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Ground truth (b) FBP (0.71) (c) LI (0.88) (d) TV-ℓ2 (0.91) (e) TV-KL (0.91) (f) Proposed (0.99) Fig. 1: Illustration of beam hardening artifacts in CT, when using various methods for reconstruction. (a) Ground truth image (Shepp-Logan phantom [1]) representing the average polychromatic attenuation coefficients μ. Two metallic structures (white squares) are present. (b) Filtered back projection (FBP) [2] gives rise to severe metal streak artifacts. (c) Linear interpolation (LI) [3] does not reconstruct the metal parts. (d,e) Using a monochromatic TV-regularized [4] model with different data fidelity term (ℓ2 [5] and KL [6]) yields a better reconstruction, though at the price of a loss of contrast. (f) The proposed polychromatic reconstruction is almost artifact-free, and preserves contrast. SSIM Scores are indicated in parentheses (higher is better).

INTRODUCTION

X-ray computed tomography (CT) is a noninvasive procedure which uses light ray to image the inside of, e.g., the human body, without damaging it. Unfortunately, the presence of metals e.g., medical implants, may induce severe artifacts in the reconstructed images, as illustrated by Fig. 1. Metal artifacts take the form of dark, bright streaks or cupping, and they occur due to beam hardening, Poisson noise, scattering, and the nonlinear partial volume effect [START_REF] De Man | Metal streak artifacts in X-ray computed tomography: a simulation study[END_REF]. The objective of the present work is to present a flexible variational framework for metal artifact reduction (MAR) in computed tomography, by taking into account both beam hardening and Poisson noise.

Lambert-Beer law [START_REF] Beer | Bestimmung der absorption des rothen lichts in farbigen flussigkeiten[END_REF][START_REF] Lambert | Lamberts Photometrie (Photometria, sive De mensura et gradibus luminis, colorum et umbrae)[END_REF] models the attenuation of a light ray as a function of the attenuation coefficients of the materials through which the beam passes. Typically, metals have high density and high atom number, and thus, can absorb more photons than, e.g., water or human tissue [START_REF] Haidekker | Medical Imaging Technology[END_REF]. When the X-ray source is monochromatic, all photons have the same energy. Lambert-Beer's law can then be rewritten as a linear system of equations in the unknown attenuation coefficients, which can be solved using established techniques such as filtered back projection [START_REF] Kuchment | The Radon Transform and Medical Imaging[END_REF]. However, X-ray sources have in fact a polychromatic nature [START_REF] Park | Computed tomographic beam-hardening artefacts: mathematical characterization and analysis[END_REF], which causes the beam hardening phenomenon: the mean energy of the beam may be higher after penetrating the object i.e., the X-ray beam is "hardened". This is due to photons with lower energy being more easily absorbed than photons with higher energy, turning the total attenuation coefficient into a nonlinear function of all the attenuation coefficients along the ray. Additionally, the photon counting process is ruled by nonlinear statistics: the number of photons measured by each CT detector approximately follows a Poisson distribution. Therefore, low photon counts (which arise, e.g., after crossing metals) will cause higher relative statistical errors [START_REF] Hsieh | Computed tomography: principles, design, artifacts, and recent advances[END_REF]. This second nonlinear phenomenon further amplifies metal artifacts in FBP reconstruction (see Fig. 2). In order to limit them, the CT reconstruction process should thus account both for the polychromatic nature of X-rays, and for the Poisson statistics of photon counting. However, the nonlinear inverse problem to solve becomes much more difficult. Related works Metal artifacts in CT may be tackled either by improving the design of the scanning system so as to provide polychromatic data, by correcting the obtained sinogram, or by improving the robustness of the algorithmic CTreconstruction process. Dual energy CT [START_REF] Yu | Dual-energy CT-based monochromatic imaging[END_REF] and spectral CT [START_REF] Persson | Reconstruction of spectral CT images[END_REF] focus on providing a new design of the CT system. Beam hardening correction (BHC) methods [START_REF] Brooks | Beam hardening in xray reconstructive tomography[END_REF] aim at correcting the sinogram mismatch between the reality of a polychromatic X-ray source and the assumption of a monochromatic X-ray source. Sinogram correction may also be considered as an interpolation problem, using techniques such as linear interpolation (LI) [START_REF] Kalender | Reduction of CT artifacts caused by metallic implants[END_REF], normalized MAR [START_REF] Meyer | Normalized metal artifact reduction (NMAR) in computed tomography[END_REF], or frequency split MAR [START_REF] Meyer | Frequency split metal artifact reduction (FSMAR) in computed tomography[END_REF]. Yet, these approaches aim at removing the presence of metal from the final image, while such information might be of high interest, e.g. for radiation therapy dosimetry. To overcome these shortcomings, MAR reconstruction models such as [START_REF] Van Gompel | Iterative correction of beam hardening artifacts in CT[END_REF] build upon a proper nonlinear forward model for the attenuation of X-rays, and aim at iteratively solving the inverse problem without modifying the sinogram and preserving the metal. This is also the point of view adapted in our work.

Contributions We present a novel, principled CT-reconstruction method which:

• arises as the natural maximum a posteriori (MAP) approach for inverting a forward CT model under Poisson noise and a polychromatic X-ray source;

• is flexible enough to handle a variety of non-smooth regularization terms, e.g. total variation (TV) [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF];

• combines building blocks from the alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], proximal alternating linearized minimization (PALM) [START_REF] Bolte | Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence[END_REF] and 0SR1-metric quasi-Newton method [START_REF] Becker | On Quasi-Newton Forward-Backward Splitting: Proximal Calculus and Convergence[END_REF], resulting in a very fast algorithm;

• is empirically shown to drastically reduce metal artifacts.

PROPOSED MODEL

Polychromatic CT consists in recovering the attenuation co-

efficients µ ∈ R N ×NE +
, where N is the number of pixels, and N E is the number of different energy levels at which the object is imaged. To limit the number of unknowns, we assume that this object is composed of N M known materials, and we denote by S ∈ R NM×NE the matrix containing the corresponding mass attenuation coefficients (expressed in cm 2 .g -1 ). This matrix is known, resorting e.g. to the NIST database [START_REF] Hubbell | Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest[END_REF]. The unknown attenuation coefficients can thus be considered as a linear combination of the known reference coefficients: µ = z S, such that the problem comes down to estimating the unknown densities (in g.cm -3 ) stored in z ∈ R N ×NM + .

To estimate these densities, we are given a set of N p noisy observations y p , p ∈ {1, . . . , N p } acquired under different projection angles. We model the sensor responses as random variables Y p following a Poisson distribution corresponding to the number of actual photons reaching the detector. Combining this with Lambert-Beer law yields the following forward polychromatic CT model, ∀p ∈ {1, . . . , N p }:

Y p ∼ P r p NE ℓ=1 I ℓ exp -(RzS) p,ℓ + b p , (1) 
where P denotes the Poisson distribution, r p ∈ R and b p ∈ R denote the known gain and background bias on the p-th beam projection angle, I ℓ denotes the source intensity at energy level ℓ, and R ∈ R Np×N denotes the Radon matrix encoding the projective geometry of the CT device.

Resorting to Bayesian inference, the MAP estimate is given by: z * ∈ argmin

z∈R N ×N M + f (z) + λP (z). (2) 
Therein, the data fidelity term f is constructed from the negative log-likelihood associated with (1):

f (z) = ⟨b + r ⊙ e -RzS I, 1 Np ⟩ -⟨log b + r ⊙ e -RzS I , y⟩, (3) 
with ⊙, e • and log the element-wise multiplication, exponential and logarithm operators, respectively. The regularization term P , on the other hand, stands for some prior knowledge on the solution. In this work we consider, among other things:

P (z) = ∥∇z∥ 1 and P (z) = ∥∇zS∥ 1 , (4) 
where ∇ : R N ×NM → R 2N ×NM stands for a linear operator approximating the image gradient through finite differences.

They correspond, respectively, to anisotropic TV (ATV) regularization [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] on the densities z and on the attenuation coefficients µ = zS. Next, we introduce an efficient algorithm for solving (2).

OPTIMIZATION

Incorporating the positivity constraint by means of the indicator function of the positive orthant denoted h = ι R N ×Nm + , we first rewrite problem (2) into a generic formulation as

min z {Φ(z) = f (z) + h(z) + g • A(z)} , (5) 
where in the case of ATV regularization, g(•) = λ∥ • ∥ 1 and A(z) = ∇z or A(z) = ∇zS. Instead of minimizing Φ(z) directly, we consider a smoothed version of (5), parameterized by β > 0:

min z Φ β (z) = f (z) + h(z) + β g • A(z) , (6) 
where β g is the Moreau-Yosida envelope of g [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF], defined as β g(u) = min x g(x) + 1 2β ∥u -x∥ 2 . The argmin is called the proximity operator [START_REF] Bolte | Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence[END_REF] of the function ( β g), and it is defined as proxβ g (x) = argmin u g(u) + 1 2β ∥u -x∥ 2 . To solve (6), we introduce an algorithm based on the alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. To this end, we consider the augmented Lagrangian L ρ,β (z, u, y) associated with (6):

L ρ,β (z, u, y) = f (z) + h(z) + β g(u) + ⟨y, Az -u⟩ + ρ 2 ∥Az -u∥ 2 (7) 
where ρ > 0. Then, we iterate the following sequence: (zupdate) update the primal variable z as the Moreau proximity operator of the linearized augmented Lagrangian at the previous state; (u-update) update the auxiliary variable u by minimizing the augmented Lagrangian; and (y-update) perform a Lagrange multiplier step for y. Using proximal alternating linearized minimization (PALM) [START_REF] Bolte | Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence[END_REF] and the 0SR1-metric quasi-Newton method [START_REF] Becker | On Quasi-Newton Forward-Backward Splitting: Proximal Calculus and Convergence[END_REF] for acceleration, we eventually obtain Algorithm 1.

Algorithm 1: Optimization of the problem (6)

Initialization: Set parameters β, ϵ and ρ; Initialize variables z β,0 , u β,0 , y β,0 ; k ← 0. while

∥z β,k+1 -z β,k ∥ ∥z β,k ∥ > ϵ do z-update: z β,k+1 = argmin z∈R N M ×N E + 1 2γ k ∥z -z β,k ∥ 2 M k + z -z β,k , ∂zL ρ,β (z β,k , u β,k , y β,k ) M -1 k .
u-update:

u β,k+1 = β ρ -1 +β X + ρ -1 ρ -1 +β prox (ρ -1 +β)g (X)
, where X = Az β,k+1 + y β,k ρ . y-update:

y β,k+1 = y β,k + ρ(Az β,k+1 -u β,k+1 ). k ← k + 1;
end Result: Primal variable z β,k (density of materials) Therein, γ k denotes a variable stepsize and M k a variable preconditioner, with ⟨x, y⟩ M = x T M y and ∥.∥ M the induced metric. Both are set using the 0SR1-metric [START_REF] Becker | On Quasi-Newton Forward-Backward Splitting: Proximal Calculus and Convergence[END_REF], which yields fast convergence and a closed-form solution for the z-update. The sequence {z β,k } k converges to a critical point z ⋆ β of the smoothed objective function Φ β as k → ∞, and z ⋆ β to a critical point of the original objective function Φ, as β → 0. The proofs of these claims, detailed in a technical report, are omitted due to space limitation. In practice, one can set β = 0, which yields a closed-form u-update.

EXPERIMENTS

Experimental setting To evaluate our method, we designed a synthetic imaging setup where the sinograms are randomly generated accordingly to Eq. ( 1), where: • The ground truth data z is composed of three different homogeneous materials (N M = 3): water, bone and metal, based on the Shepp-Logan [START_REF] Shepp | The fourier reconstruction of a head section[END_REF] and the Jaw [START_REF]Jaw phantom[END_REF] phantoms; • The spatial resolution is set to 256 × 256; • The X-ray source intensity I and the mass attenuation coefficients S are piecewise constant functions defined on N E =10 equi-width energy intervals [START_REF] Bolte | Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence[END_REF]30] Besides, we set λ = 10 3 for regularization on z and λ = 10 2 for regularization on zS, ρ = 10 11 and ϵ = 2 × 10 -8 .

Baseline comparison

To illustrate the behavior of the proposed method, we carry out in Fig. 1 and the first row of Fig. 2 a comparison with four monochromatic models: FBP, LI, TV-ℓ 2 [START_REF] Wang | A new alternating minimization algorithm for total variation image reconstruction[END_REF] and TV-KL [START_REF] Willett | Poisson image reconstruction with total variation regularization[END_REF]. To qualitatively compare these results, we display for each method the reconstructed mean attenuation coefficients μ = NE ℓ=1 µ ℓ . To quantitatively assess the quality of the reconstructions, we consider the structural similarity scores (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. Unsurprisingly, FBP and LI do not successfuly remove beam hardening streaks. Total variation-regularized variational methods, even based on a monochromatic approximation, yield better visual results with much less high frequency artifacts. Notice however that low frequency artifacts remain for TV-ℓ 2 and TV-KL: this results in a noticeable loss of contrast (light grey areas look darker), which means that a post-processing is required to restore the proper scale of the estimated attenuation coefficients if it is used for clinical purpose. On the contrary, the proposed method is almost artifact-free and without loss of contrast. This simple example shows that using a polychromatic model along with an appropriate data fidelity term helps dealing with beam hardening artifacts arising from metal implants.

Low-photon counting experiments Next, we scrutinize the MAR performance of the proposed model for low-photon counting CT. As a result of changing the photon counting of the X-ray emitter, some of the following parameters have been changed accordingly: the expected number of emitted photons is set to NE ℓ=1 I ℓ = 10 5 , and we further set λ = 100, ρ = 10 10 and ϵ = 10 -9 . The reconstruction results for our approach and other methods are shown in the second row of Fig. 2. We observe how the streak artifacts are now even more striking for most methods, except for the proposed one. For the monochromatic models TV-ℓ 2 and TV-KL, there is again a tradeoff (controlled by λ) between a very regular solution with a large contrast loss and a more faithful result with some strong local artifacts which the SSIM score favors.

Choosing the regularizer To demonstrate the flexibility of the proposed variational framework, we investigate in Fig. 3 the reconstruction result while using other regularization functions. Therein, we compare the results of several variants of total variation: the aforementioned anisotropic TV (ATV), but also isotropic TV (ITV) and vectorial TV (VTV), which are defined in our setting as:

P ITV (z) = ∥∇z∥ 2 , P VTV (z) = N j=1 NE l=1 ∥∇z j,l ∥ 2 . (8)
All these regularization terms can be applied on either the unknown density z or on the attenuation coefficients of the object zS, resulting in 6 different regularization terms: ATV(z), ITV(z), VTV(z), ATV(zS), ITV(zS), VTV(zS). Overall, in these experiments on the Jaw Phantom, the anisotropic version of TV is the one which gives the higher SSIM values. Moreover, regularizing the densities z seems to yield slightly better results than regularizing the attenuation coefficients.

CONCLUSION

In this paper, we proposed a principled variational approach for metal artefact reduction in X-ray CT. Two major causes of beam hardening and scattering have been taken into consideration in the forward mathematical model: Poisson noise and the polychromatic X-ray source. This model is incorporated into a regularized inverse problem to account for noisy observations. We have then proposed an algorithm based on the augmented Lagrangian framework. The proposed approach is flexible enough to incorporate a variety of regularization terms, and numerical results demonstrate its interest for metal artefact reduction for different scenarios and in comparison of standard techniques. Future extensions of this work will focus on automatic parameter tuning, and combination with deep learning frameworks.
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 2 Fig. 2: Comparison of beam hardening artifacts reduction methods in CT, in normal (first row) or low (second row) photon counts,with the same notations as in Fig.1(displaying the reconstructed average attenuation coefficients μ). Low photon counts further amplify metal artifacts in existing CT reconstruction techniques, while the proposed one remains robust even in this challenging setting.

Fig. 3 :

 3 Fig. 3: Comparison of different regularization strategies for the proposed method. The first row shows the average attenuation coefficients reconstruction for different settings, along with the SSIM score in parenthesis. The second row shows a close-up view of a dental area where metal implants are present.
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