Thi Doan

Van Thao

Mohamed-Lamine Messai
email: mohamed-lamine.messai@univ-lyon2.fr

Gérald Gavin
email: gerald.gavin@univ-lyon1.fr

Jérôme Darmont
email: jerome.darmont@univ-lyon2.fr

Thi Van

Thao Doan

A Survey on Implementations of Homomorphic Encryption Schemes

Keywords: Cryptography, Homomorphic encryption, Performance evaluation, Information Security, Privacy

With the increased need for data confidentiality in various applications of our daily life, homomorphic encryption (HE) has emerged as a promising cryptographic topic. HE enables to perform computations directly on encrypted data (ciphertexts) without decryption in advance. Since the results of calculations remain encrypted and can only be decrypted by the data owner, confidentiality is guaranteed and any third party can operate on ciphertexts without access to decrypted data (plaintexts). Applying a homomorphic cryptosystem in a real-world application depends on its resource efficiency. Several works compared different HE schemes and gave the stakes of this research field. However, the existing works either do not deal with recently proposed HE schemes (such as CKKS) or focus only on one type of HE. In this paper, we conduct an extensive comparison and evaluation of homomorphic cryptosystems' performance based on their experimental results. The study covers all three families of HE, including several notable schemes such as BFV, BGV, FHEW, TFHE, CKKS, RSA, El-Gamal, and Paillier, as well as their implementation specification in widely used HE libraries, namely Microsoft SEAL, PALISADE, and HElib. In addition, we also discuss the resilience of HE schemes to differ-

Introduction

For a long time, information security has always been a controversial topic due to its importance in technology particularly and in society generally. When implementing a technological tool or service, the first and foremost concern of researchers is about the applicable security that it can provide.

By the unavoidable data growth in nearly all organizations, the demand for data storage and computation has been increasing significantly over the past few decades. A traditional infrastructure for data management, such as in-house or local services, can only offer a limited storage and access controls. In the Internet-based world, this method is no longer applicable since a huge amount of sensitive data is produced every second from business transactions. One potential solution for this problem is to seek a third-party expert, i.e., cloud computing providers, outside of the company to place its trust. However, to put this paradigm into practice, we need to deal with one of its biggest challenges: data confidentiality.

In this situation, cryptography has come to the forefront to provide both data confidentiality and data operations for this outsourcing problem. As the foundation of modern security systems, cryptography helps to ease the concern of data leakage to an untrusted third party or server side. Data must now be encrypted by the user before being sent to the server. Later, after retrieving the encrypted result from the server, only the user can decrypt it using his secret key and get its value. Although this technique would preserve the data privacy, the encrypted data is not meaningful for the server, so it is not able to maintain its computation efficiency. That was why for that moment, a new cryptographic topic, called Homomorphic Encryption, got a major attention when it allows to perform certain computable functions on the encrypted data while keeping the characteristics of the function and format of the ciphertexts. In [START_REF] Acar | A survey on homomorphic encryption schemes: Theory and implementation[END_REF], A. Acar et al. present this process on Figure 1, where C is a client and S is a server. Following this survey, in terms of the number of allowed operations on encrypted data, HE can be classified into three types: [START_REF] Acar | A survey on homomorphic encryption schemes: Theory and implementation[END_REF] Partially Homomorphic Encryption (PHE) allows only one type of operation to be performed an unlimited number of times. (2) Somewhat Homomorphic Encryption (SWHE) allows some types of operations with a limited number of times. (3) Fully Homomorphic Encryption (FHE) allows an unlimited number of operations for an unlimited number of times. Figure 2 presents the most known HE-based systems and their timeline, while their application scenarios are demonstrated in Table 1.

So far, there are many HE schemes that have been introduced. Within the scope of the paper, we concentrate on the ones which are the most widely used Fig. 1: A simple client-server HE scenario [START_REF] Acar | A survey on homomorphic encryption schemes: Theory and implementation[END_REF] Fig. 2: Timeline of several important HE schemes in cryptography applications and serve as the basis for other schemes. Being proposed in 1978, RSA is one of the first public-key encryption methods for securing communication on the Internet, inspired by Diffie-Hellman's research ([START_REF] Diffie | New directions in cryptography[END_REF], 1976). Little while later, El-Gamal ([START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF], 1985) and Paillier cryptosystems ([START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF], 1999) were introduced respectively, marking an important milestone for PHE. The calculation on ciphertexts remained limited until C. Gentry presented the first FHE scheme ([START_REF] Gentry | A fully homomorphic encryption scheme[END_REF], 2009), using bootstrapping technique. Technically, the bootstrapping method is an intermediate procedure to refresh a ciphertext with large error to be a new one with smaller error, so that it allows more computations. This is also how the SWHE scheme is converted into a fully homomorphic one. Three years later, based on the Gentry's work, two main FHE schemes to perform exact computations over finite fields and integers were born, Brakerski-Gentry-Vaikuntanathan (BGV) [START_REF] Brakerski | Leveled) fully homomorphic encryption without bootstrapping[END_REF] and Brakerski/ Fan-Vercauteren (BFV) [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF]. The latest newcomer to join SWHE is CKKS ([START_REF] Hee | Homomorphic encryption for arithmetic of approximate numbers[END_REF], 2016), which allows to perform computations over approximated numbers. CKKS is an essential element of the HE family, where it complements previous schemes by natively dealing with real and complex numbers.

Although FHE schemes are efficient and secure, they are not very practical in real-life contexts since Gentry's bootstrapping procedure requires heavy computations to refresh noisy ciphertexts and keep computing on encrypted data. In 2014, Ducas and Micciancio [START_REF] Ducas | FHEW: bootstrapping homomorphic encryption in less than a second[END_REF] introduced a new method to homomorphically compute simple bit operations, and refresh (bootstrap) the resulting output, called "Fastest Homomorphic Encryption in the West" (FHEW). According to the authors, FHEW can improve the time required to bootstrap Scheme Application RSA, 1978 [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF] Banking and credit card transaction (Parmar et al., [START_REF] Payal | Survey of various homomorphic encryption algorithms and schemes[END_REF]) ElGamal, 1985 [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF] In Hybrid Systems (Parmar et al., [START_REF] Payal | Survey of various homomorphic encryption algorithms and schemes[END_REF]) Paillier, 1999 [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF] E-Voting (Parmar et al., [START_REF] Payal | Survey of various homomorphic encryption algorithms and schemes[END_REF]) BGN, 2005 [START_REF] Boneh | Evaluating 2-DNF formulas on ciphertexts[END_REF] A Novel IoT Data Protection Scheme Based on BGN Cryptosystem (S. Halder et al., [START_REF] Halder | Crypsh: A novel iot data protection scheme based on bgn cryptosystem[END_REF]) BGV, 2011 [START_REF] Brakerski | Leveled) fully homomorphic encryption without bootstrapping[END_REF] For the Security of Integer Polynomials (Parmar et al., [START_REF] Payal | Survey of various homomorphic encryption algorithms and schemes[END_REF])

BFV, 2012 [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF] A fast oblivious linear evaluation (OLE) protocol (Leo de Castro [START_REF] Ramón | Practical homomorphic encryption implementations & applications[END_REF])

CKKS, 2016 [START_REF] Hee | Homomorphic encryption for arithmetic of approximate numbers[END_REF] Homomorphic Machine Learning Big Data Pipeline for the Financial Services Sector (Masters et al., [START_REF] Masters | Towards a homomorphic machine learning big data pipeline for the financial services sector[END_REF]) FHEW, 2014 [START_REF] Ducas | FHEW: bootstrapping homomorphic encryption in less than a second[END_REF] TFHE: Fast Fully Homomorphic Encryption over the Torus (Chillotti et al., [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF]) TFHE, 2020 [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF] An homomorphic LWE based E-voting Scheme (Chillotti et al., [START_REF] Chillotti | A homomorphic LWE based E-voting scheme[END_REF])

Table 1: HE schemes and their applications the ciphertext, which is homomorphic evaluation of a NAND gate "in less than a second". In 2020, an improvement of FHEW was initially proposed by I. Chillotti et al. [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF], which described a fast fully homomorphic encryption scheme over the torus (TFHE) and revisited FHE based on GSW ([START_REF] Gentry | Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[END_REF], 2013). Following Ducas et al. [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF], the most important difference between TFHE and FHEW is that TFHE uses (an optimized version of) the FHEW accumulators to implement a ring variant of the bootstrapping procedure described in [START_REF] Gama | Structural lattice reduction: generalized worstcase to average-case reductions and homomorphic cryptosystems[END_REF], rather than [START_REF] Alperin | Faster bootstrapping with polynomial error[END_REF]. Thanks this difference and other optimizations, the bootstrapping runtime is reduced to less than 0.1 second. All of these improvements marked a milestone in the FHE implementation, as well as contributed greatly to bridging the gap between FHE security and its efficiency in practice.

The rest of the paper is structured as follows: section 2 reviews some of the related works in the similar field, regarding the performance evaluation of different HE schemes. The most important properties of HE schemes and their libraries are discussed in section 3. Then, section 4 and section 5 respectively elaborate the implementation method and results of evaluation analysis. In section 6, a discussion on the security of HE under notable security notions and Shor's quantum algorithm is given. Finally, section 7 presents conclusions and indicates directions of future work.

Related work

As previously mentioned, one of the related works is a survey conducted by A. Acar et al. in 2018 [START_REF] Acar | A survey on homomorphic encryption schemes: Theory and implementation[END_REF] that covers important PHE, SWHE, and all the major FHE schemes. Similarly, the survey of P. [START_REF] Martins | A survey on fully homomorphic encryption: An engineering perspective[END_REF] [START_REF] Martins | A survey on fully homomorphic encryption: An engineering perspective[END_REF] presents fundamental concepts of FHE schemes and their performance, mainly from an engineering perspective, refraining from introducing complex mathematical definitions. These works, however, do not mention CKKS encryption [START_REF] Hee | Homomorphic encryption for arithmetic of approximate numbers[END_REF], an usefully practical HE proposed recently in 2016 for computing real and complex input numbers. Lately, a study of Kim et al. [START_REF] Kim | Revisiting homomorphic encryption schemes for finite fields[END_REF], published in 2021, implements their improved variants of BFV and BGV in PALISADE and evaluates their experimental performance for several benchmark computations. From a same point of view, Lepoint and Naehrig in [START_REF] Lepoint | A comparison of the homomorphic encryption schemes FV and YASHE[END_REF] offer theoretical and practical comparisons of different HE schemes, as well as explain how to choose parameters to ensure algorithms' correctness and security. Even so, the papers delve deeply into the mathematics, making them more suitable for expert readers and mathematicians. In contrast, the survey conducted by Alaya et al. [START_REF] Alaya | Homomorphic encryption systems statement: Trends and challenges[END_REF] makes a easy-to-understand comparison of advantages and limitations of different HE algorithms. Unfortunately, it only presents the theoretical information of the schemes, while implementation aspects have not been brought up. Most recently, Sidorov et al. [START_REF] Sidorov | Comprehensive Performance Analysis of Homomorphic Cryptosystems for Practical Data Processing[END_REF] published a paper on performance analysis of HE in several libraries, but the paper does not specify which homomorphic schemes were used in each library, either the input parameters. In opposition to [START_REF] Sidorov | Comprehensive Performance Analysis of Homomorphic Cryptosystems for Practical Data Processing[END_REF], (Migliore et al. [START_REF] Vincent Migliore | Determination and exploration of practical parameters for the latest Somewhat Homomorphic Encryption (SHE) Schemes[END_REF]) proposes a study of the current best solutions for setting up parameters of HE schemes, but only approaches of SWHE schemes.

Considering the related works in the field and their scopes summarized in Table 2, it is obvious that among existing HE surveys, they either do not study newborn schemes (such as CKKS, FHEW, TFHE) or do not cover all three HE families. As a result, there is still a need in this field for a comprehensively up-to-date survey that provides key concepts of the main encryption schemes in all three HE categories, together with their experimental performance comparisons. The survey needs to be practical and show newly interested users how to build their own HE-based projects in popular HE libraries.

Our contribution: Our work aims to provide readers with fundamental principles of HE schemes without delving too deep into the mathematics. Furthermore, the paper conducts a comprehensively theoretical and practical comparison of important HE schemes, covering all three HE categories: FHE, SWHE, and PHE. For different HE schemes in each family, we analyse their input parameters, together with their constraints, and then compare them together. This hands-on experience helps unprofessional practitioners distinguish libraries' properties and makes them easy to apply in building their own HEbased projects. In addition, we provide experimental results on performance evaluation of each HE scheme in most-used libraries such as SEAL [START_REF] Laine | Simple encrypted arithmetic library 2[END_REF], PAL-ISADE [START_REF] Polyakov | Palisade lattice cryptography library user manual[END_REF], HELib [START_REF] Halevi | Algorithms in helib[END_REF], and HEAAN [START_REF] Hee | Implementation of HEAAN[END_REF]. Although PHE schemes are now not available in mentioned open-source libraries, our own implementations of Paillier, El-Gamal, and RSA are used as partially homomorphic cryptosystems in the experimental study. For each execution case, we also come up with assessments and results' explanations. Furthermore, in the last part, we deliver a concrete discussion on the security of aforementioned schemes against IND-CPA, IND-CCA, as well as integer factorization attacks on classical and quantum computers. In 2018, the authors implemented several algorithmic improvements, including Faster Homomorphic Linear Transformations [START_REF] Halevi | Faster homomorphic linear transformations in HElib[END_REF], that made HElib 30-75 times faster than those previously built for typical parameters. PALISADE [START_REF] Polyakov | Palisade lattice cryptography library user manual[END_REF] is an open-source C++ project that provides efficient implementations of lattice cryptography building blocks. The library supports varied HE schemes, such as: BGV, BFV, CKKS, FHEW, and TFHE. In addition, it also supports multi-party extensions of certain schemes and related cryptography primitives, namely digital signature schemes, proxy reencryption, and program obfuscation. PALISADE can be found on github [START_REF][END_REF]. To have an extensive comparison for CKKS encryption, apart from these three mentioned libraries, we also measure its running time in HEAAN library [START_REF] Hee | Implementation of HEAAN[END_REF], developed in 2016 by its own authors. HEAAN (Homomorphic Encryption for Arithmetic of Approximate Numbers) is an open-source cross platform software library which implements the approximate HE scheme proposed by Cheon, Kim, Kim and Song (CKKS). HEAAN executes only CKKS schemes with its complete properties. Following its owners, the library allows additions and multiplications to be performed by fixed point arithmetics and approximate operations between rational numbers. Table 3 illustrates the distribution of several encryption schemes in each library.

To study the advantages and drawbacks of aforementioned libraries, we define a set of criteria. The first criterion is whether the library is open source. It is important for the transparency reason and could be a drawback for not open-sourced libraries. Ease of use criterion of the library means that it is easy to integrate with existing systems and have clear documentation and examples. The library should also have a well-designed API and be easy to use for developers. The compatibility criterion explains the dependence of the library for a specific platform and/or hardware. For example, if the system is based on a particular operating system or hardware platform, the library should be compatible with that platform. The reliability criterion indicates that the library implementation is stable with minimal bugs. Based on these criteria, Table 4 presents the comparison study while the more + sign means that the library meets more of the criterion.

Library/Criteria

Open source Ease of use All four libraries are open source and freely available under permissive licenses. This means that they can be used, modified, and distributed by developers without restriction. For ease of use purpose, the four libraries offer abstractions of the details of the HE schemes. HElib is known for its ease of use because it is currently well documented. HElib and PALISADE are primarily designed for x86-based CPUs compatibility, while SEAL and HEAAN can be used on a wider range of platforms, including ARM-based CPUs. For reliability, the four discussed libraries are reliable and well-tested. However, HElib and SEAL are more mature and have been used in production systems for several years, while PALISADE and HEAAN are newer and still be undergoing active development. For the compatibility feature, Microsoft SEAL has been built on various platforms (Windows, Linux, macOS/iOS, Android, and FreeBSD), while HEAAN is checked working well on Ubuntu. In addition, PALISADE and HElib are adaptable with Linux, MacOS, and Windows. The previous versions of Helib have also included Fedora, CentOS, and macOS Mojave. Although all four libraries are compatible with various operating systems, they differ in their performance. The performance of implemented HE schemes in these libraries will be discussed in Section 5.

Homomorphic encryption schemes

In this part, we explain basic properties of HE, followed by a brief description of some notable PHE, SWHE, and FHE schemes. An HE scheme is based on five main homomorphic operations: Key generation (KeyGen), Encryption (Enc), Decryption (Dec), Homomorphic addition (Add), and Homomorphic multiplication (Mult).

The performance evaluation of mentioned schemes will be detailed in section 5. But first of all, we define a homomorphic encryption. As per [START_REF] Acar | A survey on homomorphic encryption schemes: Theory and implementation[END_REF], an encryption scheme is called homomorphic over an operation "⋆" (e.g., Add, Mult) if it supports the following equation:

E(m 1) ⋆ E(m 2) = E(m 1 ⋆ m 2), ∀m 1 , m 2 ∈ M,
where E is the encryption algorithm and M is the set of all possible messages.

RSA

This HE was first introduced by Rivest et al. [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF]. The security of the cryptosystem relies on the practical hardness of factoring the product of two large prime numbers [START_REF] Peter | A survey of modern integer factorization algorithms[END_REF], called the factoring problem. Given a security parameter λ, RSA is defined as follows:

-KeyGen(λ): First, two large prime numbers (p and q) are randomly chosen, then N = pq and ϕ(N) = (p -1)(q -1) are computed. The secret large integer d is picked such that gcd(d, ϕ(N)) = 1. The last public component e is calculated by computing the multiplicative inverse of d (i.e., ed ≡ 1 mod ϕ(N)). Finally, set the public key pk = (e, N), and the secret key sk = (d, p, q). -Enc(pk, m ∈ Z N): The message m is an integer between 0 and N -1. The encryption of m is c, such that: c = E(m) = m e (mod N). -Dec(sk, c): The message m can be recovered from the ciphertext c by:

m = c d (mod N). -Mult(c 1 , c 2): c 1 c 2 = E(m 1)E(m 2) = [m e 1 (mod N)][m e 2 (mod N)] = (m 1 m 2) e (mod N) = E(m 1 m 2).

El-Gamal

The encryption system is a widely-used HE in public-key cryptography, proposed by T. ElGamal in 1985 [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF]. The advent of El-Gamal algorithm is based on the Diffie-Hellman key exchange, while its security strength is relied on the hardness of solving discrete logarithms.

-KeyGen(λ): Firstly a cyclic group G of order N and its generator g ∈ Z * N are generated. After randomly drawing an integer x from {1, . . . , N -1}, h = g x is computed. The public key pk consists of (G, N, g, h), while sk = x is kept secret.

-Enc(pk, m ∈ Z N): A message m is encrypted by choosing an integer y randomly from {1, . . . , N -1}, then computing s = h y . the output of the encryption is a ciphertext c = (c 1 , c 2), where c 1 = g y and c 2 = ms. -Dec(sk, c): To decrypt the ciphertext, firstly

s ′ = c x 1 needs to be calculated. Next, m is recovered by m = c 2 s ′-1 . -Mult(c 1 , c 2): c 1 c 2 = E(m 1)E(m 2) = (g x1 , m 1 h x1)•(g x2 , m 2 h x2) = (g x1+x2 , m 1 m 2 h x1+x2) = E(m 1 m 2).

Paillier

The encryption of Paillier (1999) [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF] is an additively homomorphic cryptosystem, which is based on the composite residuosity problem and gathers many good properties.

-KeyGen(λ): Two primes numbers p, q of k bits are randomly generated such that N = pq and ρ = N -1 (mod ϕ(N)), where ϕ(N) = (p -1)(q -1). One can publish pk = N and sk = ρ. -Enc(pk, m ∈ Z N): To encrypt a message m, first an integer r from {1, . . . , N -1} is chosen randomly. The output is the ciphertext c = (1+mN)r N (mod

N 2). -Dec(sk, c): To recover the message m, r = c ρ (mod N) is computed. Then m = (cr -N (mod N 2))-1 N . -Add(c 1 , c 2): c 1 c 2 = E(m 1)E(m 2) = (1 + m 1 N)r N 1 (1 + m 2 N)r N 2 (mod N 2) = [1 + (m 1 + m 2)N + m 1 m 2 N 2](r 1 r 2) N (mod N 2) = [1 + (m 1 + m 2)N]r N (mod N 2) = E(m 1 + m 2).

BFV

In 2012, J. Fan and F. Vercauteren [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF] modified the scheme proposed by Brakerski [START_REF] Brakerski | Fully homomorphic encryption without modulus switching from classical GapSVP[END_REF] from the learning-with-errors (LWE) setting to the Ring-LWE setting. By using a simple modulus switching trick, BFV (so-called FV) provides a more efficient approach and also simplifies the analysis of the bootstrapping step. The security of BFV-type cryptosystems is based on the LWE over rings (or RLWE) assumption [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. The RLWE(λ, q, χ) assumption states that it is very hard to distinguish two distributions (a, b = a • s + e) and (a, u), where a, s, and u are randomly selected from R q and e is selected from an error distribution χ, referencing security parameter λ. This assumption has been proved hard over ideal lattices [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF].

Let R = Z[x]/f (x) be a ring of polynomials in which the operations of BFV will be performed, where f (x) = x N + 1 is a cyclotomic polynomial with N being a power of 2. The ring is used to define the RLWE problem with coefficients in Z q , denoted by R q = Z q [x]/f (x). Additionally, the message space is defined as R t for an integer t > 1.

-KeyGen(λ): For a B-bounded distribution χ over the ring R, a vector of secret key sk = s is sampled s ← χ. The public key is defined by: pk = ([-(a • s + e)] q , a), where e ← χ and a ← R q . -Enc(pk, m ∈ R t): Given a plain message m, let p 0 = pk[0], p 1 = pk [START_REF] Acar | A survey on homomorphic encryption schemes: Theory and implementation[END_REF], and draw u, e 1 , e 2 ← χ, the ciphertext is:

c = ([p 0 • u + e 1 + ∆ • m] q , [p 1 • u + e 2]), where ∆ = ⌊q/t⌋. -Dec(sk, c): Let c = (c 0 , c 1) be an encrypted message. The decryption re- turns m such as m = t q [c 0 + c 1 • s] q t . -Add(c 1 , c 2): Let c 1 , c 2 be two encrypted messages such that c 1 = (c 10 , c 11) and c 2 = (c 20 , c 21). The addition of two digits is c = ([c 10 + c 20] q , [c 11 + c 21] q).
-Mult(c 1 , c 2): By multplying two ciphertexts c 1 (s) and c 2 (s), the result is

c 1 (s) • c 2 (s) = c ′ 0 + c ′ 1 • s + c ′ 2 • s 2 .
One encountered problem is that resulting ciphertext has size 3 (degree 2) and must be reduced to a size 2 (degree 1) [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF]. This process is called relinearization. To start, a relinearization key rlk is generated by choosing an integer p and sampling a new a ← R pq and e ← χ ′ (χ

′ ̸ = χ) satisfying rlk = ([-(a • s + e) + p • s 2] pq , a). The output is relinearizated to 1-degree ciphertext: ([c 0 + c 2,0] q , [c 1 + c 2,1] q)
, where:

c 0 = t • (c 10 • c 20) q q c 1 = t • (c 10 • c 21 + c 11 • c 20) q q c 2 = t • (c 11 • c 21) q q (c 2,0 , c 2,1) = c 2 • rlk[0] p q , c 2 • rlk[1] p q 3.2.5 BGV
BGV encryption was invented in 2011 by Brakerski, Gentry, and Vaikuntanathan [START_REF] Brakerski | Leveled) fully homomorphic encryption without bootstrapping[END_REF]. BGV is a levelled FHE that works for both an LWE and an RLWE. A levelled FHE means that the parameters of the scheme depend (polynomially) on the maximum number of multiplications that can be executed (called level L). The hardness of the scheme is also based on RLWE problem [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF]. To keep the ciphertext error within a given bound, they used the technique of modulus switching as introduced in [START_REF] Brakerski | Efficient fully homomorphic encryption from (standard) LWE[END_REF]. This modulo reduction maps a ciphertext c defined in a ring R q , to a ring R q ′ while preserving correctness, where q ′ < q [START_REF] Vf Rocha | An Overview on Homomorphic Encryption Algorithms[END_REF]. By combining the modulus switching method with the bootstrapping procedure after performing desired operations on the ciphertext, BGV scheme can be turned into FHE [START_REF] Vf Rocha | An Overview on Homomorphic Encryption Algorithms[END_REF].

In original BGV, public key and switch keys are matrices. A detailed explanation of the scheme can be found in [START_REF] Yuan | An Efficient BGV-type Encryption Scheme for IoT Systems[END_REF]. Given a security parameter λ, level L, and plaintext modulus p. First step is to generate L large primes q 0 , . . . q L-1

satisfying q 0 < • • • < q L-1 .
-KeyGen(λ, χ, L): A vector s is selected randomly as a sk. and

Then b = -(a•s+ p • e) (mod q L-1) is computed, where a ← R q L-1 , e ← χ. The public key is (a, b). Next, the switch keys (a 0 , b 0 , t 0 , 0), . . . , (a L-1 , b L-1 , t L-1 , L -1) will be computed, where b i = -(a i • s + p • e i -t i • s 2) (mod t i • q i), a i ← R qi , e i ← χ, and t i is an integer. -Enc(pk, m ∈ Z p): A plaintext m can be encrypted by E(m) = (c 0 , c 1) = ((b•v +p•e 0 +m) (mod q L-1), (a•v +p•e 1) (mod q L-1)), where each element of vector v, v i ∈ {0, 1, -1} and e 0 , e 1 ← χ. We have c = (c 0 , c 1 , L -1) is the initial ciphertext. -Dec(sk, c): A ciphertext c = (c 0 , c 1 , i), i = [0, L -1] can be decrypted to find its plaintext m by m = c 0 + c 1 • s (mod q i) (mod p).
c 2 = (c 20 , c 21 , i) is computed by c = ((c 10 + c 20) (mod q i), (c 11 + c 21) (mod q i)). -Mult(c 1 , c 2): Similarly to BFV method, the first step is to compute a degree-2 ciphertext, where we denote c 1 (s)•c 2 (s) = c ′ 0 +c ′ 1 •s+c ′ 2 •s 2 .
The relinearization procedure results a compressed ciphertext with degree 1:

c * = (c * 0 , c * 1), where c * 0 = t i c ′ 0 + b i • c ′ 2 (mod t i q i) and c * 1 = t i c ′ 1 + a i • c ′ 2 (mod t i q i
), with the switch key (a i , b i , t i , i). The ciphertext c * will be mapped to c ∈ R qi-1 as the output by SwitchModulus method.

-SwitchModulus(c = (c 0 , c 1 , i)): Supposing to have two modulus q i and q j where i > j, and a ciphertext c in ring R qi , we calculate modulo inverse element r j = qj qi in q j . The new ciphertext in ring R qj is defined by c = (c 0 , c 1 , j) = (c 0 r j (mod q j), c 1 r j (mod q j), j).

CKKS

As mentioned in the previous section, CKKS, a HE for approximate arithmetic, was introduced in 2016 in [START_REF] Hee | Homomorphic encryption for arithmetic of approximate numbers[END_REF]. What makes CKKS draw attention to many researchers is that it allows to perform approximate additions and multiplications of ciphertexts, where its plaintexts can be vectors of real and complex values. This has been done by encoding and decoding method, where the inputs are converted from C N/2 × R to R = Z[x]/(x N + 1) and vice versa [START_REF] Hee | Homomorphic encryption for arithmetic of approximate numbers[END_REF]. In this step, we need to use a rounding technique, which might destroy some significant numbers. Thus, if we had an initial vector of real or complex values z, roughly speaking it will be multiplied by a scale ∆ > 0 during encoding and then divided by ∆ during decoding to keep a precision of 1 ∆ . Figure 3 describes all algorithms in CKKS scheme [START_REF] Yongsoo | Introduction to CKKS[END_REF].

As well as many other HE schemes, the foundation of CKKS is also the RLWE problem. Similarly to previously presented schemes, in this part, we simply describe the five main algorithms of CKKS. To start, it begins with a integer p > 0, number of multiplication L, and modulus q 0 . For 0 < l ≤ L, we define q l = p l q 0 .

-KeyGen(λ, q L): First, a vector s is sampled from a set of signed binary vectors in {0, 1, -1} N whose Hamming weight is exactly an integer h. Next, a ← R q L , and e ← χ. We set the secret key sk = (1, s), pk = (b, a) ∈ R 2 q L with b = -as + e (mod q L). We choose an integer P , set a ′ ← R P •q L , e ′ ← χ, and evk = (b ′ , a ′) ∈ R 2 P •q L with b ′ = -a ′ s + e ′ + P s 2 (mod P • q L). -Enc(pk, m): Given a distribution ZO(ρ) draws each entry in the vector from {0, 1, -1} N , with probability ρ/2 for each of -1 and +1, and probability being zero 1 -ρ. To encrypt a polynomial m, we sample polynomials v ← ZO(0.5), e 0 , e 1 ← χ, then output the ciphertext c = v • pk + (m + e 0 , e 1) (mod q L). -Dec(sk, c): For a ciphertext c = (b, a) ∈ R 2 q l , the approximate result m ′ of the plaintext m can be recovered by

m ′ = m + e = b + a • s (mod q l). -Add(c 1 , c 2): For c 1 , c 2 ∈ R 2 q l , its addition is c = c 1 + c 2 (mod q l).
-Mult(evk, c 1 , c 2): Similarly to introduced HE scheme, the multiplication of CKKS also accompanies a relinearlization step. For

c 1 = (b 1 , a 1), c 2 = (b 2 , a 2) ∈ R 2 q l , let (c ′ 0 , c ′ 1 , c ′ 2) = (b 1 b 2 , a 1 b 2 + a 2 b 1 , a 1 a 2) (mod q l). After being relinearlizated, it outputs a degree-1 ciphertext c = (c ′ 0 , c ′ 1) + ⌊P -1 • c ′ 2 • evk⌉ (mod q l).
One problem produced is that underlying value contained in the plaintext and ciphertext is ∆ • z as mentioned above. So after multiplying two ciphertexts c 1 , c 2 , the result holds

z 1 • z 2 • ∆ 2
. By doing many multiplications, the resulting ciphertext will have grown exponentially. To reduce its size, Rescale RS l→l ′ is introduced with its goal being to actually keep the scale constant, and also reduce the noise present in the ciphertext.

-RS l→l ′ (c): For a ciphertext c ∈ R 2 q l at level l > l ′ , we output c ′ = q l ′ q l c ∈ (mod q l ′).

TFHE/FHEW

FHEW [START_REF] Ducas | FHEW: bootstrapping homomorphic encryption in less than a second[END_REF] and TFHE [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF] have joined FHE family since 2014, where TFHE is an improvement of FHEW that significantly reduces the running time of the bootstrapping process. Like other FHE schemes, FHEW/TFHE's hardness is based on RLWE assumption. Using the similar mentioned notation, a ciphertext in FHEW/TFHE cryptosystem encrypting a message m ∈ R t under key s ∈ R q is c = (a, b) = (a, a • s + e + m), with a ← R q and e ← χ chosen from a discrete Gaussian distribution. The decryption is done by computing b-a•s = e+m and evaluating an appropriate decoding function to correct the error e and recover the message m [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF]. One example of the decoding function is scaling m by a factor ∆ = ⌊q/t⌋ as BFV scheme, which is described in 3.2.4. Being inherited the properties of RLWE, TFHE/FHEW is also homomorphically additive and multiplicative. The development that makes TFHE/FHEW a breakthrough in FHE timeline is bootstrapping technique. In FHEW setting, given an LWE ciphertext (a, b), an encryption E(m) of the same message under a different encryption scheme E is computed by homomorphically evaluating the LWE decryption procedure on the encrypted key E(m) to yield

2(b -a • E(s))/q mod 2 ≃ E(m).
In other words, the result of the computation is also an encryption E(m) of the message, but with smaller noise. D. Micciancio et al. [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF] showed that the noise of the output ciphertext E(m) only depends on the noise of E(s), but not on the noise of the ciphertext (a, b).

To accelerate bootstraping procedure, following FHEW authors, one needs a homomorphic accumulator ACC holding values from Z q and supporting a quadruple of algorithms (E, Initialize, Update, Extract) together with moduli t, q, where E and Extract may require key material related to an LWE key s as follows:

1. Initialize: ACC ← b, setting the content of ACC to any known value b ∈ Z q ; 2. Update:

ACC + ← c • E(s), modifying the content of the accumulator from ACC[v] to ACC[v + c • s]
, where c, s ∈ Z q , and s is given encrypted under E; 3. Extract: f (ACC), returning an encryption Ẽ(f (v)) of function f applied to the current content of the accumulator ACC[v], where f is a "rounding" function from Z q to Z t .

Suppose ek = E(s) = (E(s 1), . . . , E(s n)) and a = (a 1 , . . . , a n), the bootstrapping procedure is presented in algorithm 1.

Algorithm 1: Arithmetic bootstrapping using an accumulator ACC and rounding function f [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF] 1 Bootstrap(ek

= (E(s i)) i , (a, b)); 2 ACC ← b ; 3 for i = 1, . . . , n do 4 c i = -a i mod q; 5 ACC + ← c i • ek i 6 end 7 return f (ACC)
As per [START_REF] Lee | Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption[END_REF], there are two competing bootstrapping approaches to FHEWlike schemes: the AP bootstrapping method [START_REF] Alperin | Faster bootstrapping with polynomial error[END_REF] which is the basis of the original FHEW scheme, and the GINX bootstrapping method [START_REF] Gama | Structural lattice reduction: generalized worstcase to average-case reductions and homomorphic cryptosystems[END_REF], adopted by TFHE. D. Micciancio and Y. Polyakov in [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF] pointed out that the difference between these two implementations is that the former supports the basic update procedure ACC + ← E(s) for arbitrary s ∈ Z q , whereas the latter supports basic updates ACC

+ ← c • E(s) with c ∈ Z q being arbitrary, but s ∈ {0, 1} is a single bit.
The detailed explanation of bootstrapping technique is complex and requires much mathematical background. As presented at the beginning, in the scope of our work, we aim to provide readers and newly interested users with fundamental principles of HE schemes without delving too deep into the mathematics. Thus, for expert readers and mathematicians, a complete description of the bootstrapping method can be found in their original papers at [START_REF] Ducas | FHEW: bootstrapping homomorphic encryption in less than a second[END_REF] and [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF].

Experimental implementation

The main focus of our work is to compare the performance of each available scheme in different libraries. For this reason, in each library, we build our own "simple" project as a regular end-user. Each project is corresponding to one scheme, which includes five main homomorphic operations: KeyGen, Enc, Dec, Add, and Mult. The execution time needed to perform each operation will be recorded and then compared to each other. Every program collecting the performance metrics is carried out on an average commodity computer equipped with an Intel(R) Core(TM) i7-10700 CPU running at 2.90GHz under Ubuntu 20.04. In the results presented in the next section, Table 5 lists some useful notations.

To ensure the consistency in test results, every experiment is executed according to the strategy below:

-The time unit is microseconds (µs); -Each operation was executed in 1000 iterations and the time presented is its average; -The parameters are chosen to ensure the 128-bit encryption security level; -The time measured of encryption operation includes the execution time of random values for message inputs, together with encoding and decoding timings for batching; -Bootstrapping is not applied.

Depending on different HE schemes' properties, chosen plaintext will be differed. BFV and BGV schemes allow modular arithmetic on encrypted integers, while CKKS supports homomorphic operations on real or complex ones. Within the scope of the paper, plaintext batching technique is applied for all evaluated FHE and SWHE schemes. The main idea behind batching concept is to pack n plaintexts/messages into one ciphertext for parallel processing.

Here the first element of the batch is drawn randomly from a uniform distribution over the same range p, and the remaining elements are set to be 0. The diversity in input setting for each scheme will be explained with greater detail in section 5. 5 Evaluation and results

SEAL-Python

Fully homomorphic encryption

BFV

Although BFV scheme is available in both SEAL and PALISADE as mentioned in Table 3, they also have their differences in the implementation, indicated in Table 6. PALISADE allows users to change the parameters p, N, L as inputs, whereas SEAL-Python keeps L unchangeable from the user side. To accelerate the batching technique, the two libraries require that the chosen plaintext modulus p needs to be a prime number and congruent to 1 (mod 2n). This is the condition to operate on n packed integers in a SIMD (Single Instruction, Multiple Data) manner [START_REF] Laine | Simple encrypted arithmetic library 2[END_REF]. In order to assess the relative practical efficiency of two libraries for BFV encryption, different implementations are done with the same input parameters and working environment given in Table 7. Unlike SEAL, PALISADE can calculate required N and Q based on chosen L and p to ensure a security level of 128 bits. In contrast, SEAL sets 128-bit encryption security level as default and allows users to enter N . SEAL then displays satisfied Q and p with the entered inputs. Table 7 contains many options for PALISADE's inputs with the same p and N in order to have 128bit security. However, to have fair comparison between these two, the value of Q in PALISADE is chosen to be close to the one in SEAL. In Table 8, we provide timings for five main cryptographic functions, using the parameters recommended in Table 7. After examining these tables, it is clear that the ciphertext dimension N has a significant effect on BFV's performance. In most cases, the running times of decryption and addition are less than the others. In general, when N increases, the execution times of all operations are increased, especially multiplication, which approximately grows up 4 times compared to the previous N in both two libraries. However, in particular, the mean multiplication execution time of SEAL is less than that of PALISADE. One explanation for this is that the latter always counts the relinearization procedure whenever doing multiplication (EvalMult function), while in the former, it is separately computed. Within the scope of our experiments, the decryption is executed only on a fresh ciphertext without doing multiplication before. Therefore, it is not necessary to do relinearization step. That is why the timing in SEAL does not involve relinearization.

p

HE parameters

In Figure 4, we depict experimental results in vertical comparison, where timings are illustrated based on each operation. It is obvious that the mean execution times of all cryptographic functions in two libraries are close to each other, but SEAL is still performing better. While the rest are almost similar, the biggest variance is displayed in multiplication time, where N = 32768, SEAL is approximately 2 times faster than PALISADE.

BGV

Unlike BFV, all three libraries SEAL, PALISADE, and HElib have implemented BGV. Generally, in doing the experiments, the encryption parameters 9. This number is impacted by several parameters, including the maximum supported computation depth of the circuit (L) [START_REF] Halevi | Algorithms in helib[END_REF]. As L is varied to allow more computation, it also affects the cost of the computation. Additionally, in practical implementation, some technical definitions have been introduced in HE libraries, noise budget is one of them. According to A. Kim [START_REF] Laine | Simple encrypted arithmetic library 2[END_REF], noise budget (invariant) is defined as the total amount of noise we have left until decryption will fail. To be more precise, the BGV implementation for each library is specified as follows. PALISADE: In the library, noise budget is managed by a method called ModReduceInPlace, a method for reducing modulus of ciphertext and the private key used for encryption [START_REF] Polyakov | Palisade lattice cryptography library user manual[END_REF]. As explained above, in our scope of evaluation, this function will not be included. For BGV multiplication, the BFV operation of EvalMult is reused, so key-switching or relinearlization is already added. Besides, other properties of BGV implementation are remained the same as BFV's, such as the solution to calculate required N , Q, as well as the condition of inputs as mentioned in Table 6.

HElib: Helib allows to calculate its security level based on p, m, and bits (the number of bits of the modulus chain). When bits increase, its execution time is also raised up. Thus, in the comparison with other libraries as demonstrated on Table 9, we choose these variables such that the security level is close to or at least 128 bits.

Table 9 shows that the performance of HElib can be considered as good as the other two libraries if the timings of key generation and decryption were not such slow. To explain this, we need to examine the execution of key-switching matrices addSome1DMatrices in KeyGen process. The different pairs of L and Q in each line have the same level of security. Hence, in the horizontal comparison of Table 9, we selected PALISADE results with lower (L, Q) to compare with others. On the other hand, Table 12 contains the timing results when implementing the lowest and highest pairs of (L, Q) in each particular case of N value. Based on its behaviors, (L, Q) shows an impressing effect on PALISADE's execution time, especially on KeyGen procedure. For instance, at the same level N = 32768, L = 17 took more than 1 second to generate key pair, whereas 0.3 seconds is its cost when L = 9. Last but not least, Figure 5 exposes the visibly vertical comparison of the two based on timings of each operation.

A deep analysis of the Figure 5 and Table 9 shows that the SEAL and PALISADE are performing much better than the HElib for KeyGen and Dec operations. In contrast, Helib running time is the best in multiplication and encryption. On the other hand, PALISADE and SEAL have equally good performance in all operations. Although there is dissimilarity between them in multiplication and addition, since the actual time counted in µs, it is not really a great distance.

TFHE/FHEW

The FHEW fully homomorphic encryption [START_REF] Ducas | FHEW: bootstrapping homomorphic encryption in less than a second[END_REF] and its TFHE variant [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF] are the well-known methods to compute simple bit operations on encrypted data. TFHE and FHEW are both Ring-LWE encryption, followed by a bootstrapping procedure. Since bootstrapping notations are different from the notations in previous parts, first we define them as follows. BGV key generation [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF] and PALISADE configuration, we conduct the experiments with different values as shown on Table 13. PALISADE provides several parameter sets corresponding to various levels of security: STD128, STD192, STD256, STD128 AP, STD128Q, STD192Q, and STD256Q, where "STD" means HE security standard in [START_REF] Albrecht | Homomorphic encryption standard[END_REF], and "Q" stands for the quantum attack estimates. For example, STD128 is HE standard set with more than 128 bits of security with reference to classical computer attacks, while STD128Q is the same as STD128 security but with reference to quantum computer attacks. For the 128-bit security, STD128 AP is added, which supports a more efficient option with d g = 3, while STD128 is with d g = 4, where d g is the number of digits that integers (mod Q) are broken into.

The method to conduct experiments for TFHE/FHEW is similar to previous experimental implementations in PALISADE as presented in section 4. In particular, for each scheme we build a project as a regular end-user. Since FHEW and TFHE can evaluate arbitrary Boolean circuits on encrypted data by bootstrapping after each gate evaluation [START_REF] Micciancio | Bootstrapping in FHEW-like cryptosystems[END_REF], we focus on performing and comparing two main operations: key generation (KeyGen) and NAND-gate evaluation (NAND). The former includes generating refresh and switching keys, while the latter is evaluating a NAND gate. A NAND gate is functionally complete. Hence, every possible Boolean circuit can be realized with combinational logic made entirely of NAND gates. Every experiment collecting the performance metrics is carried out on an average computer equipped with an 12th Gen Intel(R) Core(TM) i5-1245U CPU running at max 4.4GHz under Ubuntu 22.04. We compiled PALISADE v1.11.6 with the compiler clang version 14.0.0.

Based on proposed parameter sets on 13, the runtime results are summarized in Table 14 counted by milliseconds (ms). The number of security bits has a great impact on the running time of both two cryptosystems. It is understandable that the increase in security level leads to the increase in KeyGen and gate-evaluation timings in both two schemes. This is most clearly shown in the fact that the system was not able to compute any results for FHEW/AP when STD256Q is reached. In general, GINX bootstrapping method provides better performance when it always produces bootstrapping keys and evaluates the NAND gate much faster than AP. Talking about this, TFHE authors [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF] (log 2 Q, L) required N (101,1) 8192 (140,2), (181,3), (221,4), (261,5), (301,[START_REF] Brakerski | Leveled) fully homomorphic encryption without bootstrapping[END_REF] 16384 (341,7), (381,[START_REF] Hee | Homomorphic encryption for arithmetic of approximate numbers[END_REF] 32768

Table 15: CKKS input parameters in PALISADE explained that they used a smaller bootstrapping key than the one in AP. In their experiment, using 16MB bootstrapping key instead of 1GB, the running time of FHEW bootstrapping is decreased from 690ms to 13ms single core, but still preserving the security parameter. Comparing the two, Y. Lee et al. [START_REF] Lee | Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption[END_REF] stated that GINX/TFHE bootstrapping uses much smaller evaluation keys, but it restricts the scheme's applicability because it is directly applicable only to binary secret keys. On the other hand, AP/FHEW supports arbitrary secret key distributions, which is critical for a number of important applications, such as threshold and some multi-key HE schemes.

Somewhat homomorphic encryption

The CKKS scheme is called leveled homomorphic encryption, an "extended" form of SWHE. In contrast to BFV and BGV encryption, where exact values are necessary, CKKS allows both additions and multiplications on encrypted complex numbers, but yields only approximate results [START_REF] Laine | Simple encrypted arithmetic library 2[END_REF]. According to A. Kim [START_REF] Seal | [END_REF], one should take advantage of CKKS encryption in applications such as summing up encrypted real numbers, evaluating machine learning models on encrypted data, or computing distances of encrypted locations. As a result, CKKS scheme has been implemented in four HE libraries as communicated in Table 3. To perform experiments with CKKS, in addition to the default setting mentioned above, the input parameters are the same for all libraries, where:

-Scaling factor ∆ = 2 40 ; -For batching technique, n = N/2.

In this encryption, there is no condition of plaintexts. Based on its properties, we chose inputs as real numbers. The method to draw packed messages keeps unchanged as discussed in section 4.

PALISADE:

The ring dimension of the HE scheme is chosen following the security standards. Hence, to meet a requirement of 128-bit security level, the minimum value of N is 8192. In Table 15, we presents the detail of input parameters.

SEAL: Like other CKKS implementation, SEAL does not use the plaintextmodulus parameter p. Moreover, instead of providing a ciphertext modulus Q, users working with CKKS must provide a modulus chain of prime sizes (e.g., q = [START_REF] Li | On the security of homomorphic encryption on approximate numbers[END_REF][START_REF]Microsoft SEAL 4.X For Python[END_REF][START_REF]Microsoft SEAL 4.X For Python[END_REF][START_REF] Li | On the security of homomorphic encryption on approximate numbers[END_REF]) [START_REF] Seal | [END_REF]. The number of moduli is equal to the number of iterations/multiplications. Additionally, the log 2 Q bit as shown in Table 7 unchanged, but now it is corresponding to the maximal sum of these primes, called CoeffModulus.

Before going to the evaluation part of different libraries' performance, Table 16 illustrates how SEAL behaves sensitively with ciphertext modulus and its modulus composition for each value of N . Although addition and decryption time are not changed significantly, the calculation time is climbed up more than 2 times in the three remaining operations.

HElib: One of the most advantages of working with HElib is its transformation of complex mathematical calculations in order to be easier and more understandable for non-expert practitioners. For example, to add two ciphertexts cipher a and cipher b, HElib supports to simply declare a new one as a sum of the two: Ctxt cipher add ab = cipher a; cipher add ab += cipher b. There is no need to specify technical steps such as relinearization or rescaling. Being different from other libraries, HElib allows users to calculate encryption security level based on input parameters. Table 17 contains the experimental results with the encryption security sec level being the closest to 128-bit level, while still preserving HElib's usage recommendation.

HEAAN:

The last library was developed by its own authors. HEAAN takes advantage of fully built-in algorithms, where it is able to deal with complex numbers. An input message in HEAAN can consist of n complex numbers, where n ≤ N/2. By analyzing different results displayed in Figure 6, one can see that overall performance of HEAAN and Helib are quite slower than SEAL and PALISADE. In overall, SEAL owns the best performance, while HEAAN is much more time-consuming compared to the others. Considering PAL-ISADE's presentation in both Table 17 and Figure 6, it is obvious that its most time-consuming procedure is decryption and multiplication. One reason needed to bring up is that, the relinearization step is always included in multiplication function EvalMult. Moreover, for the decryption process (cc->Decrypt(keys.secretKey, cMul, &result)), calculated time of rescaling algorithm is also taken into account. In contrast, SEAL does not include relinearization and re-scaling schemes in multiplication and decryption respectively. Instead, it can be done by coding separately with two functions: evaluator.relinearize inplace and evaluator.rescale to next inplace.

HE parameters

Partially homomorphic encryption

This part presents our own implementations of partially homomorphic cryptosystems, including Paillier (additive), El-Gamal (multiplicative), and RSA (multiplicative). The source code is available at github [START_REF] Van | Implementation of PHE schemes: El-Gamal, Paillier and RSA[END_REF]. Table 18 and Figure 7 illustrate horizontal and vertical comparison results respectively. Ac-

CKKS encryption

SEAL Palisade HElib HEAAN 0.5 1 1.5 2 2.5 3 3.5 Ciphertext dimension (N) 10 4 0 0.5 1 1.5 2 2.5 Time (s) 10 6
CKKS key generation SEAL Palisade HElib HEAAN Fig. 6: Vertical comparison of CKKS's execution time cording to PHE's properties as introduced in section 1, one PHE scheme can possess four following operations: Key generation, encryption, decryption, and addition/multiplication. Unlike FHE and SWHE, here the inputs are identified as p (plaintext modulus) and log 2 N (the number of bits of N), where N is one factor in public (encryption) keys. For each cryptosystem, we measure the execution time when selecting pairs of (log 2 N, p) in the similar manner of selecting (log 2 Q, p) in FHE. In addition, we execute the second situation where p is in Z N and the bits of N are so large such that they can reach 128-bit security level as stated in [START_REF] Heather | Solving the Discrete Logarithm Problem for Packing Candidate Preferences[END_REF]. As same as the previous implementations, the time unit is microseconds; each operation was executed in 1000 iterations and the timings presented are its average. The implementations are set up following their original papers: Paillier [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF], El-Gamal [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF], and RSA [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF]. Table 18 and Figure 7 demonstrate the experimental results.

Paillier encryption

In Paillier cryptosystem, although the input is N , the cipher space or ciphertext modulus is N 2 (see section 3). In spite of that, generally the algo-rithm performs all four operations very well as shown in Table 18. In the second situation, when both p and N increase, there is no much difference in time execution of Add. However, for three others, they are both climbed up. Particularly, when N is 4096 bits, the average time for one KeyGen is almost 4.3 seconds.

El-Gamal encryption

Table 18 indicates that all three operations of encryption, decryption, and multiplication in El-Gamal method have a better performance compared to Paillier. Apart from that, KeyGen appears to be a very time-consuming procedure. The cryptosystem needs more than 5 seconds to generate key pairs if log 2 N = 881, not mention to say that it needs more than 15 minutes when log 2 N = 3072 or more. Regarding to this problem, its author Taher ElGamal explained that in any of the cryptographic systems based on discrete logarithms like El-Gamal, N must be chosen such that N -1 has at least one large prime factor [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF]. If N -1 has only small prime factors, computing discrete logarithms would be easy [START_REF] Pohlig | An improved algorithm for computing logarithms over GF (p) and its cryptographic significance (corresp.)[END_REF]. Hence, our implementation is set up such that this condition is satisfied. N is considered as a safe prime if (N -1)/2 is also a prime.

RSA encryption

It is clearly seen in Figure 7 that RSA has represented the best performance among the three PHE schemes, even in case of very large ciphertext space. As its authors stated in [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF], the secret key d in RSA is very easy to choose, which is relatively prime to ϕ(N), where N = pq. To be more specific, any prime number greater than max(p, q) will do. This is one of the reasons why RSA does not take much time to generate keys like El-Gamal encryption and why it is commonly used in practice.

In Figure 7, the first graph on the top-left side displays the running time of Addition (Add) in Paillier and Multiplication (Mult) for the remaining two cryptosystems. Although the difference among them is demonstrated visibly, it is still considered as marginally small for the time unit is in µs.

6 On the Security of HE

HE under security notions

All four general-purpose libraries presented in the paper were based on RLWEbased systems. The most interesting advantage of LWE or RLWE is that it is considered as one of the hardest problems to solve in practical time for even post-quantum algorithms [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF]. However, this does not mean that RLWE-based HE schemes are totally secure. In fact, to prove security of encryption algorithms, two security models commonly referred are IND-CPA and IND-CCA, standing for Indistinguishability under chosen plaintext attack and Indistinguishability under chosen ciphertext attack respectively. For IND-CCA, there

RLWE -based FHE and SWHE schemes

In 1999, Bellare et al. [START_REF] Bellare | Relations among notions of security for public-key encryption schemes[END_REF] proved that all homomorphic encryption schemes are not secure against IND-CCA2 attacks. Subsequently, although IND-CCA2 is the strongest of the three security definitions, it is universally acknowledged that IND-CCA1 is the strongest security notion for HE. Apart from these three, Chenal and Tang [START_REF] Chenal | On key recovery attacks against existing somewhat homomorphic encryption schemes[END_REF] mentioned one variation of these security notions, called key recovery attacks. Following the authors, the key recovery attack is stronger than a typical IND-CCA1 and allows an adversary to recover the private keys through a number of decryption oracle queries. When the decryption is computed as a rounding function that maps elements from R q into the plaintext space, it is vulnerable to an attacker who asks for decryptions of c = (e i , b), where e i ∈ R n is the unit vector with 1 at position i and 0 everywhere else. As a consequence, this leaks information on secret s i .

PHE schemes

In contrast to FHE and SWHE, one of PHE schemes, namely RSA, is weak even under IND-CPA norm. The reason is that Schoolbook RSA is deterministic. Therefore, comparing to IND-CPA model in Figure 8, to guess the correct output at step 4, the adversary can compute a e (mod N) and b e (mod N) then check which one is matched to the verifier's challenge. Thus, RSA is not IND-CPA secure, which also implies that it is not IND-CCA secure either. Unlike RSA, Paillier encryption is IND-CPA secure under Decisional Composite Residuosity (DCR) Assumption [START_REF] Guo | A Generalization of Paillier's Public-Key System With Fast Decryption[END_REF]. To be more precise, Armknecht et al. [START_REF] Armknecht | Group homomorphic encryption: characterizations, impossibility results, and applications[END_REF] proved that Paillier scheme is secure against IND-CCA1 attacks if and only if DCR SCCR is hard, where SCCR is Subgroup Computational Composite Residuosity problem [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF]. Similar to Paillier system, El-Gamal encryption scheme is also known as being IND-CPA secure under the decisional Diffie-Hellman assumption [START_REF] Tsiounis | On the security of ElGamal based encryption[END_REF]. However, when discussing the security of El-Gamal under IND-CCA1, Wu and Stinson [START_REF] Wu | On the security of the ElGamal encryption scheme and Damgard's variant[END_REF] supposed that it is conjectured, but there has been no formal proof.

Integer factorization problem (IFP). Apart from attacks on security notions, IFP is also worth discussing in our context when we have the security of both RSA and Paillier cryptosystems depending on factoring problem. Given a composite number N , The IFP is defined as finding two integers p and q such that pq = N . Once p and q are discovered, it can be shown that RSA and Paillier encryption are insecure (see section 3). Two of widely used algorithms to factor an integer, as well as to be the basis of other factorization methods, are Pollard's rho and Pollard's p -1, invented by John Pollard in 1974 -1975 [START_REF] John | Theorems on factorization and primality testing[END_REF]. Our implementation and experimental results of each method are presented in detail at [START_REF] Van | Simple Methods for Factorization[END_REF].

With complexity of time and space O(√ N) by the birthday paradox, Pollard's rho relies on several important mathematical concepts, one of them is cycle-finding algorithm.

Algorithm 2: Pollard's rho algorithm using Floyd's cycle detection Input: a composite number N , a bound B for the number of iterations Output: a nontrivial factor of N or failure 1 x ← 2 ;

// Set x = x 0 = 2 to be the initial value 2 y ← 2 ;

// Set y = x 0 = 2 To reduce the memory cost, Pollard applied the idea of Floyd's cycle detection algorithm (see algorithm 2): two pointers x and y are used; pointer x holds the values of x i 's and pointer y holds the values of x 2i 's. Each iteration updates the values of x and y by computing f (x) and f (f (y)), then checks if gcd(x i -x 2i , N) = gcd(x -y, N) is a nontrivial factor of N . This reduces the memory cost to O(1). Assuming f is a random function, then the expected number of evaluations to the function f performed by Pollard's rho algorithm is O(√ p) = O(4 √ N), where p is the smallest prime factor of N . We present experimental results of Pollard's rho algorithm on our classical laptop with the following three numbers: For each run we use the same function f (x) = x 2 + 1 mod N and same maximum number of iterations B = 10 8 . The results are in Table 20. Table 21 shows the running time and size of factor when we run the algorithm with B = 10 10 to find a medium-size factor (around 20 digits) of some worst-case numbers: It can be seen that Pollard's rho takes a lot of time to find a factor of medium size. The second method to factor N is Pollard's p -1 algorithm, which is based on Fermat's Little Theorem [START_REF] John | Theorems on factorization and primality testing[END_REF]. Unlike the previous method, the possibility of finding a factor p of given size is not determined solely by its size, but rather by the smoothness of p -1 (see algorithm 3). There are two cases of failure: d = 1 or d = N . In the first case, a M -1 is co-prime with N , which implies that the search bound B is too small, and thus one should rerun the algorithm with a larger B. In the second case, d = N implies that N has a B-smooth prime factor p, but the randomized base a has order less than p -1 modulo p (hence omitted for gcd computation in the loop from line 8 to 11). In this case we choose another base a and restart the whole process. Here, to improve the algorithm's performance, we implement the two-stage variant of Pollard's p -1 (the detail is presented in [START_REF] Van | Simple Methods for Factorization[END_REF]). The second-stage is performed by choosing a second bound B 2 > B, normally B 2 = 100B. While Pollard's rho takes much time to find a factor of medium size, our implementation of the two-stage Pollard's p -1 is able to find larger factors of some record numbers listed in [START_REF]Record factors found by Pollard's p-1 method[END_REF]. The running time for each is displayed in Table 22, where :

n 7 = 2 977 -1 n 8 = 575th Fibonacci number (120 digits) n 9 = 960 119 -1
We found the factor of each number as below: [START_REF] Beckman | Efficient networks for quantum factoring[END_REF] 1996 O(n 3) 5n+1 Veldral et al. [START_REF] Vedral | Quantum networks for elementary arithmetic operations[END_REF] 1996 O(n 3) 4n+3 Beauregard [START_REF] Beauregard | Circuit for Shor's algorithm using 2n+ 3 qubits[END_REF] 2003 O(n 3 log n ϵ log 1 ϵ) 2n+3 Takahashi et al. [START_REF] Takahashi | A quantum circuit for Shor's factoring algorithm using 2n+ 2 qubits[END_REF] 2006 O(n 3 log n ϵ log 1 ϵ) 2n+2 Haner et al. [START_REF] Häner | Factoring using 2n+ 2 qubits with Toffoli based modular multiplication[END_REF] 2016 O(n 3 log n) 2n+2 Gidney [START_REF] Gidney | Factoring with n+ 2 clean qubits and n-1 dirty qubits[END_REF] 2017 O(n 3 log n) 2n+1

p 1 =
Table 23: Different implementations of Shor's algorithms on IFP [START_REF] Suo | Quantum algorithms for typical hard problems: a perspective of cryptanalysis[END_REF] It is obvious that Pollard's p-1 is capable to find large factors of a composit N ; however, in practice, when the system applies N from 2048 bits, it is not sufficient to find its large-size factors using Pollard's rho and Pollard's p -1 methods on a classical machine. Therefore, the invention of Shor's algorithm by Peter Shor, a quantum computer algorithm to solve IFP, marks an important milestone for the security of public-key cryptography systems.

Shor's quantum algorithm

Being developed in 1994, Shor's algorithm [START_REF] Peter | Algorithms for quantum computation: discrete logarithms and factoring[END_REF] is one of the first quantum algorithms that demonstrated the advantage of quantum computers over classical ones. In general, the method allows to find prime decomposition of big integers in polynomial time, namely O((log N) 3) time and O(log N) space, given a sufficiently large quantum computer.

The basic idea of Shor's algorithm relies on period-finding problem. Given integers a and N , r is called the period of a modulo N if r is the smallest positive integer such that a r -1 is a multiple of N , or a r -1 is divisible by N . For example, given a = 7 and N = 15, its period is found as r = 4, we have 7 4 = 1 (mod 15). The name "period" comes from the fact that a i+r (mod N) = a i a r (mod N) = a i (mod N) (because a r = 1 (mod N)) for any integer i. Based on the period's property, we have N |(a r -1). If r is even, then N |[(a r/2 -1)(a r/2 +1)]. By computing gcd((a r/2 -1), N)) and gcd((a r/2 + 1), N), we can find the factors of N . In the whole process, a quantum algorithm is applied to compute the period r of a modulo N by using quantum Fourier transforms [START_REF] Peter | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF], where a is a randomly chosen element.

So far, the largest numbers factored by Shor's algorithm are 51 and 85 by Geller and Zhou in 2013 using eight qubits [START_REF] Michael | Factoring 51 and 85 with 8 qubits[END_REF]. Before that, Vandersypen et al. [START_REF] Lieven | Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance[END_REF] in 2001 and Martín-López et al. [START_REF] Martin-Lopez | Experimental realization of Shor's quantum factoring algorithm using qubit recycling[END_REF] in 2012 also implemented Shor's algorithm to factor 15 and 21 respectively. The most recent paper was of Gidney et al. [START_REF] Gidney | How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits[END_REF], published in 2021, which presented how to factor 2048-bit RSA integers using 20 million noisy qubits in 8 hours.

With the efficiency of quantum computers, the security provided by cryptosystems, which are based on IFP and discrete logarithmic problems (DLP), seems to be short-lived. Speaking of IFP, RSA and Paillier encryption are vulnerable against Shor's algorithm. In [START_REF] Suo | Quantum algorithms for typical hard problems: a perspective of cryptanalysis[END_REF] [START_REF] Proos | Shor's discrete logarithm quantum algorithm for elliptic curves[END_REF] 2003 O(n 2) -Ekera et al. [START_REF] Ekerå | Revisiting Shor's quantum algorithm for computing general discrete logarithms[END_REF] 2019 -O(n 2)

Table 24: Different implementations of Shor's algorithms on DLP [START_REF] Suo | Quantum algorithms for typical hard problems: a perspective of cryptanalysis[END_REF] mentations of Shor's algorithm over different quantum prototype computers, together with their number of qubits and quantum gate complexities, as shown on Table 23 (for IFP) and Table 24 (for DLP). Similarly, El-Gamal with its hardness of computing discrete logarithms is also a victim of quantum algorithms [START_REF] Peter | Algorithms for quantum computation: discrete logarithms and factoring[END_REF]. In 2010, Wang [START_REF] Wang | The hidden subgroup problem[END_REF] defined a circuit for quantum computers to solve DLP as shown on Figure 9, where F p-1 is the Fourier transform over Z p-1 , and U f being a quantum circuit. Some argue that although quantum encryption breaking is a potential possibility, it is not a peril as there are still solutions for it. One is to increase the bit lengths, so that attackers need a larger and larger quantum computer to be able to successfully break the system. The second is to develop new public key cryptosystems that cannot be solved by Shor's algorithm. This opens a new era of Post-quantum cryptography (PQC), or quantum-resistant cryptography.

Conclusion and Future work

In this work, we made a performance comparison of several notable HE schemes, covering all three homomorphic encryption categories: Partially HE, Somewhat HE, and Fully HE. The results clearly suggest that partially homomorphic cryptosystems are significantly faster than the others at addition and multiplication operations. RSA possesses the fastest key-generation procedure, whereas El-Gamal is quite slow when ciphertext modulus increases. On the other hand, the presentation between evaluated FHE schemes and CKKS is inconsistent, especially for multiplication timings. For both BFV and BGV, SEAL and PALISADE demonstrate a slower multiplication compared to CKKS. In contrast, HElib makes that of CKKS be a time-consuming process in comparison to the other two. Besides, between BFV and BGV, performance analysis has shown that the former is performing better than the latter in terms of execution time for key generation in both SEAL and PALISADE, mostly when the ciphertext dimension is climbed up.

Nowadays, in the vibrant and active world, when data privacy plays a more significant role, HE is a new promising domain that allows external third parties to perform computations on the encrypted data without decrypting it in advance. However, one big challenge is to build a HE scheme that provides simultaneously both the required security and the performance efficiency. In this paper, we contributed an in-depth study of the different uses and implementations of HE schemes in most-used HE libraries, including SEAL, PALISADE, HElib, and HEAAN. First, we highlighted the principles and mathematical models of adopted schemes, followed by a brief description of linked libraries. By comparing execution time of five main homomorphic operations (KeyGen, Enc, Dec, Add, Mult), we present a computational overview of performance evaluation of different HE cryptosystems in different libraries. Through experimental results, it is easier for non-experienced practitioners to set input parameters for encryption schemes, as well as to choose an appropriate library for building their own HE-based projects. We also discussed an overview of the security of six aforementioned HE schemes under notable security notions such as IND-CPA, IND-CCA1 and IND-CCA2. Two classical attacks of Prof. John Pollard on Integer factorization problem are presented before introducing Shor's quantum algorithm for the same problem.

It is also clear that the efficiency of the PHE schemes becomes crucial in the overall performance. Due to the fact that PHE schemes are not implemented in mentioned libraries, we used our own implementations of Paillier, El-Gamal, and RSA as partially homomorphic cryptosystems in the emulation. For that reason, we plan to continue our work on optimizing PHE schemes in their implementation and performance. Besides, working with different HE libraries, we have seen that a part from doing encryption between a typical two parties, some libraries also support threshold encryption. Using threshold decryption in a public key cryptosystem allows n parties to communicate in which a minimal number of parties -a "threshold" number -need to cooperate in order to decrypt a ciphertext. This prevents the situation where an individual keyholder is able to decrypt all sensitive information on his own. This aspect will certainly be addressed by future work.

Declarations Ethical Approval Not applicable

Competing interests I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or dis-cussion reported in this paper.

Fig. 3 :

 3 Fig.3: Algorithms in CKKS[START_REF] Yongsoo | Introduction to CKKS[END_REF]

p

 The plaintext modulus of BGV, BFV schemesQThe maximum ciphertext modulus, the initial ciphertext modulus after encryption mThe cyclotomic order of the ring R NThe degree of the ring R (N = ϕ(m)) nThe number of slots or messages encoded in one ciphertext L Multiplication depth, the number of multiplications can be executed ∆ Scaling factor in CKKS scheme, multiplied to the floatingpoint number of the message to convert to integer number.

Fig. 4 :

 4 Fig. 4: Vertical comparison of BFV's execution time

Fig. 7 :

 7 Fig. 7: Vertical comparison of PHE's execution time

Fig. 8 :

 8 Fig. 8: IND -CPA security notion

(

 Fermat number F 8 = 2

Fig. 9 :

 9 Fig.9: A circuit of DLP[START_REF] Wang | The hidden subgroup problem[END_REF]

Table 2 :

 2 Related works and their scopes Encryption Library)[START_REF] Halevi | Algorithms in helib[END_REF] is the first open source library implementing HE. Being published in 2013, it focuses on effective use of BGV and CKKS schemes, together with ciphertext packing techniques and the Gentry-Halevi-Smart optimizations. HElib is still under development by Shai Halevi (IBM), Victor Shoup (NYU, IBM) and available on github [35].

	3 Background
	3.1 Libraries
	HElib (Homomorphic-

Table 3 :

 3 According to the newest PALISADE's announcement, the PALISADE community has merged the PALISADE project into the next-gen OpenFHE open-source FHE software library. OpenFHE ([38], 2022) has all of the features of PALISADE, merged with selected capabilities of HElib and HEAAN. SEAL (Simple Encrypted Arithmetic Library) [28] is another HE library, developed by the Cryptography and Privacy Research Group at Microsoft. According to his author, Kim Laine, the first version of SEAL was released in 2015 with the specific goal of providing a well-engineered and documented HE library. SEAL was designed to use both by experts and by non-experts with little or no cryptographic background. The updated version of Microsoft SEAL, which is available on github [39], has implemented various forms of HE schemes, including BGV, BFV, and CKKS. Besides, there is a SEAL version in Python, called SEAL-Python [40]. This is a Python wrapper implementation of the SEAL library, using pybind11 [41]. HE schemes in available HE libraries

	HE scheme/Library	SEAL	PALISADE	HElib	HEAAN
	BFV	✓	✓		
	BGV	✓	✓	✓	
	CKKS	✓	✓	✓	✓
	FHEW		✓		
	TFHE		✓		

Table 4 :

 4 HE libraries comparison

	Compatibility	Reliability

Table 5 :

 5 Used notations

Table 6 :

 6 Differences in libraries' setups

				PALISADE
	Languages		Python	C++
		p	changeable	changeable
	Parameters	N L	changeable not changeable	changeable changeable
		Q	not changeable	not changeable
	Batching		n = N	n = N
	Condition		p = 1 (mod 2n), p is a prime number

Table 7 :

 7 BFV's input parameters in PALISADE and SEAL

			log 2 Q	required N
		1032193	109	4096
		1032193	218	8192
		786433	438	16384
		786433	881	32768
			(a) SEAL
	p	(log 2 Q, L)		required N
	1032193	(120,1)		4096
	1032193	(180, 2), (180, 3)		8192
	786433	(240,4), (300,5), (300,6), (360,7), (360,8), (420,9)	16384
	786433	(480,10), . . . , (780,19), (840,20), (840,21)	32768
			(b) PALISADE

Table 8 :

 8 Horizontal comparison of BFV's execution time

	N	log 2 Q	KeyGen	Enc	Dec	Add	Mult
	4096	109	1028.119	1263.528	276.045	1.298	3274.257
	8192	218	3003.509	3269.548	1179.682	144.531	11663.16
	16384	438	10260.45	11378.441	5434.016	415.662	54918.967
	32768	881	40251.496	41297.274	17442.857	1536.587	246427.201
				(a) SEAL		
	HE parameters N log 2 Q	KeyGen	Enc	Dec	Add	Mult
	4096	120	1137.556	1160.459	283.99	0.237	4296.438
	8192	180	3170.82	2881.717	921.646	187.703	13585.75
	16384	420	13507.743	11288.5535	3298.9775	1086.105	76565.506
	32768	840	55941.007	45587.262	17171.713	7046.362	427795.343
				(b) PALISADE		

Table 9 :

 9 Horizontal comparison of BGV's execution time

	HE parameters N log 2 Q		KeyGen		Enc	Dec	Add	Mult
	4096		109		2424.838		1091.586	259.842	42.541	1508.681
	8192		218		11426.94		3137.433	992.5	79.952	6673.09
	16384	438		70869.416	11179.579	3791.998	292.17	35650.547
	32768	881		433638.89	41716.827	18156.642	866.2635	215414.681
							(a) SEAL
	HE parameters N log 2 Q		KeyGen		Enc	Dec	Add	Mult
	4096		96		3023.297		1145.76	368.375	42.116	570.952
	8192		144		10981.757		3043.417	1007.424	57.322	2396.688
	16384		240		51708.9		8902.513	3546.961	289.751	13642.014
	32768		480	376273.9767		34662.558	20727.674	3313.547	116248.311
							(b) PALISADE
	HE parameters N log 2 Q		KeyGen		Enc	Dec	Add	Mult
	4096		100	168300.764		2257.432	138092.51	32.064	2347.865
	8192		100	470367.195		4533.877	549616.633	480.44	4492.487
	16384		100	1348552.91		9917.878	2265994	289.706	10778.79
	32768		100	1967110.87		14080.4445	2340201.2	209.039	17477.661
							(c) HElib
	N	Add Matrices	KeyGen		Enc	Dec	Add	Mult
	4096		No Yes		4882.369 168300.764	2229.431 2257.432	138098.495 138092.51	120.27 32.064	2093.809 2347.865
	8192		No Yes		9903.988 470367.195	4637.854 4533.877	548176.341 549616.633	389.5065 480.44	5463.149 4492.487
	16384		No Yes		20361.114 1348552.91	9418.236 9917.878	2213333.56 2265994	577.842 289.706	11731.862 10778.79
	32768		No Yes		39825.16 1967110.87	13217.164 14080.4445	2373608.58 2340201.2	1039.197 209.039	21059.138 17477.661

Table 10 :

 10 HElib with different inputs

Table 11 :

 11 Table 10 displays the differentiation in running time of computing or not the addSome1DMatrices function. Without adding this procedure, key generation has been much less time-consuming. For instance, in case N = 32768, it took almost 2 seconds to BGV inputs for 128-bit security level in PALISADE

	p		(log 2 Q, L)				required N
	1032193	(96,1)					4096
	1032193	(144, 2), (192, 3)				8192
	786433	(240,4), (288,5), (336,6), (384,7), (432,8)		16384
	786433	(480,9), (528, 10), (576,11),. . . (768,15), (816,16), (17,864)	32768
	N	L	log2Q	KeyGen	Enc	Dec	Add	Mult
	8192	2 3	144 192	10981.757 18055.952	3043.417 3662.841667	1007.424 1499.093333	57.322 77.27016667	2396.688 3906.558667
	16384	4 8	240 432	51708.9 151107.142	8902.513 13704.344	3546.961 9176.451	289.751 1203.262	13642.014 44985.406
	32768	9 17	480 864	376273.9767 1138783.22	34662.558 58661.984	20727.674 52499.905	3313.547 3221.175	116248.311 362749.472

Table 12 :

 12 PALISADE with different inputs generate its key pair with addSome1DMatrices, whereas this process costed only 40 milliseconds approximately without it.In contrast, key-switching matrices have not been mentioned in SEAL and PALISADE. Instead, PALISADE calculates required N and Q as illustrated in

Table 11 .

 11

Table 13 :

 13 Parameter sets for of FHEW/AP and TFHE/GINX in PALISADE RLWE modulus used in the core bootstrapping procedure based on an accumulator.

	SEAL				
	Palisade				
	HElib				
	Fig. 5: Vertical comparison of BGV's execution time
	Parameter set	n	N	q	Q
	STD128	512	1024	512	27
	STD128 AP	512	1024	512	27
	STD192	512	2048	512	37
	STD256	1024	2048	1024	29
	STD128Q	512	2048	512	50
	STD192Q	1024	2048	1024	35
	STD256Q	1024	2048	1024	27

n, lattice parameter for the LWE scheme; -N , ring dimension for RLWE; q, LWE modulus; -Q,

Table 14 :

 14 Comparison on execution time of FHEW/AP and TFHE/ GINX Both AP/FHEW and GINX/TFHE are implemented in PALISADE (now OpenFHE). Based on proposed parameter sets by D. Micciancio et al.

Table 16 :

 16 is kept SEAL's comparison for different modulus composition

	N	log2Q	Modulus chain	KeyGen	Enc	Dec	Add	Mult
	8192	160 200	60, 40, 60 60, 40, 40, 60	2179.13 2507.607	3206.887 3910.8775	50.54 109.5735	128.72 271.207	178.348 452.792
	16384	200 432	60, 40, 40, 60 60, [39]*8, 60	5034.227 11959.254	8548.111 18847.575	221.213 721.076	317.991 1777.956	774.644 2077.872
	32768	200 881	60,40,40,60 [55]*15,56	10215.043 39749.74	18231.808 66061.559	781.699 2589.904	529.59975 2221.2535	1414.666 4741.014

Table 17 :

 17 Horizontal comparison of CKKS's execution time

		N	log 2 Q		KeyGen		Enc	Dec	Add	Mult
	8192	200	2507.607	3910.8775	109.5735	271.207	452.792
	16384	432	11959.254	18847.575	721.076	1777.956	2077.872
	32768	881	39749.74	66061.559	2589.904	2221.2535	4741.014
							(a) SEAL
	HE parameters N log 2 Q	KeyGen		Enc	Dec	Add	Mult
	8192	102	2305.699	2652.975	21650.503	81.117	3129.505
	16384	141	6542.385	7093.977	51639.085	194.05	9584.286
	32768	342	31630.72	29936.449	248985.192	3291.783	66603.916
						(b) PALISADE
	N	HE parameters (log2Q,sec level)	KeyGen	Enc	Dec	Add	Mult
	8192		(119,157.866)	11008.069	2659.019	22065.082	272.865	19712.186
	16384		(358,129.741)	91768.896	8252.838	107935.827	1502.701	104850.697
	32768		(558,128.851)	164575.383	23730.201	364743.317	11576.171	215878.991
							(c) HElib
	HE parameters N log 2 Q	KeyGen		Enc	Dec	Add	Mult
	8192	119	2282102.44	634268.04	41491.42	39877.65	614878.85
	16384	358	2294477.86	624440.22	93658.41	17826.4	994892.6
	32768	558	2251482.12	657943.99	114587.91	45690.59	1332368.41
							(d) HEAAN

Table 18 :

 18 Horizontal comparison of PHE's execution time

		20		PHE Addition/Multiplication		
			Paillier: Add					
		18	ElGamal: Mult					
			RSA: Mult					
		16							
		14							
	Time (s)	8 10 12							
		6							
		4							
		2							
		0							
		100	200	300	400	500	600	700	800	900
						log 2 N			

 Table 19 lists several FHE and SWHE schemes presented in our work and corresponding attacks, together with their related papers. It is obvious

	Scheme	IND-CPA	IND-CCA1	Key recover attack
	BFV			Z. Peng [59]
	BGV			Chenal and Tang [57]
	CKKS	✓	Fauzi et al. [58]	Li et al. [60]
	FHEW			Chenal and Tang [57]
	TFHE			Chenal and Tang [57]

Table 19 :

 19 Security of several FHE and SWHE schemes that three schemes are secure against IND-CPA attacks[START_REF] Fauzi | On the IND-CCA1 Security of FHE Schemes[END_REF]; however, they all suffers from IND-CCA1 and key recover attacks. According to Fauzi et al., the key recovering attack as presented by Chenal and Tang also works on a on several schemes based on (R)LWE, and FHEW/TFHE is one of them.

Table 20 :

 20 Average running time with different initial values

	2 8	+ 1)

Table 21 :

 21 Running time to find medium-size factor

Algorithm 3 :

 3 Pollard's p -1 algorithm Input: a composite number N , a bound B Output: a nontrivial factor of N or failure 1 Choose a positive integer base a randomly between 1 and N ; 2 Compute d = gcd(a, N); 3 if d ̸ = 1 then

	4	return d;			
	5 end				
	6 for prime numbers p i ≤ B do		
	7	q ← 1;			
	8	while q ≤ B do			
	9	a ← a p i mod N ;			
	10	q ← q × p i ;			
	11	end			
	12	c ← a -1;			
	13	d ← gcd(c, N);			
	14	if d ̸ = 1 AND d ̸ = N then		
	15	return d;			
	16	end			
	17	if d = N then			
	18	Go to line 1 and choose a new value for a;		
	19	end			
	20 end				
	21 if d = 1 then			
	22	return failure;			
	23 end				
		Digits of factor	n	B 1	B 2	Time(s)
		32	2 977 -1	10 7	10 8	14.9582
		34	575th Fibonacci number	10 7	10 8	14.3806
		66	960 119 -1	10 8	10 10	1076

Table 22 :

 22 Our running time of some record factors by Pollard's p -1 method

 , Suo et al. indicate some imple-

	Authors	Year	Time complexity	Space complexity
	Shor [68]	1994	O(n 3)	O(n)
	Proos et al.			

Availability of data and materials

All of the material is owned by the authors and/or no permissions are required.

Authors' contributions T.V.T Doan did the experimentation, wrote the code, and the main manuscript text. M.-L Messai wrote parts of the manuscript and reviewed it. G. Gavin and J. Darmont reviewed the manuscript.

Funding

The research depicted in this paper is funded by the French National Research Agency (ANR), project ANR-19-CE23-0005 BI4people (Business Intelligence for the people).