then
22 return failure;
23 end

Digits of factor n B1 B2 Time(s)

32 2977 − 1 107 108 14.9582
34 575th Fibonacci number 107 108 14.3806
66 960119 − 1 108 1010 1076

Table 22: Our running time of some record factors by Pollard’s p− 1 method

two-stage Pollard’s p− 1 is able to find larger factors of some record numbers
listed in [67]. The running time for each is displayed in Table 22, where :

n7 = 2977 − 1

n8 = 575th Fibonacci number (120 digits)

n9 = 960119 − 1

We found the factor of each number as below:

p1 = 49858990580788843054012690078841

(32-digit factor of n7)

p2 = 7146831801094929757704917464134401

(34-digit factor of n8)

p3 = 6720387718367512278456965653424503150621415515

(66-digit factor of n9)
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Authors Year Gates Total qubits

Shor [68] 1994 O(n3 logn) O(n)
Beckman et al. [74] 1996 O(n3) 5n+1
Veldral et al. [75] 1996 O(n3) 4n+3

Beauregard [76] 2003 O(n3 log n
ϵ
log 1

ϵ
) 2n+3

Takahashi et al. [77] 2006 O(n3 log n
ϵ
log 1

ϵ
) 2n+2

Haner et al. [78] 2016 O(n3 logn) 2n+2
Gidney [79] 2017 O(n3 logn) 2n+1

Table 23: Different implementations of Shor’s algorithms on IFP [80]

It is obvious that Pollard’s p−1 is capable to find large factors of a composit
N ; however, in practice, when the system applies N from 2048 bits, it is not
sufficient to find its large-size factors using Pollard’s rho and Pollard’s p − 1
methods on a classical machine. Therefore, the invention of Shor’s algorithm by
Peter Shor, a quantum computer algorithm to solve IFP, marks an important
milestone for the security of public-key cryptography systems.

6.2 Shor’s quantum algorithm

Being developed in 1994, Shor’s algorithm [68] is one of the first quantum algo-
rithms that demonstrated the advantage of quantum computers over classical
ones. In general, the method allows to find prime decomposition of big inte-
gers in polynomial time, namely O((logN)3) time and O(logN) space, given
a sufficiently large quantum computer.

The basic idea of Shor’s algorithm relies on period-finding problem. Given
integers a and N , r is called the period of a modulo N if r is the smallest
positive integer such that ar − 1 is a multiple of N , or ar − 1 is divisible
by N . For example, given a = 7 and N = 15, its period is found as r =
4, we have 74 = 1 (mod 15). The name “period” comes from the fact that
ai+r (mod N) = aiar (mod N) = ai (mod N) (because ar = 1 (mod N)) for
any integer i. Based on the period’s property, we have N |(ar− 1). If r is even,
then N |[(ar/2−1)(ar/2+1)]. By computing gcd((ar/2−1), N)) and gcd((ar/2+
1), N), we can find the factors of N . In the whole process, a quantum algorithm
is applied to compute the period r of a modulo N by using quantum Fourier
transforms [69], where a is a randomly chosen element.

So far, the largest numbers factored by Shor’s algorithm are 51 and 85 by
Geller and Zhou in 2013 using eight qubits [70]. Before that, Vandersypen et
al. [71] in 2001 and Mart́ın-López et al. [72] in 2012 also implemented Shor’s
algorithm to factor 15 and 21 respectively. The most recent paper was of
Gidney et al. [73], published in 2021, which presented how to factor 2048-bit
RSA integers using 20 million noisy qubits in 8 hours.

With the efficiency of quantum computers, the security provided by cryp-
tosystems, which are based on IFP and discrete logarithmic problems (DLP),
seems to be short-lived. Speaking of IFP, RSA and Paillier encryption are
vulnerable against Shor’s algorithm. In [80], Suo et al. indicate some imple-
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Authors Year Time complexity Space complexity

Shor [68] 1994 O(n3) O(n)
Proos et al. [81] 2003 O(n2) -
Ekera et al. [82] 2019 – O(n2)

Table 24: Different implementations of Shor’s algorithms on DLP [80]

mentations of Shor’s algorithm over different quantum prototype computers,
together with their number of qubits and quantum gate complexities, as shown
on Table 23 (for IFP) and Table 24 (for DLP).

Fig. 9: A circuit of DLP [83]

Similarly, El-Gamal with its hardness of computing discrete logarithms is
also a victim of quantum algorithms [68]. In 2010, Wang [83] defined a circuit
for quantum computers to solve DLP as shown on Figure 9, where Fp−1 is the
Fourier transform over Zp−1, and Uf being a quantum circuit.

Some argue that although quantum encryption breaking is a potential pos-
sibility, it is not a peril as there are still solutions for it. One is to increase the
bit lengths, so that attackers need a larger and larger quantum computer to be
able to successfully break the system. The second is to develop new public key
cryptosystems that cannot be solved by Shor’s algorithm. This opens a new era
of Post-quantum cryptography (PQC), or quantum-resistant cryptography.

7 Conclusion and Future work

In this work, we made a performance comparison of several notable HE schemes,
covering all three homomorphic encryption categories: Partially HE, Some-
what HE, and Fully HE. The results clearly suggest that partially homo-
morphic cryptosystems are significantly faster than the others at addition
and multiplication operations. RSA possesses the fastest key-generation pro-
cedure, whereas El-Gamal is quite slow when ciphertext modulus increases.
On the other hand, the presentation between evaluated FHE schemes and
CKKS is inconsistent, especially for multiplication timings. For both BFV
and BGV, SEAL and PALISADE demonstrate a slower multiplication com-
pared to CKKS. In contrast, HElib makes that of CKKS be a time-consuming
process in comparison to the other two. Besides, between BFV and BGV,
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performance analysis has shown that the former is performing better than
the latter in terms of execution time for key generation in both SEAL and
PALISADE, mostly when the ciphertext dimension is climbed up.

Nowadays, in the vibrant and active world, when data privacy plays a more
significant role, HE is a new promising domain that allows external third par-
ties to perform computations on the encrypted data without decrypting it in
advance. However, one big challenge is to build a HE scheme that provides si-
multaneously both the required security and the performance efficiency. In this
paper, we contributed an in-depth study of the different uses and implementa-
tions of HE schemes in most-used HE libraries, including SEAL, PALISADE,
HElib, and HEAAN. First, we highlighted the principles and mathematical
models of adopted schemes, followed by a brief description of linked libraries.
By comparing execution time of five main homomorphic operations (KeyGen,
Enc, Dec, Add, Mult), we present a computational overview of performance
evaluation of different HE cryptosystems in different libraries. Through ex-
perimental results, it is easier for non-experienced practitioners to set input
parameters for encryption schemes, as well as to choose an appropriate library
for building their own HE-based projects. We also discussed an overview of
the security of six aforementioned HE schemes under notable security notions
such as IND-CPA, IND-CCA1 and IND-CCA2. Two classical attacks of Prof.
John Pollard on Integer factorization problem are presented before introducing
Shor’s quantum algorithm for the same problem.

It is also clear that the efficiency of the PHE schemes becomes crucial in the
overall performance. Due to the fact that PHE schemes are not implemented
in mentioned libraries, we used our own implementations of Paillier, El-Gamal,
and RSA as partially homomorphic cryptosystems in the emulation. For that
reason, we plan to continue our work on optimizing PHE schemes in their
implementation and performance. Besides, working with different HE libraries,
we have seen that a part from doing encryption between a typical two parties,
some libraries also support threshold encryption. Using threshold decryption
in a public key cryptosystem allows n parties to communicate in which a
minimal number of parties - a “threshold” number - need to cooperate in
order to decrypt a ciphertext. This prevents the situation where an individual
keyholder is able to decrypt all sensitive information on his own. This aspect
will certainly be addressed by future work.
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