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A PRINCIPLED APPROACH TO POLYCHROMATIC X-RAY TOMOGRAPHY
FOR METAL ARTIFACT REDUCTION⋆
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Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC, France

(a) Ground truth (b) FBP (0.71) (c) LI (0.88) (d) TV-ℓ2 (0.91) (e) TV-KL (0.91) (f) Proposed (0.99)

Fig. 1: Illustration of beam hardening artifacts in CT, when using various methods for reconstruction. (a) Ground truth image
(Shepp–Logan phantom [1]) representing the average polychromatic attenuation coefficients µ̄. Two metallic structures (white squares) are
present. (b) Filtered back projection (FBP) [2] gives rise to severe metal streak artifacts. (c) Linear interpolation (LI) [3] does not reconstruct
the metal parts. (d,e) Using a monochromatic TV-regularized [4] model with different data fidelity term (ℓ2 [5] and KL [6]) yields a better
reconstruction, though at the price of a loss of contrast. (f) The proposed polychromatic reconstruction is almost artifact-free, and preserves
contrast. SSIM Scores are indicated in parentheses (higher is better).

ABSTRACT
We put forward a principled variational approach to computed
tomography, in the presence of metals. It is based on the in-
version of a forward model accounting both for the polychro-
matic nature of X-rays, and for the Poisson statistics ruling
the photon counting process. A fast and flexible numerical
solving framework is proposed, which handles a variety of
regularization terms. The efficiency of the proposed method
is demonstrated on simulations.

Index Terms— Computed tomography, metal artifacts,
variational methods, augmented Lagrangian.
⋆ This work has been funded by Région Normandie under
grant ERDF-FSE 2014-2020 no18P03532/18E01765

1. INTRODUCTION

X-ray computed tomography (CT) is a noninvasive procedure
which uses light ray to image the inside of, e.g., the human
body, without damaging it. Unfortunately, the presence of
metals e.g., medical implants, may induce severe artifacts in
the reconstructed images, as illustrated by Fig. 1. Metal arti-
facts take the form of dark, bright streaks or cupping, and they
occur due to beam hardening, Poisson noise, scattering, and
the nonlinear partial volume effect [7]. The objective of the
present work is to present a flexible variational framework for
metal artifact reduction (MAR) in computed tomography, by
taking into account both beam hardening and Poisson noise.

Lambert-Beer law [8, 9] models the attenuation of a light
ray as a function of the attenuation coefficients of the materi-
als through which the beam passes. Typically, metals have
high density and high atom number, and thus, can absorb
more photons than, e.g., water or human tissue [10]. When
the X-ray source is monochromatic, all photons have the same
energy. Lambert-Beer’s law can then be rewritten as a lin-
ear system of equations in the unknown attenuation coeffi-
cients, which can be solved using established techniques such
as filtered back projection [2]. However, X-ray sources have
in fact a polychromatic nature [11], which causes the beam
hardening phenomenon: the mean energy of the beam may
be higher after penetrating the object i.e., the X-ray beam is
“hardened”. This is due to photons with lower energy being
more easily absorbed than photons with higher energy, turn-
ing the total attenuation coefficient into a nonlinear function
of all the attenuation coefficients along the ray. Additionally,
the photon counting process is ruled by nonlinear statistics:
the number of photons measured by each CT detector ap-
proximately follows a Poisson distribution. Therefore, low
photon counts (which arise, e.g., after crossing metals) will
cause higher relative statistical errors [12]. This second non-
linear phenomenon further amplifies metal artifacts in FBP
reconstruction (see Fig. 2). In order to limit them, the CT
reconstruction process should thus account both for the poly-
chromatic nature of X-rays, and for the Poisson statistics of
photon counting. However, the nonlinear inverse problem to
solve becomes much more difficult.
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Fig. 2: Comparison of beam hardening artifacts reduction methods in CT, in normal (first row) or low (second row) photon counts,
with the same notations as in Fig. 1 (displaying the reconstructed average attenuation coefficients µ̄). Low photon counts further amplify
metal artifacts in existing CT reconstruction techniques, while the proposed one remains robust even in this challenging setting.

Related works Metal artifacts in CT may be tackled ei-
ther by improving the design of the scanning system so as to
provide polychromatic data, by correcting the obtained sino-
gram, or by improving the robustness of the algorithmic CT-
reconstruction process. Dual energy CT [13] and spectral
CT [14] focus on providing a new design of the CT system.
Beam hardening correction (BHC) methods [15] aim at cor-
recting the sinogram mismatch between the reality of a poly-
chromatic X-ray source and the assumption of a monochro-
matic X-ray source. Sinogram correction may also be con-
sidered as an interpolation problem, using techniques such as
linear interpolation (LI) [3], normalized MAR [16], or fre-
quency split MAR [17]. Yet, these approaches aim at remov-
ing the presence of metal from the final image, while such
information might be of high interest, e.g. for radiation ther-
apy dosimetry. To overcome these shortcomings, MAR re-
construction models such as [18] build upon a proper nonlin-
ear forward model for the attenuation of X-rays, and aim at
iteratively solving the inverse problem without modifying the
sinogram and preserving the metal. This is also the point of
view adapted in our work.

Contributions We present a novel, principled CT-reconstruction
method which:

• arises as the natural maximum a posteriori (MAP) ap-
proach for inverting a forward CT model under Poisson
noise and a polychromatic X-ray source;
• is flexible enough to handle a variety of non-smooth regu-
larization terms, e.g. total variation (TV) [4];
• combines building blocks from the alternating direction
method of multipliers (ADMM) [19], proximal alternat-
ing linearized minimization (PALM) [20] and 0SR1-metric
quasi-Newton method [21], resulting in a very fast algorithm;
• is empirically shown to drastically reduce metal artifacts.

2. PROPOSED MODEL

Polychromatic CT consists in recovering the attenuation co-
efficients µ ∈ RN×NE

+ , where N is the number of pixels, and
NE is the number of different energy levels at which the object
is imaged. To limit the number of unknowns, we assume that
this object is composed of NM known materials, and we de-
note by S ∈ RNM×NE the matrix containing the corresponding
mass attenuation coefficients (expressed in cm2.g−1). This
matrix is known, resorting e.g. to the NIST database [22].
The unknown attenuation coefficients can thus be considered
as a linear combination of the known reference coefficients:
µ = z S, such that the problem comes down to estimating the
unknown densities (in g.cm−3) stored in z ∈ RN×NM

+ .
To estimate these densities, we are given a set of Np noisy

observations yp, p ∈ {1, . . . , Np} acquired under different
projection angles. We model the sensor responses as random
variables Yp following a Poisson distribution corresponding to
the number of actual photons reaching the detector. Combin-
ing this with Lambert-Beer law yields the following forward
polychromatic CT model, ∀p ∈ {1, . . . , Np}:

Yp ∼ P

(
rp

(
NE∑
ℓ=1

Iℓ exp
{
− (RzS)p,ℓ

})
+ bp

)
, (1)

where P denotes the Poisson distribution, rp ∈ R and bp ∈ R
denote the known gain and background bias on the p-th beam
projection angle, Iℓ denotes the source intensity at energy
level ℓ, and R ∈ RNp×N denotes the Radon matrix encod-
ing the projective geometry of the CT device.

Resorting to Bayesian inference, the MAP estimate is
given by:

z∗ ∈ argmin
z∈RN×NM

+

f(z) + λP (z). (2)



Therein, the data fidelity term f is constructed from the neg-
ative log-likelihood associated with (1):

f(z) = ⟨b+r⊙e−RzSI,1Np
⟩−⟨log

(
b+ r ⊙ e−RzSI

)
, y⟩,
(3)

with ⊙, e· and log the element-wise multiplication, exponen-
tial and logarithm operators, respectively. The regularization
term P , on the other hand, stands for some prior knowledge
on the solution. In this work we consider, among other things:

P (z) = ∥∇z∥1 and P (z) = ∥∇zS∥1, (4)

where ∇ : RN×NM → R2N×NM stands for a linear operator
approximating the image gradient through finite differences.
They correspond, respectively, to anisotropic TV (ATV) reg-
ularization [4] on the densities z and on the attenuation coef-
ficients µ = zS. Next, we introduce an efficient algorithm for
solving (2).

3. OPTIMIZATION

Incorporating the positivity constraint by means of the indi-
cator function of the positive orthant denoted h = ιRN×Nm

+
,

we first rewrite problem (2) into a generic formulation as

min
z
{Φ(z) = f(z) + h(z) + g ◦A(z)} , (5)

where in the case of ATV regularization, g(·) = λ∥ · ∥1 and
A(z) = ∇z or A(z) = ∇zS. Instead of minimizing Φ(z) di-
rectly, we consider a smoothed version of (5), parameterized
by β > 0:

min
z

{
Φβ(z) = f(z) + h(z) + βg ◦A(z)

}
, (6)

where βg is the Moreau-Yosida envelope of g [23], defined as
βg(u) = minx g(x) + 1

2β ∥u− x∥2. The argmin is called the
proximity operator [20] of the function (βg), and it is defined
as proxβg(x) = argminu g(u) + 1

2β ∥u− x∥2.
To solve (6), we introduce an algorithm based on the al-

ternating direction method of multipliers (ADMM) [19]. To
this end, we consider the augmented Lagrangian Lρ,β(z, u, y)
associated with (6):

Lρ,β(z, u, y) = f(z)+h(z)+βg(u)+ ⟨y,Az−u⟩+ ρ

2
∥Az−u∥2

(7)
where ρ > 0. Then, we iterate the following sequence: (z-
update) update the primal variable z as the Moreau proximity
operator of the linearized augmented Lagrangian at the previ-
ous state; (u-update) update the auxiliary variable u by mini-
mizing the augmented Lagrangian; and (y-update) perform a
Lagrange multiplier step for y. Using proximal alternating
linearized minimization (PALM) [20] and the 0SR1-metric
quasi-Newton method [21] for acceleration, we eventually ob-
tain Algorithm 1.

Algorithm 1: Optimization of the problem (6)

Initialization: Set parameters β, ϵ and ρ;
Initialize variables zβ,0, uβ,0, yβ,0;
k ← 0.
while ∥zβ,k+1−zβ,k∥

∥zβ,k∥ > ϵ do
z-update:

zβ,k+1 = argmin
z∈RNM×NE

+

1
2γk
∥z − zβ,k∥2Mk

+
〈
z − zβ,k, ∂zLρ,β(zβ,k, uβ,k, yβ,k)

〉
M−1

k

.

u-update:

uβ,k+1 = β
ρ−1+β

X + ρ−1

ρ−1+β
prox(ρ−1+β)g(X),

where X = Azβ,k+1 +
yβ,k

ρ
.

y-update:

yβ,k+1 = yβ,k + ρ(Azβ,k+1 − uβ,k+1).

k ← k + 1;
end
Result: Primal variable zβ,k (density of materials)

Therein, γk denotes a variable stepsize and Mk a variable
preconditioner, with ⟨x, y⟩M = xTMy and ∥.∥M the induced
metric. Both are set using the 0SR1-metric [21], which yields
fast convergence and a closed-form solution for the z-update.
The sequence {zβ,k}k converges to a critical point z⋆β of the
smoothed objective function Φβ as k →∞, and z⋆β to a criti-
cal point of the original objective function Φ, as β → 0. The
proofs of these claims, detailed in a technical report, are omit-
ted due to space limitation. In practice, one can set β = 0,
which yields a closed-form u-update.

4. EXPERIMENTS

Experimental setting To evaluate our method, we designed
a synthetic imaging setup where the sinograms are randomly
generated accordingly to Eq. (1), where:
• The ground truth data z is composed of three different
homogeneous materials (NM = 3): water, bone and metal,
based on the Shepp–Logan [1] and the Jaw [24] phantoms;
• The spatial resolution is set to 256× 256;
• The X-ray source intensity I and the mass attenuation
coefficients S are piecewise constant functions defined on
NE=10 equi-width energy intervals [20, 30], [30, 40] . . . ,
[110, 120] keV;
• The expected number of photons emitted by the source∑NE

ℓ=1 Iℓ is set to 106 for all positions and angles;
• The angles defining the discrete Radon transform R are
uniformly sampled every 1.5◦ in [0◦, 180◦) (Np = 120);
• All gains are set to 1: rp = 1,∀p ∈ Np;
• All biases are set to 0: bp = 0,∀p ∈ Np.
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Fig. 3: Comparison of different regularization strategies for the proposed method. The first row shows the average attenuation coeffi-
cients reconstruction for different settings, along with the SSIM score in parenthesis. The second row shows a close-up view of a dental area
where metal implants are present.

Besides, we set λ = 103 for regularization on z and λ =
102 for regularization on zS, ρ = 1011 and ϵ = 2× 10−8.

Baseline comparison To illustrate the behavior of the pro-
posed method, we carry out in Fig. 1 and the first row of
Fig. 2 a comparison with four monochromatic models: FBP,
LI, TV-ℓ2 [5] and TV-KL [6]. To qualitatively compare these
results, we display for each method the reconstructed mean
attenuation coefficients µ̄ =

∑NE
ℓ=1 µℓ. To quantitatively as-

sess the quality of the reconstructions, we consider the struc-
tural similarity scores (SSIM) [25]. Unsurprisingly, FBP and
LI do not successfuly remove beam hardening streaks. To-
tal variation-regularized variational methods, even based on
a monochromatic approximation, yield better visual results
with much less high frequency artifacts. Notice however that
low frequency artifacts remain for TV-ℓ2 and TV-KL: this re-
sults in a noticeable loss of contrast (light grey areas look
darker), which means that a post-processing is required to re-
store the proper scale of the estimated attenuation coefficients
if it is used for clinical purpose. On the contrary, the proposed
method is almost artifact-free and without loss of contrast.
This simple example shows that using a polychromatic model
along with an appropriate data fidelity term helps dealing with
beam hardening artifacts arising from metal implants.

Low-photon counting experiments Next, we scrutinize the
MAR performance of the proposed model for low-photon
counting CT. As a result of changing the photon counting
of the X-ray emitter, some of the following parameters have
been changed accordingly: the expected number of emitted
photons is set to

∑NE
ℓ=1 Iℓ = 105, and we further set λ = 100,

ρ = 1010 and ϵ = 10−9. The reconstruction results for our
approach and other methods are shown in the second row of
Fig. 2. We observe how the streak artifacts are now even more
striking for most methods, except for the proposed one. For
the monochromatic models TV-ℓ2 and TV-KL, there is again
a tradeoff (controlled by λ) between a very regular solution
with a large contrast loss and a more faithful result with some
strong local artifacts which the SSIM score favors.

Choosing the regularizer To demonstrate the flexibility of
the proposed variational framework, we investigate in Fig. 3
the reconstruction result while using other regularization
functions. Therein, we compare the results of several variants
of total variation: the aforementioned anisotropic TV (ATV),
but also isotropic TV (ITV) and vectorial TV (VTV), which
are defined in our setting as:

PITV(z) = ∥∇z∥2, PVTV(z) =

N∑
j=1

√∑NE
l=1 ∥∇zj,l∥2. (8)

All these regularization terms can be applied on either the un-
known density z or on the attenuation coefficients of the ob-
ject zS, resulting in 6 different regularization terms: ATV(z),
ITV(z), VTV(z), ATV(zS), ITV(zS), VTV(zS). Overall, in
these experiments on the Jaw Phantom, the anisotropic ver-
sion of TV is the one which gives the higher SSIM values.
Moreover, regularizing the densities z seems to yield slightly
better results than regularizing the attenuation coefficients.

5. CONCLUSION

In this paper, we proposed a principled variational approach
for metal artefact reduction in X-ray CT. Two major causes of
beam hardening and scattering have been taken into consider-
ation in the forward mathematical model: Poisson noise and
the polychromatic X-ray source. This model is incorporated
into a regularized inverse problem to account for noisy obser-
vations. We have then proposed an algorithm based on the
augmented Lagrangian framework. The proposed approach
is flexible enough to incorporate a variety of regularization
terms, and numerical results demonstrate its interest for metal
artefact reduction for different scenarios and in comparison
of standard techniques. Future extensions of this work will
focus on automatic parameter tuning, and combination with
deep learning frameworks.
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