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Hybrid quantum mechanics / molecular mechanics (QM/MM) models are successful at describing the properties and re-
activity of biological macromolecules. Combining ab initio QM/MM methods and periodic boundary conditions (PBC)
is currently the optimal approach for modeling chemical processes in an infinite environment, but frequently these
models are too time-consuming for general applicability to biological systems in solution. Here, we define a simple
and efficient electrostatic embedding QM/MM model in PBC combining the benefits of electrostatic potential fitted
(ESPF) atomic charges and particle-mesh Ewald sums, that can efficiently treat systems of arbitrary size at a reason-
able computational cost. To illustrate this, we apply our scheme to extract the lowest singlet excitation energies from a
model for Arabidopsis thaliana cryptochrome 1 containing circa 93000 atoms, reproducing accurately the experimental
absorption maximum.

Embedding methods in quantum chemistry allow a substan-
tial reduction of the overall computational cost by treating a
small subsystem of atoms with an accurate theoretical method
while treating the rest of the system in a cheaper and often less
accurate approach.1 In such embedding schemes, the total en-
ergy is computed as the sum of energies of the constituent sub-
systems plus some interaction terms between each fragment.2

One of the most popular embedding methods for treating bi-
ological macromolecules is quantum mechanics / molecular
mechanics (QM/MM),3 in which the energy is expressed as,

E = EQM +EMM +E int , (1)

where EQM is the energy of the (small) QM subsystem, EMM
is the energy of the (large) MM subsystem, and E int is the
interaction term between them. Usually, the interaction is
electrostatic, complemented with other pairwise atom-atom
interactions. The majority of ab initio QM/MM methods have
been formulated employing an electrostatic Coulomb interac-
tion between QM and MM subsystems, the complete macro-
molecular system being in the gas phase.4 The accuracy of
such QM embeddings depends on the locality of the property
of interest, as well as parameters like the size of the QM sub-
system or constraints imposed on the MM atom positions.5

There exist several attempts in the literature to formulate an ab
initio QM/MM method for macromolecules surrounded by an
extended environment (solvent, membrane, etc.), either using
non-periodic continuum models6 or periodic boundary condi-
tions (PBC) employing the Ewald summation technique.7–22

Most QM/MM PBC formulations rely on atomic point
charges for efficiently representing the long-range QM-QM
interactions such as Mulliken,7,8,11,12,15,19, ChElPG,14,16,21,
ESP,17 or other types.20,22 Such methods mainly use Ewald
pair potentials,7,14,16,17,21, standard Ewald,8,10,13,20 or exploit
the efficiency of particle-mesh Ewald (PME) method.23–25

The PME, which is state-of-the-art algorithm for efficiently
calculating long-range interactions in large MM systems,
has mainly been implemented for semi-empirical QM/MM
methods.11,12,15,19 We are aware of only two recent articles
reporting its use in ab initio QM/MM methods18,22.

Here, we combine the advantages of electrostatic potential

FIG. 1. Schematic representation of the electrostatic embedding
QM/MM PBC method described here for a chromophore (QM) in
water (MM). In the original cell (center), the QM subsystem is rep-
resented by a quantum charge density. In the replica cells, the QM
atoms are represented as ESPF point charges (green circles). MM
atoms are represented with blue and red point charges. All point
charges are used to polarize the QM density in the original cell.

fitted (ESPF) charges,4,26 and PME potentials to formulate
an efficient ab initio electrostatic embedding QM/MM+PBC
method, defining a unified consistent embedding energy from
an interaction Hamiltonian. Our formulation takes full com-
putational advantage of PME, it reduces the number of in-
tegrals to be computed and can be applied to any ab ini-
tio self-consistent field method. The definition of the ESPF
QM/MM+PBC interaction (see Fig. 1) and interaction hamil-
tonian is based on the pairwise electrostatic interaction energy
between QM and MM subsystems (see the detailed deriva-
tion in the supporting information). The interaction energy in
terms of potentials is defined as,

E int =
NQM

∑
A

qAΦ
MM
A +

1
2

NQM

∑
A

qAΦ
QM
A , (2)

where the first term accounts for the QM-MM interactions and
the second term for the QM-QM interactions, with the 1/2
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factor to avoid double counting. NQM is the number of QM
atoms, qA = ZA −QA are their partial charges, defined as the
difference between the atomic charge ZA and the electronic
charge population QA = ∑µν Pµν QA,µν , obtained as the con-
traction between the quantum density matrix P and an atomic
charge operator matrix QA to be defined later on. The nota-
tion ΦA is a short-hand notation for the external potential felt
at atom position rA, that is, ΦA = Φ(rA). We can obtain an
interaction operator by deriving the interaction energy with
respect to any density matrix element Pµν , leading to

hint
µν =−

NQM

∑
A

QA,µν

(
Φ

MM
A +Φ

QM
A

)
. (3)

Up to this point, this is a general formulation for a QM/MM
embedding when using charge operators including QM-QM
interactions. The different QM/MM models are then distin-
guished by defining the MM energy, the interaction energy
and the external electrostatic potential from a classical elec-
trostatic interaction. For example, in QM/MM models of pair-
wise Coulomb interactions without PBC, the QM/MM proce-
dure is defined given an external electrostatic potential

ΦA = Φ
MM
A =

NMM

∑
j=1

q j∣∣rA j
∣∣ . (4)

Here, rA j = rA − r j is the distance vector between the QM
particle A and the MM particle j. In this case, Φ

QM
A = 0, and

therefore the interaction energy and operator matrix elements
can be computed given the potential generated by MM atoms
on QM centers.

The use of PBC allows one to account for the long-range in-
teractions and to build a model of the macromolecule interac-
tions with the solvent. However, the introduction of Coulomb
interaction with replicas results in slow and conditionally con-
vergent interaction energy.27 The Ewald sums guarantee a
faster convergence of the energy sums over replica cells. A
general Ewald sum formulation in terms of potentials for N
interacting charges can be written as

EEw =
1
2

N

∑
α

qα

(
Φ

short
α +Φ

long
α +Φ

sel f
α

)
. (5)

Here, Φα has to be understood as the electrostatic potential
calculated at the position of atom α in the original cell, that is,
Φα = Φ(rα0), where rα0 = rα +0L, L being the length of the
cubic unitary cell. The first term is computed in real space and
recovers the short-range part of the electrostatic interaction.
The short-range potential is given by

Φ
short
α = ∑

n=0

N

∑
′

γ=1

qγ∣∣rαγn
∣∣erfc(β

∣∣rαγn
∣∣) , (6)

where rαγn = rα − rγ +nL. The first summation over n vec-
tors runs over the original box and all the replicas, whereas
the sum over γ runs over all the N particles in the system.
The prime in the second sum means that we are excluding

those terms for which α = γ when n = 0. Finally, the comple-
mentary error function, erfc(x) = 1−erf(x), ensures the range
separation and the convergence control through the parameter
β . The second term in Eq. 5 corresponds to the long-range
energy. The corresponding long-range potential, computed in
the reciprocal space, is defined as

Φ
long
α =

1
πV ∑

m̸=0

e
− π2m2

β2

m2 ℜ
[
e−2πim·rα S(m)

]
, (7)

where ℜ[z] is the real part of z. The summation runs over all
the reciprocal space vectors m, using the so-called structure
factors S(m), which are defined as

S(m) =
N

∑
γ=1

qγ e2πim·rγ . (8)

Note that the long-range energy includes the spurious inter-
action of charges with themselves in the original cell. Such
contribution is removed by the self-interaction energy, cor-
responding to the third term in Eq. 5. The associated self-
interaction potential is

Φ
sel f
α =− 2β√

π
qα . (9)

Applying the general Ewald sums formula in the QM/MM
framework defined in Eqs. 2 and 3 requires new expressions
for the MM energy, the interaction energy, and potential. The
purely MM electrostatic energy contribution can be easily ob-
tained by restricting indexes α and γ in Eqs. 5 to 9 to MM
atoms only. The Ewald interaction energy can be obtained by
extracting the terms defined in Eq. 2 from Eq. 5, which results
in

E int,Ew =
NQM

∑
A

qA

(
Φ

short,MM
A +Φ

long,MM
A

)
(10)

+
1
2

NQM

∑
A

qA

(
Φ

short,QM
A +Φ

long,QM
A +Φ

sel f ,QM
A

)
,

recalling that the first term includes the interaction of QM
charges with MM charges, while the second term includes
the interaction of QM charges in the original cell with QM
charges in the replicas. The Ewald potentials in Eq. 10 need to
be defined for such definition of the interaction. Note that, at
variance with the non-PBC case, electrostatic potentials now
includes both a MM and a QM parts. The MM potential con-
tains short and long-range contributions, defined as

Φ
short,MM
A = ∑

n=0

NMM

∑
i=1

qi

|rAin|
erfc(β |rAin|)

Φ
long,MM
A =

1
πV ∑

m̸=0

e
−π2m2

β2

m2 ℜ
[
e−2πim·rASMM(m)

]
. (11)

where SMM(m) refers to the structure factor (Eq. 8) in which
the index α is restricted to MM charges. The self-correction
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correction is not necessary in the MM potential, since the
long-range term involves particles of different nature: one
QM, A, and all the MM ones. The QM potential includes
three terms,

Φ
short,QM
A = ∑

n ̸=0

NQM

∑
B=1

qB

|rABn|
erfc(β |rABn|)

Φ
long,QM
A =

1
πV ∑

m̸=0

e
−π2m2

β2

m2 ℜ
[
e−2πim·rA SQM(m)

]
−

NQM

∑
B ̸=A

qB

|rAB0|
erf(β |rAB0|)

Φ
sel f ,QM
A =− 2β√

π
qA (12)

where SQM(m) refers to the structure factor (Eq. 8) in which
the index α is restricted to QM charges. In the short-range
potential, the sum n only runs over the replicas since the QM-
QM interactions in the original cell are already included in the
QM calculation. Similarly, the long-range potential needs to
be corrected by subtracting the long-range QM-QM interac-
tions in the original cell.7

While Ewald summation is undoubtedly useful for handling
long-range interactions inside the PBC framework, its original
formulation scales like O(N2) and becomes soon computa-
tionally unfeasible when the MM system is large. As a conse-
quence, different approaches, aimed at reducing the algorith-
mic complexity have been proposed.28–31 Here, we make use
of the Smooth Particle Mesh Ewald (SPME) method, firstly
introduced by Pedersen and coworkers,23–25 which features
a reduced complexity of O(N logN). The main idea behind
SPME consists in approximating the structure factor (Eq. 8)
by interpolating the complex exponentials on a numerical grid
of B-splines.25 In practice, the QM atomic charges are pro-
jected along with the MM atomic charges in the PME grid,
from which one can construct the total long-range potential,
Φ

long
A which corresponds to the sum of the long-range QM

and MM contributions to the potential, besides the correction
due to the long-range QM-QM interactions in the original cell,
which can be added a posteriori as a correction term with the
same expression as in Eq. 12. Thus, no modification of the
original SPME algorithm is required.

The electrostatic potentials (Eqs. 11-12) can be used to con-
struct the interaction operator (Eq. 3) once the charge opera-
tor is defined. Here, we define the charge operator via ESPF
method which allows an efficient mapping of the quantum
electron density to a classical point charge description com-
patible with the most common forcefields.32 In the ESPF
procedure, the charge operator matrix elements are fitted to
QM-only electrostatic integrals computed on a numerical grid
constructed around the molecule.26 For obtaining the charge
operators used in Eq. 3, a system of linear equations,

∑
A

QA,µν

|rk − rA|
=

∫
d3r χ

∗
µ(r)

1
|r− rk|

χν(r) , (13)
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FIG. 2. (top) ESPF QM/MM PBC model of Arabidopsis thaliana
cryptochrome 1 in a water box. The isoalloxazine, D396, and W400
(62 atoms in total) are treated at the QM level, with the link atoms
shown in purple; (bottom, left) Excitation energies for several snap-
shots computed with restricted open-shell Kohn-Sham and time-
dependent density functional theory. The mean values (dashed lines)
are compared to experimental values from Ref. 33.

has to be solved. The rk are the point coordinates of a Lebedev
atom-centered grid defined around the molecule, and χ are the
atomic orbitals. A correction is added to the charge operator
matrix elements to ensure the conservation of the total charge
of the QM subsystem.4

The presented methodology, combining SPME and ESPF
charges, represents a consistent formulation between the en-
ergy and the Hamiltonian and an efficient method for com-
puting the ground and excited state energies. To test this, we
extract the lowest singlet excitation energies of 43 snapshots
of Arabidopsis thaliana cryptochrome 1 (see Fig. 2 and the
supporting information for the computational details). On the
one hand, time-dependent density functional theory (TDDFT)
has been performed on top of the QM/MM PBC ground state
Kohn-Sham reference. In this model, we consider that the
external potential is fixed in the excited state calculations,
and therefore, the only excitation process occurs in the orig-
inal cell, while the replicas remain in the ground state. No
response terms have been added to the TDDFT equations.
This approximate model, for which the average excitation en-
ergy is around 412 nm ± 26 nm, is in excellent accordance
with the experimental absorption maximum of 420 nm.33 The
blue shift can be attributed to the lack of vibronic effects,
which are known to be important in the absorption spectra
of isoalloxazine.34 On the other hand, we have implemented
a restricted open-shell Kohn-Sham (ROKS) model to extract
the lowest energy excited state directly from the SCF.35 In
this model, both the chromophore in the original cell and the
replicas are excited. In this case, the average excitation energy
is 518 nm ± 35 nm, thus underestimated by around 100 nm
with respect to experiments. Of course, this model is limited
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by the fact that excited states are represented by a single con-
figuration, but also the probably unrealistic situation that the
photoexcited protein is surrounded by simultaneously excited
proteins in the replicas.

In conclusion, we have presented an efficient QM/MM for-
mulation in periodic boundary conditions based on electro-
static potential fitted charges and smooth particle-mesh Ewald
sums. It is worth noting that in the QM/MM framework
defined by Eqs. 2 and 3 is general, and extra energy terms
are easily included as potential sources (see for example the
derivation of surface-dipole and the non-neutral cell potentials
in the supporting information). The method scales approxi-
mately like O(α ·N1.3

MM) (α = 4 ·10−6, see supporting informa-
tion for further details), opening up the route for a general ap-
plication of QM/MD simulations in large-sized periodic sys-
tems. This will require the computation of analytic energy
first derivatives, which we plan to develop in the future.
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