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Abstract—In this paper, we describe practical results of an
algorithmic trading prototype and performance optimization
related experiments for end-user code generation from cus-
tomized UML models. Our prototype includes high-performance
computing solutions for algorithmic trading systems. The per-
formance prediction feature can help the traders to understand
how powerful the machine they need when they have a very
diverse portfolio or help hem to define the max size of their
portfolio for a given machine. The traders can use our Watch
Monitor for supervising the PNL (Profit and Loss) of the portfolio
and other information so far. A portfolio management module
could be added later for aggregating all strategies information
together in order to maintain the risk level of the portfolio
automatically. The prototype can be modified by end-users on
the UML model level and then used with automatic Java code
generation and execution within the Eclipse IDE. An advanced
coding environment was developed for providing a visual and
declarative approach to trading algorithms development. We
learned exact and quantitative conditions under which the system
can adapt to varying data and hardware parameters.

Keywords-UML; code generation; high performance comput-
ing; BSP; performance prediction; parallel programming; algo-
rithmic trading

I. INTRODUCTION

Algorithmic trading systems that are widely used by many
institutional organizations or individual traders play a more
and more important role in our global economic system
to manage market impact, risk, and to provide liquidity to
the market. A professional trader need to diversify his/her
portfolio with different trading strategies (i.e. algorithms) in
different markets with different stocks in order to limit the
risk in a controllable level. This is a computation-intensive
and time-critical work for today’s markets. The most common
way is that the quantitative analysts (Quant) works in pairs
with software (SW) engineers for coupling trading algorithms
design, development and deployment. Therefore, Quant han-
dles the financial aspect and SW engineer deals with computer
performance and code quality.

However, a Quant would not always find his ideal SW
engineer for solving a complex algorithm in an high perfor-

mance way. Facing to this issue, a first step was proposed
by Li and Hains [2], [3] using the SGL software-hardware
bridging model to simplify the parallel development. Inspired
by SGL’s performance prediction feature and divide-assign-
bridge philosophy, we propose in this paper an adaptive
code generation as a second step for raising the simplicity
from parallel program development to algorithmic trading
design. We describe here an algorithmic trading prototype and
propose performance optimization of end-user code generation
from customized UML models. Our prototype includes high-
performance computing solutions for algorithmic trading sys-
tems. The performance prediction feature can help the traders
to understand how powerful the machine they need when they
have a very diverse portfolio or help hem to define the max
size of their portfolio for a given machine.

The prototype can be modified by end-users on the UML
model level and then used with automatic Java code generation
and execution within the Eclipse IDE. An advanced coding
environment was developed for providing a visual and declar-
ative approach to trading algorithms development.

The initial ”Algorithmic Trading System” prototype (Pro-
totype) was developed within a Software Engineering Project
course at University of British Columbia Okanagan Campus
(UBC O) in Canada, in collaboration with the international stu-
dent research project sponsors, Laboratoire d’Algorithmique,
Complexité et Logique (LACL) in Université Paris-Est (UPE)
in France. It was developed as a new approach for special-
purpose programming language code generation from UML
models by designing and programming a new plugin for
Eclipse Modeling Tools (Indigo SR2) IDE, and a developed
library of predefined functions for the plugin [4]. Not all ex-
periments, related to parallel code execution and performance
optimization were finished in the Prototype by UBC O students
in 2012, because of lack of time and some other issues.
In current paper students of COSC 470 SW Engineering
Capstone Project course at Computer Science Department,
Okanagan College with support from UPE finished imple-
mentation of bulk-synchronous parallel algorithm (BSP) and
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Fig. 1. End-User Customizable UML Diagram of the On-line Stock
Information Sources.

Fig. 2. Console output.

conducted experiments to prove performance optimization for
the Prototype.

The goal in developing the Prototype was to enable end-
users to modify the software application without programming
or support from programmers. Additional goal was to improve
performance of the application by implementing adaptive code
generation, depends on architecture of the computer (number
CPUs and cores). Current code generation tool was built
upon with respect to functionality requested by clients for
a hedge fund in Paris. The Prototype allows end-users to
create simple business related UML diagram (see a UML
diagram example in Fig. 1) and to generate a Java code used in
calculating moving averages [6] in text mode within operating
system (OS) console (see Fig. 2) and in graphical mode (see
Fig. 3). The Eclipse Modeling Framework (EMF) [9] and Java
programming language were used for the Prototype. The tool
can be run in both modes by an end-user in an OS console
without EMF, but EMF is required to update UML model
(configuration of the tool) and to regenerate java code by the
developed plugin from graphical user interface of the EMF
(Fig. 4).

Our main contributions include: 1) a visual and declarative
approach that allows end-user (Quant) create parallel programs
(algorithmic trading strategies) without strong coding skills;
2) a software prototype that proves the feasibility of fast
generating error-less code; 3) an auto-adaptive approach that

Fig. 3. Real-Time Stock Watch Monitor with the Graphical Stock Information
Diagram.

Fig. 4. Code Generation Plugin.

generated parallel system can obtain the best performance by
adapting to varying data and hardware parameters.

The rest of this paper is organized as follows: In Section II
we discuss the original system design with the information
about our research background very briefly, in Section III
we discuss performance optimization and related issues, in
Section IV we discuss our resent testing results (Fall 2014)
and BSP code implementation for the Prototype, in Section V
we discuss related research papers and implementations, in
Section VI we summarize our current research results, and in
Section VII we discuss our future work.

II. CODE GENERATION SYSTEM DESIGN

UML diagrams were used for the front-end and Java as the
back-end to generate executable code directly from high-level
specification. Investigation into specifying algorithmic trading
strategies using UML business models (see Fig. 1), model-
driven development [13], and automatic code generation for
general purpose programming languages was carried out [4],
[6].

The resulting Prototype is capable of generating code from
UML business models and predefined Java libraries; code
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Fig. 5. Example of the .ecore XML file.

Fig. 6. The Parsed Data Example.

generation is used to produce executable code from models,
as discussed in [13].

A Java code-generating Prototype takes information from a
UML diagram (see Fig. 1) and creates real-time Java appli-
cations, supporting parallel processing [4], [6]. EMF is used
to create a specification for the plugin by using UML models.
Using the EMF plug-in the Prototype is able to produce a UML
diagram of the specifications, which is stored as an XML file
known locally as an .ecore file (see an example in Fig. 5).
The relevant information is extracted from the .ecore file by
using a simple Java parser, which gathers the required methods
from the library and adds them to the generated output. The
parsed data example is shown in Fig. 6. The code generator
then calls the parser which takes UML data and creates the
Stock Watch Monitor Java application (Stock Watch). The
Stock Watch application collects data from Yahoo in real-time
and produces a table with the data results, as shown in Fig. 3.
More information about the first Prototype implementation can
be obtained from the project documentation [6] and from [4].

III. OPTIMIZATION BY CODE GENERATION

Having demonstrated a small but realistic system based on
our ”no-programming” paradigm, we wish to extend its adap-
tive features to non-functional properties like performance.

As a first step in this direction, we have conducted experi-
ments in measuring performance to learn exact and quantita-
tive conditions under which the system can adapt to varying
data and hardware parameters. In the first experiment, we show
how financial-data stream processing can scale to a variable
number of incoming streams and/or a variable number of hard-
ware processing elements. Globally the performance model is
a linear relationship between processing rate, number of cores
and number of incoming streams. But the experiments also
reveal exact threshold values related to real-time processing
and Java garbage collection. For each parameter we describe
a method whereby our automatic code generation can adapt a
priori to optimize performance. We also outline the scheme’s
adaptation to distributed-memory parallel processing in the
presence of multiple streams and multiple processing elements.

A. Initial experimental setup

The performance experiments we have conducted consisted
in processing streams of real-time financial data from Yahoo
finance (dated June 2012) incoming at the rate of 1 record per
second. Each input stream is a sequence of quotation values for
one stock “symbol” among the following: GE, INTC, YHOO,
NVDA, ZNGA, EBAY, MU, ORCL, GOOG, MSFT, RIMM,
DELL, RY, BNS, CSCO, SIRI.

An automated trading strategy will generally process in-
coming data one at a time, accumulate some statistics, and
issue orders BUY, SELL, or NIL. We have generated test
“strategies” that compute a standard deviation on the stock
value and, to balance the very-low frequency of incoming data
(HFT or High-frequency trading often runs at maximal rates of
hundreds of input-order loops per second), we have artificially
repeated the computation a large number of times within each
input-output loop. Each loop’s computational result is of no
importance but it represents a typical computation in HFT
since trading automata are often built from decision trees using
sliding statistics on the input stream(s).

The generated Java code was run on a Samsung portable
computer with a 2-core Intel i5 processor running at 1.8GHz
with 4GB of RAM and Windows 7 Pro as 64-bit O.S.

B. Performance data and analysis

Each performance experiment takes as input between 1 and
16 streams, each one corresponding to a particular stock sym-
bol. One processing thread has been generated to process each
input stream, as described above and without synchronization
between them.

For each thread and at each loop we have measured the
accumulated system time Tacc in ms since the beginning of
execution. Data is buffered locally so there is no internet
transport delay to account for. The initial record is already
loaded when computation starts and it is assumed that a new
one arrives every second. The real-time constraint for each
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Fig. 7. Overtime vs Ticks.

thread is thus to maintain Tacc < (1000ms)×n where n is the
number of loop runs since the start. The application-specific
performance value we have computed is called overtime and
is computed as Tacc − (1000ms) × n. In other words the
experiments will measure the conditions for keeping overtime
negative i.e. staying within real-time operations where the
process issues market orders no slower than market data is
received.

For example the 1-symbol (one financial instrument data
stream) experiment used the input stream MSFT, one thread,
and was measured for 38 loop runs (see Fig. 7). The graph
shows the evolution of overtime with the number of loops runs
executed. The full set of measurements for this experiment is
given in the Table III.

Processing remains within real-time for 26 seconds and
then takes a very steep evolution to go up to 4.5 seconds
behind real-time. We attribute this sharp effect to Java garbage-
collection marked GC! in the table, as it is visibly not the
effect of an accumulating (time) delay, rather the effect of
accumulating space in the thread’s work space.

A defensive approach to this phenomenon would be to
measure the accumulating memory consumption, allowing a-
priori prediction of the garbage-collection start time. However,
this would only allow the system to preventively stop this
thread before it damages overall performance, not to prevent
the end of its’ real-time execution. A more aggressive approach
would be for our system to generate code in a language where
memory management is explicit (C, C++, Ada or OCaml with
mutable variables) so that the memory leak is avoided.

The 2-symbol experiment used two input streams, instru-
ments MSFT and INTC, two independent threads to process
them, parameters Tacc, n and overtime were tabulated for each
one up to 30 seconds. Because of the unpredictable behaviour
of thread scheduling, it is not practical to predict/observe
reliably which threads will be slowest to arrive at each
loop cycle. In this case we compute overtime as formula
Tacc − (1000ms) × n for the slowest thread at each loop.

TABLE I
PERFORMANCE DATA FOR THE 1-INSTRUMENT EXPERIMENT

Symbol Exec(ms) Nb. loops Over-time(ms)

MSFT 1866 1 -134
MSFT 2857 2 -143
MSFT 3913 3 -87
MSFT 4902 4 -98
MSFT 5904 5 -96
MSFT 6908 6 -92
MSFT 7902 7 -98
. . . . . . . . . . . .
MSFT 23906 23 -94
MSFT 24910 24 -90
MSFT 25905 25 -95
MSFT 26942 26 -58
MSFT 28039 27 39 (GC!)
MSFT 29041 28 41 (GC!)
MSFT 30216 29 216 (GC!)
MSFT 31215 30 215 (GC!)
MSFT 32349 31 349 (GC!)
MSFT 33382 32 382 (GC!)
MSFT 34394 33 394 (GC!)
MSFT 35392 34 392 (GC!)
MSFT 36381 35 381 (GC!)
MSFT 37415 36 415 (GC!)
MSFT 38409 37 409 (GC!)
MSFT 39450 38 450 (GC!)

Fig. 8. Two-Symbol Experiment: Overtime vs Ticks.

The graph below shows the evolution of overtime with the
number of loop runs executed.

With this setup, computation stays well within real-time by
a margin of more than 300 ms, but the last few ticks show
a degradation that might announce the garbage collection we
had observed in the 1-symbol measurements.

The 4-symbol experiment used input streams for instru-
ments GE, GOOG, INTC, MSFT, and also four independent
streams to process them over 30 seconds. This time the
overtime stayed at about twice that for two symbols and two
threads: from -988ms, deteriorating slowly up to -971, and
then a sharp deterioration during the last few seconds. The
progress from one to two and four threads appear to show
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Fig. 9. Sixteen-Symbol Experiment: Overtime vs Ticks.

that overtime is (negatively) proportional to the number of
streams and threads, but that is not the case. The 8-symbol
experiment used input streams for instruments GE, DELL,
SIRI, YHOO, GOOG, INTC, EBAY, MSFT and as many
independent threads to process them. The overtime values were
in fact very close to those for the 4-symbol experiment. Over
30 seconds they varied from -956ms to -155 very regularly.
We explain this progression by the accumulation of delays
that can be projected to non real-time processing after about
40 seconds in this case.

The 16-symbol experiment used input streams for instru-
ments GE, INTC, YHOO, NVDA, ZNGA, EBAY, MU, ORCL,
GOOG, MSFT, RIMM, DELL, RY, BNS, CSCO, SIRI, and
sixteen independent streams to process them over 30 seconds.
The evolution of overtime is displayed in the graph below.

The progress is clearly linear and we explain it by the
accumulation of processing delays at every loop. A subset of
the full measurement data for this experiment is shown in the
Table II.

Similar observations were made with 10, 12 and 14 instru-
ments: when the two hardware cores are sufficiently loaded,
overtime evolves linearly with time. However, the initial level
of overtime is not easily predicted from the number of symbol
and threads.

C. Scaling up the hardware and number of streams

Let us now outline solutions for scaling up the experiments
so that more threads can be processed, and (positive) overtime
delayed for as long as possible, then ultimately avoided.

Let us assume that garbage collection can be avoided by
explicit memory management in the target language of our
generated code.

Assume also a fair thread scheduler or, more natural for
parallel processing, processes in place of threads. This will
result in the elimination of variability between the various
thread processing loops; in normal situations each one should

TABLE II
PARTIAL PERFORMANCE DATA FOR THE 16-INSTRUMENT EXPERIMENT.

”MAX” IS THE MAXIMUM OVER-TIME OVER THE 16 INSTRUMENTS
(SYMBOLS).

symbol Exec(ms) N. loops Over-time Max.

GE 778 1 -1222 -595
INTC 1233 1 -767 -
YHOO 1234 1 -766 -
NVDA 1248 1 -752 -
ZNGA 1249 1 -751 -
EBAY 1267 1 -733 -
MU 1301 1 -699 -
ORCL 1323 1 -677 -
GOOG 1336 1 -664 -
MSFT 1341 1 -659 -
RIMM 1343 1 -657 -
DELL 1343 1 -657 -
RY 1369 1 -631 -
BNS 1371 1 -629 -
CSCO 1404 1 -596 -
SIRI 1405 1 -595 -
GE 2034 2 -966 - 593
INTC 2226 2 -774 -
YHOO 2233 2 -767 -
ZNGA 2253 2 -747 -
MU 2297 2 -703 -
ORCL 2318 2 -682 -
NVDA 2321 2 -679 -
GOOG 2329 2 -671 -
MSFT 2341 2 -659 -
DELL 2355 2 -645 -
RIMM 2364 2 -636 -
BAY 2375 2 -625 -
BNS 2387 2 -613 -
. . . . . . . . . . . . . . .
ORCL 31603 30 603 841
RY 31615 30 615 -
DELL 31647 30 647 -
MU 31660 30 660 -
ZNGA 31661 30 661 -
GE 31688 30 688 -
BNS 31714 30 714 -
RIMM 31715 30 715 -
SIRI 31722 30 722 -
GOOG 31723 30 723 -
INTC 31723 30 723 -
YHOO 31745 30 745 -
EBAY 31746 30 746 -
NVDA 31777 30 777 -
MSFT 31809 30 809 -
CSCO 31841 30 841 -
. . . . . . . . . . . . . . .

run at the same speed, hence avoiding load-balancing problems
even on a distributed-memory architecture.

If our 16-symbol experiment was run on a 4, 6, or 8-core
system, the portion of timing responsible for the accumulated
delay would be divided, respectively, by 2, 3, or 4. This would
lead to a linear (in fact affine) decrease with the number of
cores, a trend that would be visible in the initial parts of
those experiments. If a large architecture is benchmarked in
this manner, it becomes a simple matter to extrapolate the
sufficient number of cores to process our streams in guaranteed
real-time. Since those measurements are quickly and easily
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performed within a few minutes (or in advance) they can
become part of the automatic code generation process and thus
ensure real-time processing for a known duration. This type
of optimization can be completely automated and even hidden
from the user if enough hardware resources are available.

D. Application to parallel portfolio analysis

Financial risk management and some trading strategies
require real-time computations that process a whole portfolio
of symbols at each input-decision loop. In pure computational
terms this amounts to a situation similar to the one we have
experimented with so far, except that a single trading strategy
program inputs data from all streams in the portfolio and
outputs related trading orders repeatedly. If the number of
input streams is sufficiently large like in our 8- to 16-symbol
experiments, then it is possible to structure a strategy as a
parallel program whose processes input (subsets) of stream
values, compute locally, communicate and arrive at a global
trading decision based on global statistics.

Such a loop body is typical of data-parallel computation
and our recent work on the SGL model [1], [2] has shown
how to benchmark and extrapolate performance for such
programs. SGL is a variant of Valiant’s Bulk-synchronous
parallel processing (BSP) and a generalization of Map-Reduce.
It can deal with hierarchical and heterogeneous architectures
that are now very common. It assumes algorithm regularities
like those we have observed here, benchmarks the architec-
ture’s loop-processing speed, network latency and network
bandwidth. From those parameters and the main data size
factors it becomes possible to extrapolate performance to very
large, even unavailable architectures in a reliable way. We
therefore propose that the automatic code generation scheme
presented in this paper can be adapted with an SGL-like
performance model and data-parallel code generation, coupled
with automatic adaptation to given performance constraints.

An early example of this concept is shown in graph Fig.
10 where we have experimented in April-May 2014 with an
increasing number of threads and symbols (for 2 -, 4-, 8-, 16-
and 23-symbol experiments) on Windows 2008 R2 VMWare
Guest with 2 Intel Xeon CPUs (4 cores each). The curve’s
minimum is what our code-generation system can target for
its chosen number of threads when time has to be minimized.
The curve can also serve as performance prediction when the
user wishes to set an arbitrary, non-optimal number of threads.

IV. TESTING RESULTS WITH BSP PARALLEL PROCESSING

The performance experiments we have conducted 4
consisted in processing streams of real-time financial data
from Yahoo finance (dated September 2014) taken from
Yahoo as quickly as the hardware and software on either end
would allow. Each input stream is a sequence of quotation
values for one stock ”symbol” among the following: GOOG,
IBM, BBRY, DEL, APPL, CBL, CERE, CERN, CBOE, IGR,
CBG, CAW.

Fig. 10. Experimental Results with an Increasing Number of Threads.

A. The implementation of multi-threading

Parallelization was implemented by the multi-threading
module with Bulk Synchronous Parallel (BSP) algorithm.
After program initialization where the stock list is populated
and the child threads are spawned we implemented an
algorithm for the parallel section to use it’s own id to
determine what stocks it needed to grab to divide the number
of stocks between the different threads. When the individual
threads complete they inform the parent which can then
continue and create the final output for the program (Fig. 11).

Program Processes:

HPCMulti
The range of the number of threads is from 1 to 8 (hard

coded just for the experiment only). The range of stocks to
load is from 4 to 24. The program will then print out basic
information stating that all the data collected and placed into
a new file called output.log for the statistical analysis. The
program goes ahead and creates located space for timestamps
and stocks determined by the number of threads the user
wishes to use. The program then executes the implementation
of JavaBSP from the class StockProcess.

Main Thread
The StockProcess class creates each thread determined by

the number of threads from the initial user input from the
command line. Splitting work between each of the threads.
This then executes BSP SYNC() allowing us to wait until
the parallel threads are complete with their work.

Parallel Threads
Each thread will create a new WebParser connection to the

Yahoo Finance API provided by Yahoo. The thread then cre-
ates a storage of Strings from the list of pre-initialized stocks
in the equation (totalStocks / totalThreads) * (currentThread)
to (totalStocks / totalThreads) * (currentThread + 1). Total
stocks is the initial argument from the user. Total threads is
the initial argument from the user. Current thread is labeled
by each thread starting from zero. This will give the stocks
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Fig. 11. Class Diagram of the BSP implementation.

from a list of stocks divided along each thread. If the number
of total stocks is not evenly divisible by the total number of
threads, the results are unpredictable. When the results are
unpredictable, the deviation information maybe effected.

Once the stocks have been loaded, the process precedes to
go through each stock and process it. Each processing of a
stock will happen 10 times just to collect statistical information
in our experimental setup, following the procedure: date,
getInfo, date, create timestamp. The dates specify the start
date of the process and the end date of the process. The
getInfo represents retrieving the information from WebParser’s
URLConnection. Once the information is processed the thread
will create a TimeStamp object to hold the millisecond differ-
ence it took to process the stock. The thread then inserts the
stocks into a static variable in HPCMulti with the equation:
((currentThread / totalThreads) * totalStocks) + currentStock.
Current thread is the current thread number. Total threads is
the total number of threads the user specified. Total stocks is
the total number of stocks the user specified. Current stock
is the numerical value of the current stock processed in this
thread.

The thread precedes to output information to output.log with
the following information: Stock information and total time
taken for that stock.

The thread then completes and closes.

WebParser
The WebParser initializes with a built in default format

for processing Stocks: Name, Bid price and Ask price.
The object then waits for information to fill it’s list of
Stock abbreviations, example: ”GOOG”, ”IBM” and ”BBRY.
The information described are quotes, defined in the Yahoo
exchange API. The connection is set as simple as web-
Parser.setConnection(WebParser.YAHOO FINANCE);. When
the WebParser is asked to parse a Stock, it requires which stock
to be processed, listing each quote from zero to the number

of total quotes minus one. The getInfo() then connects to the
Yahoo Finance API grabbing a CSV file and parses it into a
Stock object using the FileIn class.

An automated trading strategy will generally process in-
coming data one at a time, accumulate some statistics, and
issue orders BUY, SELL, or NIL. For each stock, we sent 10
requests for its stock information NAME, ASK PRICE and
BID PRICE. The time for each request, the average for each
group of requests, as well as the total time to gather the data
across all threads is output and used to derive comparisons
between different amounts of threads.

The generated Java code was run on a AMD Athlon II X4
640 3.00GHz processor, with 8GB ram, on 64 bit Windows
8.1

B. Performance data and analysis

In this section we have the results of our various experi-
ments at various thread.

1-thread experiment using 4 symbols. The time for each
individual request is given in Table III. The average of the
stock groups and the total time for the entire experiment is
given in Table IV.

The average request time is 100ms, and in a hypothetical
average case the total time to do one request for each stock
would take 400ms. There are a number of spikes in the
requests times, the highest being 235ms, but as hoped these
outliers are smoothed over by the preponderance of other data.

The 2-thread experiment, tables V and VI, used the same
4 symbols as the 1-thread experiment and the overall request
average was higher, but as expected the total time it took for
all the requests to be executed went down. The difference
between 1 and 2 threads total times is not a perect 2:1 ratio,
but this can be explained by the additional overhead required
for spawning a new thread and the higher average request time.

The 4-thread experiment, VII used the same 4 symbols as
the 1 and 2 thread experiments and the overall request average
was lower this time, but as expected the total time it took for
all the requests to be executed went down. The difference
between 1 and 4 threads total times worked out to a perfect
4:1 ratio, the additional overhead created by spawning new
threads offset by the lower average request time.

The experiment was run at the following symbol and thread
amounts:

We gathered the results of the experiment and put it into
the following graph Fig. 12.

The graphs represent the total time passed processing the
data versus the number of stocks processed. The Y-axis is
the total time that was taken to process the information in
Milliseconds. The X-axis are the number of Stocks that were
processed. The legend indicates the number of threads that
the program was run with. The standard deviation points are
determined by the program being processed multiple times
providing the deviation result.

The specific deviation locations at 2 and 4 threads at stock
6 and 18 are not shown because of the testing environment
not including values where stocks need to be divided evenly
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TABLE III
PERFORMANCE DATA FOR THE 1-THREAD 4-SYMBOL EXPERIMENT

Symbol Thread ID Exec(ms)

GOOG 0 235
GOOG 0 140
GOOG 0 215
GOOG 0 100
GOOG 0 105
GOOG 0 100
GOOG 0 100
GOOG 0 100
GOOG 0 110
GOOG 0 100
IBM 0 100
IBM 0 100
IBM 0 100
IBM 0 100
IBM 0 100
IBM 0 100
IBM 0 100
IBM 0 110
IBM 0 100
IBM 0 100
BBRY 0 100
BBRY 0 100
BBRY 0 100
BBRY 0 100
BBRY 0 105
BBRY 0 105
BBRY 0 105
BBRY 0 95
BBRY 0 105
BBRY 0 100
DEL 0 105
DEL 0 100
DEL 0 100
DEL 0 110
DEL 0 100
DEL 0 105
DEL 0 100
DEL 0 105
DEL 0 100
DEL 0 100

TABLE IV
AVERAGE DATA AND TOTAL TIME FOR THE 1-THREAD 4-SYMBOL

EXPERIMENT

Symbol Thread ID Average Exec(ms)

GOOG 0 100
IBM 0 100
BBRY 0 100
DEL 0 100

Total:400ms Average: 100ms

TABLE V
PERFORMANCE DATA FOR THE 2-THREAD 4-SYMBOL EXPERIMENT

Symbol Thread ID Exec(ms)

GOOG 0 200
GOOG 0 95
GOOG 0 100
GOOG 0 100
BBRY 1 565
GOOG 0 100
BBRY 1 90
GOOG 0 100
BBRY 1 95
GOOG 0 100
BBRY 1 90
GOOG 0 100
BBRY 1 110
GOOG 0 100
BBRY 1 95
GOOG 0 105
BBRY 1 90
BBRY 1 90
IBM 0 105
BBRY 1 90
IBM 0 100
BBRY 1 90
IBM 0 105
DEL 1 85
IBM 0 100
DEL 1 90
IBM 0 110
DEL 1 100
IBM 0 100
DEL 1 90
IBM 0 100
DEL 1 85
DEL 1 85
IBM 0 100
DEL 1 90
IBM 0 100
DEL 1 165
IBM 0 145
DEL 1 100
DEL 1 100

TABLE VI
AVERAGE DATA AND TOTAL TIME FOR THE 2-THREAD 4-SYMBOL

EXPERIMENT

Symbol Thread ID Average Exec(ms)

GOOG 0 105
IBM 0 145
BBRY 1 90
DEL 1 100

Total:250ms Average:110ms

TABLE VII
AVERAGE DATA AND TOTAL TIME FOR THE 4-THREAD 4-SYMBOL

EXPERIMENT

Symbol Thread ID Average Exec(ms)

GOOG 0 100
IBM 1 90
BBRY 2 90
DEL 3 90

Total:100ms Average:92ms
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TABLE VIII
SYMBOLS AND THREADS

Threads Symbols

1 4
1 6
1 8
1 12
1 16
1 18
1 24
2 4
2 8
2 12
2 16
2 24
3 6
3 12
3 18
3 24
4 4
4 8
4 12
4 16
4 24

Fig. 12. Time Vs Threads

into the number of total threads. This applies with 3 threads at
stock 4 and 16. As can be seen by the graphs as the number
of threads increases, the total time to process information
decreases.

As Fig. 12 shows, this increase is not linear but appears
approximately as a quadratic growth in terms of the number
of stocks processed for a given, fixed number of threads.

More precisely there are intervals where this relationship
is linear but there is an upward inflexion around 16 stocks,
irrespective of the number of threads.

In the dimension of processing scalability, we observe that
the increment from 1 to 2, 3 and 4 threads for a fixed number
of stocks almost always produces a non-negligible speedup.

But this speedup is very variable, from nil (8 stocks, 2 to
3 threads) to super-linear (24 stocks, 1 to 4 threads) and not
easily predictable from our current experiments.

As a result, our ultimate goal of giving cost-vs-speedup
predictions to users of our system will still require more exper-
iments and analysis. Nevertheless, the experiments presented
here clearly show that overheads can be non-negligible despite
the apparently trivial nature of this parallel processing scheme,

but that very significant speedups occur already with a small
number of threads and cores.

V. RELATED WORKS

In [13] the authors describe model-driven software engineer-
ing, which allows constructing software from abstractions that
are more closely fitted to the problem domain and that better
hide technical details of the solution space. They used code
generation to produce executable code from these abstractions.
They have successfully generated EJB code from a class
model, and are looking to further evaluate the process with
more case studies, as well as in a comparative study with other
generation approaches [13]. We performed code generation,
not from a class diagram, but from a much higher abstract
level - a business UML model, which has just business related
information. We combined the UML business related model
(business classes only - Fig. 1) with a library of predeveloped
Java functions and optimized them for parallel execution.

Many software users perform tasks that vary on a yearly,
monthly, or even daily basis. They explain that users software
needs are diverse, complex, and frequently changing. Profes-
sional software developers cannot directly meet all of these
needs because of their limited domain knowledge and because
their development processes are too slow. As a result, end-user
programming (EUP) helps to solve this problem by enabling
end users to create their own programs. They defined end-user
programmers (EUP) as people who write programs, but not as
their primary job function they write programs in support of
achieving their main goal, which is something else, such as
accounting, designing a web page, doing office work, scientific
research, entertainment, or engineering [17]. In our research
we tried to minimize programming work for the EUP by using
model driven development and parallel coding implementation
for multi-core systems, which are widely used now in Industry.

While users in the past were satisfied with relatively simple
interactive models of computation, such as spreadsheets and
other business applications, current users are now looking
to automate custom data manipulations such as reformatting,
reorganizing, simple calculations, or data cleaning. While such
users may have a good command of the interactive function-
ality of their application, they often lack the expertise, time,
or inclination to develop software specifically for their task.
These solutions will (at least initially) focus on the automatic
generation of relatively small, but still useful solutions to
everyday problems [18]. We tried to give a tool for automatic
data collection and analysis to the end-users of a hedge fund
in Paris, which allows them to update internal code and
application behaviour without any coding skills by using a
UML business model and predefined Java functions only. Our
first part of the project was finished successfully and our client
was satisfied by the Prototype.

VI. CONCLUSION

We have provided here a case study for performance opti-
mization and code generation from customized UML models,
for the example of a real-time algorithmic trading system.
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During the case study, an advanced coding environment was
developed for providing a visual and declarative approach
used in the development of algorithmic trading strategies.
This visual and declarative approach prevents errors related
to different tools, and greatly simplifies developer challenges
arising from the need to focus on financial algorithms, parallel
computing and coding, etc. The coding environment utilizes
a visual and declarative approach to developing algorithmic
trading strategies from financial specifications. A new library
of mathematical functions for stock interactions and a code
generating plug-in for Eclipse were developed and imple-
mented.

Additionally, we have conducted performance experiments
to determine exact and quantitative conditions under which
the system can adapt to varying data and hardware parameters.
From these experiments we have shown how the financial-data
stream processing can scale to a variable number of incoming
streams and/or a variable number of hardware processing
elements. For each parameter, we describe a method whereby
our automatic code generation can adapt a priori to optimize
performance.

We also outlined the scheme’s adaptation to distributed-
memory parallel processing in the presence of multiple streams
and multiple processing elements. The automatic code gener-
ation scheme presented in this paper can be adapted with an
SGL-like performance model and data-parallel code genera-
tion, coupled with automatic adaptation to given performance
constraints.

VII. FUTURE WORK

The Prototype is a part of the ongoing joint research
and software engineering project between Laboratory of
d’Algorithmique, Complexité et Logique Université Paris-
Est Créteil, France and Okanagan College, Canada. UBC O
students initially started the Prototype in 2012 in COSC 319
SW Engineering Project [15]. In this project, we are attempted
to design and implement an end-user programming environ-
ment where end-user code generation is accomplished through
interaction with customized business UML models, and a
predefined library of functions with performance optimization
for multicore systems.

Additionally, the high-performance computing solutions are
to be implemented for algorithmic trading systems from high-
level abstract models to low-level programming languages
by implementing the Low Level Virtual Machine compiler
infrastructure [5].

The current version of the Prototype was implemented for
the Windows OS only, but our clients wish to use multi-
platform implementation, especially based on Linux platforms
with automating scaling for multi-CPU and multicore systems,
what is going to be accomplished in our next releases.
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