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Abstract

In this article, we study the size of strong basins of attractions for the non-convex sparse spike
estimation problem. We first extend previous results to obtain a lower bound on the size of sets
where gradient descent converges with a linear rate to the minimum of the non-convex objective
functional. We then give an upper bound that shows that the dependency of the lower bound
with respect to the number of measurements reflects well the true size of basins of attraction for
random Gaussian Fourier measurements. These theoretical results are confirmed by experiments.

1 Introduction

In the space M of finite signed measures over
Rd, we aim at recovering a sum of spikes x0 =∑k

i=1 aiδti (where δti is the Dirac measure at posi-
tion ti ∈ Rd, i.e. a spike of amplitude 1) from
measurements

y = Ax0 + e. (1)

The operator A is a linear observation operator
defined by the duality products (Ax0)l = 〈x0, αl〉
where (αl)

m
l=1 is a collection of m functions, typ-

ically sinusoids for Fourier measurements. The
vector y ∈ Cm contains the m noisy measurements
and e is an observation noise of finite energy. This
problem, called the off-the-grid super-resolution
problem [1], has seen many theoretical develop-
ments in the last years [2–6] with a wide range
of applications such as microscopy [7] and audio
signal processing [8].

Under a restricted isometry property (RIP) on
A the following minimization estimates x0 [9] in a
stable manner:

x∗ ∈ argmin
x∈Σk,ε

‖Ax− y‖22, (2)

where Σk,ε is a low-dimensional set modeling a
separation constraint on the k Dirac measures.
The model Σk,ε can be parametrized by a set
Θk,ε ⊂ RD using the parametrization function φ
defined by

φ(a1, . . . , ak, t1, . . . , tk) :=

k∑
i=1

aiδti , (3)

with a = (a1, . . . , ak) ∈ Rk and (t1, . . . , tk) ∈
(Rd)k, i.e. Σk,ε = φ(Θk,ε) with
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2 On strong basins of attraction

Θk,ε := {θ = (a, t1, . . . , tk) ∈ Rk(d+1),

a ∈ Rk, ti ∈ Rd,
∀i 6= j, ‖ti − tj‖2 > ε, ‖ti‖2 ≤ R}.

(4)

The process of calculating a solution of Prob-
lem (2) is called the ideal decoder. Using the
function φ, it can be smoothly parametrized as a
minimization in Rk(d+1): we rewrite (2) as

θ∗ ∈ argmin
θ∈Θk,ε

g(θ), with g(θ) = ‖Aφ(θ)− y‖22.

(5)
In [10, 11], explicit basins of attraction of θ∗ are
given, that is, sets where one can choose to initial-
ize the gradient descent with fixed step size to have
convergence to θ∗. These studies of the geometry
of the minimizers of the non-convex problems led
to fast practical algorithms for sparse spike recov-
ery [12, 13]. The size of basins of attractions is
systematically linked with the number of measure-
ments through restricted isometry constants of A.
It was shown that their size is increasing (possibly
not strictly) with respect to the number of mea-
surements in a random measurement setting. This
result was given in a very general setting requiring
mostly a smooth parametrization function φ and
an open set Θk,ε.

However, the sizes of basins of attractions
given in [11] are only lower bounds, i.e. they lead
to a sufficent condition for convergence. The ques-
tion whether larger basins of attraction possibly
exist remains open. Moreover, basins of attraction
were defined as sets where only convergence of gra-
dient descent (with fixed step size) is guaranteed,
which led to typical sublinear convergence rates
within such basins.

Contributions

In this article, we study the tightness of previous
results on the size of basins of attraction for non-
convex off-the-grid super-resolution.

• We begin by showing in Section 3, for the esti-
mation of spike positions, that the sizes of basins
of attractions given in [10, 11] can be slightly
decreased to obtain strong basins of attraction,
that is, basins of attraction leading to conver-
gence of gradient descent with fixed step size

with a linear convergence rate. The proof relies
on a typical local strong convexity argument.

• In Section 4, in the context of random Gaussian
Fourier measurements, we then give an upper
bound on the sizes of sets where g is strongly
convex: we show on the example of the recov-
ery of one spike (i.e. the most favorable case)
that the asymptotic behaviour of the size of
basins of attraction where g is strongly convex
(with respect to the number of measurements)
matches the lower bound up to a constant.
Given the chain of arguments (which are possi-
bly not tight) leading to lower bounds on sizes
of basins of attraction, it is remarkable that we
can get such a match. Our result is obtained
by a direct study of the Hessian of g using con-
centration inequalities (the fundamental tool
also involved in RIP-based recovery guarantees)
which is also of independent interest.

• In Section 5, we perform synthetic experiments,
which confirm the results obtained in the theo-
retical study.

2 Tools

In this section, we recall some definitions and
results that are required for our study. RIP-based
theory requires the introduction of a norm that is
appropriate for measuring objects in Σk,ε.

Definition 2.1 (Kernel, scalar product and
norm). For finite signed measures over Rd, the
Hilbert structure induced by a kernel h (a smooth
function from Rd × Rd to R) is defined by the
following scalar product between two finite signed
measures π1, π2 on Rd:

〈π1, π2〉h =

∫
Rd

∫
Rd
h(t1, t2) dπ1(t1) dπ2(t2). (6)

We can consequently define

‖π1‖2h = 〈π1, π1〉h. (7)

Remark that we have the relation

‖π1 + π2‖2h = ‖π1‖2h + 2〈π1, π2〉h + ‖π2‖2h. (8)

Measuring distances with the help of ‖ · ‖h can
be viewed as measuring distances at a given “res-
olution” adjusted with the kernel h. Typically we
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use a Gaussian kernel h(t1, t2) = e−
‖t1−t2‖

2
2

2λ2 . The
kernel accuracy (i.e. its ability to distinguish two
spikes) increases with respect to λ.

We now define the Restricted Isometry Prop-
erty (RIP). Recall that the secant set of the model
set Σ is Σ− Σ := {x− y : x ∈ Σ, y ∈ Σ}.

Definition 2.2 (Restricted Isometry Property).
A has the RIP on Σ−Σ with respect to ‖ · ‖h with
constant γ if for all x ∈ Σ− Σ,

(1− γ)‖x‖2h ≤ ‖Ax‖22 ≤ (1 + γ)‖x‖2h. (9)

As mentioned in the introduction, this prop-
erty implies the success of the non-convex decoder
(2). It is also guaranteed that weighted Gaussian
random Fourier measurements (i.e. Fourier mea-
surements performed on frequencies drawn inde-
pendently according to a Gaussian distribution)
have this property if the number of measurements
is large enough (see Section 3 for the explicit
bound on m). This property originates from the
fact that Gaussian random Fourier measurements
have a mean kernel that is Gaussian in the follow-
ing sense : for x ∈ Σ − Σ, E(‖Ax‖22) ∝ ‖x‖2h (see
e.g. Lemma 4.1).

To calculate derivatives of g, we need to weakly
differentiate Dirac measures.

Definition 2.3 (Directional derivatives of Dirac
measures). Let v ∈ Rd with ‖v‖2 = 1. The dis-
tribution δ′t0,v is defined by 〈δ′t0,v, f〉 = −f ′v(t0).

for f ∈ C1(Rd), where f ′v(t0) is the derivative of f
at t0 in the direction v (we also write ∂vf(t0) :=

f ′v(t0)). It is the limit of νη = − δt0+ηv−δt0
η for η →

0+ in the distributional sense: for all h ∈ C1(Rd),∫
R h(t) dνη(t) →η→0+ 〈δ′t0,v, h〉. We will also use

the notation ∂vδt0 = δ′t0,v.
Similarly, the distribution δ′′t0,v is defined by

〈δ′′t0,v, f〉 = f ′′v (t0) for f ∈ C2(Rd) (the second
order derivative in direction v). The distribution
δ′′t0,v1,v2 is defined by 〈δ′′t0,v1,v2 , f〉 = f ′′v1,v2(t0) for

f ∈ C2(Rd) where f ′′v1,v2(t0) is the second-order
derivative of f at t0 in successive directions v1 and
v2. We will also use the notation ∂2

vδt0 = δ′′t0,v.

With this definition, we can calculate direc-
tional derivatives of elements of Σ with respect
to their positions. For fixed amplitudes a1, . . . , ak
and t = (t1, . . . , tk) ∈ Rkd consider φ(t) =

∑k
i=1 aiδti . For u = (u1, . . . , uk) ∈ Rkd, we have

∂uφ(t) =
∑k

i=1 ai∂uiδti .
The secant set of Σk,ε is composed of sums of

dipoles.

Definition 2.4 ((ε-)Dipole, separation). An ε-
dipole (noted dipole for simplicity) is a measure
π = a1δt1 − a2δt2 where ‖t1 − t2‖2 ≤ ε. Two
dipoles π1 = a1δt1 − a2δt2 and π2 = a3δt3 − a4δt4
are ε-separated if their supports are strictly ε-
separated (with respect to the `2-norm on Rd), i.e.
if ‖t1− t3‖2 > ε, ‖t2− t3‖2 > ε, ‖t1− t4‖2 > ε and
‖t2 − t4‖2 > ε.

We can define additionally generalized dipoles
that can be constructed as limits of dipoles.

Definition 2.5 (Generalized dipole). A general-
ized dipole ν is either a dipole or a distribution of
order 1 of the form a1δt + a2δ

′
t,v. Two generalized

dipoles are ε-separated if their support are strictly
ε-separated (with respect to the `2-norm on Rd).

We recall the following Lemma from [10,
Lemma 2.4]:

Lemma 2.1. Suppose that for all two ε-separated
dipoles π1, π2, 〈π1, π2〉h ≤ µh‖π1‖h‖π2‖h (where
µh is called the mutual coherence). Then for k
ε-separated generalized dipoles ν1, . . . , νk such that
maxi ‖νi‖h > 0, we have

1−(k−1)µh ≤
‖
∑k

i=1 νi‖2h∑k
i=1 ‖νi‖2h

≤ 1+(k−1)µh. (10)

We use the following definition of subexponen-
tial random variable (taken from [14] which uses
explicit constants compared to [15]).

Definition 2.6. We say that a random variable is
subexponential X with parameter a > 0 if E(X) =
0 and for all |s| ≤ 1/a,

E[esX ] ≤ es
2a2/2. (11)

In that case, we denote X ∼ subE(a).
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If X is Gaussian, one can see that X2 −
E(X2) is subexponential [14, 15]. Also, the follow-
ing Bernstein concentration inequality holds for
subexponential variables.

Theorem 2.1. Consider X = (Xl)
m
l=1 with Xl ∼

subE(a) i.i.d and η > 0. Let X̄ = 1
m

∑m
l=1Xl then

max
(
P
(
X̄ > η

)
,P
(
X̄ < −η

))
≤ e−

m
2 min( η

2

a2
, ηa ).
(12)

As far as we know, there is no unified version
of this theorem, and we give a proof of this result
in Appendix A for the sake of completeness.

3 Lower bound of the size of
strong basins of attraction

In this section we study strong basins of attrac-
tion by slightly modifying the result of [11]. As
our goal is to study sufficient and necessary con-
ditions on basins of attraction with respect to the
number of measurements, we focus on the estima-
tion of the positions as the behaviour with respect
to amplitudes in x0 is already well understood:
the size of basins of attraction necessarily depends
on the ratio amin

amax
between minimal and maximal

amplitudes [10] and the gradient descent can be
adaptively preconditioned to reduce this depen-
dency [16] (shown in the deterministic low-pass
filtering case).

From now on, we assume the amplitudes to be
known and fixed at 1 and we consider

Σ̃k,ε := {φ(θ) =

k∑
i=1

δti : θ = (t1, . . . , tk) ∈ Rkd,

ti ∈ Rd,∀i 6= l, ‖ti − tl‖2 > ε, ‖ti‖2 ≤ R}
(13)

where we write, by abuse of notation
φ(t1, . . . , tk) = φ(1, . . . , 1, t1, . . . , tk). We define
accordingly Θ̃k,ε = φ−1(Σ̃k,ε). We further sim-
plify the analysis by considering the noiseless case
e = 0.

We will show that a certain set is a strong basin
of attraction by ensuring strong convexity within
this set.

Definition 3.1. Let Λ ⊂ RD be convex. Let
f ∈ C2(Λ) and ξ > 0. We say that f is ξ-strongly
convex if for all θ ∈ Λ, the Hessian Hθ of f at θ
satisfies

Hθ − ξI < 0. (14)

Such a Λ will be called basin of strong convexity.

For a given step size τ > 0, consider the
gradient descent with fixed step size:

θn+1 = θn − τ∇g(θn). (15)

Previous work gave lower bounds on the size
of g-basins of attraction [11].

Definition 3.2 (g-basin of attraction). We say
that a set Λ ⊂ Rd is a g-basin of attraction of
θ∗ ∈ Λ if there exists τ0 > 0 such that for any
τ ∈ (0, τ0], if θ0 ∈ Λ, then the sequence g(θn) with
θn defined by (15) converges to g(θ∗) with θn ∈ Λ.

The strong convexity permits to show conver-
gence of iterates of the gradient descent with a
linear convergence rate, as recalled below.

Definition 3.3 (Linear convergence rate). We
have a (at least) linear convergence rate of the iter-
ates (θn) if there exist constants n0 ∈ N, 0 ≤ r < 1
and C ≥ 0 such that for all n ≥ n0

‖θn − θ∗‖22 ≤ Crn, (16)

with θ∗ a minimizer of g.

If a convex set Λ is a g-basin of attraction
where g is ξ-strongly convex, then it is a strong
basin of attraction.

Definition 3.4 (Strong basin of attraction). We
say that a set Λ ⊂ Rd is a strong basin of attrac-
tion of θ∗ ∈ Λ if there exists τ0 > 0 such that
for any τ ∈ (0, τ0], if θ0 ∈ Λ, then the sequence
θn with θn defined by (15) converges to θ∗ with a
linear convergence rate with θn ∈ Λ.

Note that the stability of iterates in Λ must be
ensured to obtain the convergence with a strong
convexity argument.

Recall that (Ax)l = 〈x, αl〉. As we will con-
sider Fourier measurements, the αl are infinitely
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differentiable sinusoids and the objective function
g is a C2 function.

We recall the calculation of the gradient and
the Hessian of g from [11].

Proposition 3.1. For any θ ∈ Rkd, and u ∈ Rkd,
we have

∂ug(θ) = 2Re〈A∂uφ(θ), Aφ(θ)− y〉. (17)

Proposition 3.2. For any θ ∈ Rkd and u ∈ Rkd,
the Hessian Hθ of g at θ verifies the following
equality:

uTHθu = 2‖A∂uφ(θ)‖22+2Re〈A∂2
uφ(θ), Aφ(θ)−y〉.

(18)

We recall the size of basins of attraction in
our case as given by Corollary 2.1 of [11] with the
specific notations of the present article and in the
noiseless case. Basins of attraction with a simple
`2-ball shape were considered: for β > 0, we define
the sets

Λβ := {θ ∈ Rkd : ‖θ − θ∗‖2 < β}. (19)

Theorem 3.1. Suppose A has the RIP on
Σ̃k,ε − Σ̃k,ε with constant γ and e = 0. Let

θ∗ = (t1, . . . , tk) ∈ Θ̃k,ε be a solution of the con-
strained Problem (5). Let β1 > 0 such that

1. θ ∈ Λ2β1
implies φ(θ) ∈ Σ (local stability of

the model set) and for all θ̃ ∈ Θ̃k,ε such that

φ(θ̃) = φ(θ∗) we have ‖θ̃ − θ‖2 > ‖θ∗ − θ‖2
(uniqueness of the projection of θ on the set of
minimizers);

2. there is Cφ,θ∗ > 0 such that

∀θ ∈ Λ2β1
, ‖φ(θ)−φ(θ∗)‖h ≤ Cφ,θ∗‖θ−θ∗‖2

(20)
(local control of ‖ · ‖h);

3. the first-order derivatives of Aφ are uniformly
bounded on φ−1(φ(θ∗)):

M1 := sup
θ∈φ−1(φ(θ∗))

sup
‖u‖2=1

‖A∂uφ(θ)‖2 < +∞;

(21)

4. the second-order derivatives of Aφ are uni-
formly bounded on Λ2β1

:

M2 := sup
θ∈Λ2β1

sup
‖u‖2=1,‖v‖2=1

‖A∂v∂uφ(θ)‖2 < +∞;

(22)
5. we have

β2 :=
(1− γ)

Cφ,θ∗
√

1 + γ
inf

θ∈Λβ1

(
‖∂θ∗−θφ(θ)‖2h
‖A∂2

θ∗−θφ(θ)‖2

)
> 0.

(23)
Then Λmin(β1,β2) is a g-basin of attraction of
θ∗.

We can now give explicit lower bounds of the
size of strong basins of attraction for Σ̃k,ε and
weighted Fourier measurements for which a RIP
was shown in [9] (This ensures that the hypothe-
ses of the following Theorem can be satisfied, see
dicussion after the Theorem).

Theorem 3.2. For l = 1, . . . ,m, let ωl ∈ Rd.
Suppose

αl(s) =
1√
m
c(ωl)e

−j〈ωl,s〉 (24)

with c(ωl) =
(

1 +
λ2‖ωl‖22

d

)−1

. Consider ‖·‖h with

h(s1, s2) = e−
‖s1−s2‖

2
2

2λ2 and suppose that it has
mutual coherence µh.

Suppose A has the RIP on Σ̃k,ε/2− Σ̃k,ε/2 with
constant γ and e = 0.

Let θ∗ = (t1, . . . , tk) ∈ Θ̃k,ε be a solution of the
constrained Problem (5). Then

• g has L-Lipschitz gradient on Λε/2 := {θ : ‖θ −
θ∗‖2 < ε/2} with L < +∞.

• Consider Λβspikes := {θ : ‖θ − θ∗‖2 < βspikes}
where

βspikes :=

min
( ε

4
,
(1− γ)(λ(1− (k − 1)µh)− λ3ξ/2)
√

1 + γd
√

(1 + (k − 1)µh)

)
,

(25)

for some ξ < min(2(1 − (k − 1)µh)/λ2, L/2).
Then Λβspikes is a strong basin of attraction
of θ∗ with linear convergence rate r = 1−τξ for
step size τ ≤ 1

L .
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• We have that

‖θn − θ∗‖22 ≤ ‖θ0 − θ∗‖22rn, (26)

and

‖φ(θn)− φ(θ∗)‖2h ≤
g(θ0)− g(θ∗)

1− γ
rn. (27)

Proof See Appendix B. �

The size of basins given by Theorem 3.2
is just obtained by expliciting constants from
Theorem 3.1 and including the strong convexity
constant ξ. The bigger this constant, the smaller
the size of the strong basin. The smaller this con-
stant is, the closer it is to the size of basins of
attraction given by Theorem 3.1.

We now give the relation between this theorem
and the number of measurements m. It has been
shown in [9] that there is a universal constant C
such that for any 0 < p < 1, the operator A (with
αl(s) = 1√

m
c(ωl)e

j〈ωl,s〉, c(ω) = 1
1+‖ω‖22/d

and ωl
randomly drawn with a density proportional to

1
c(ω)2 e

−‖ω‖22/(2λ
2)) has RIP with constant γ with

probability 1− p with a choice

m = C
1

γ2

(
k2d · (1 + log(kd) + log(

R

ε
))

+ log
1

γ
+ k log(

1

p
)
)
.

(28)

Hence for a fixed p, for m→∞

γ = Ω

(
1√
m

)
, (29)

where Ω(vm) refers to a sequence um such that
um = O(vm) and vm = O(um) when m → ∞.
Using Theorem 3.2, this means that given a prob-
ability 1 − p, we guarantee a size of strong basin
of attraction

min

(
ε

4
, C0

(
1− Ω

( 1√
m

)))
(30)

where C0 is a constant that does not depend on m.
Note that a recent work [17] shows that the

RIP for Gaussian measurements without weight-
ing, i.e. c(ω) = 1 but only in a regime where γ

is not too close to 0, which is exactly the regime
that we study in the next section, i.e. we cannot
use these simpler measurements without weights
for our analysis.

Remark 3.1. The dependency of C0 on 1/d
might be avoided under a stronger RIP assumption
(as observed in the experimental Section 5). This
dependency comes from the upper bound calculated
on ‖A∂2

uφ(θ)‖. It can be shown [10] that the RIP
on Σk,ε − Σk,ε permits to use a RIP on ∂uφ(θ).
Similarly a RIP on (Σk,ε − Σk,ε)− (Σk,ε − Σk,ε)
would imply a RIP on ∂2

uφ(θ) leading to the
following bound:

‖A∂2
uφ(θ)‖2 ≤

√
1 + γ

√
1 + (k − 1)µh, (31)

hence removing the dependency on d. We con-
jecture that such a RIP is verified for random
Gaussian Fourier measurements under a similar
bound on the number of measurements: from [9],
it suffices to verify that the kernel has a mutual
coherence property with respect to ε-separated
quadripoles and that the normalized set {x/‖x‖h :
x ∈ (Σk,ε−Σk,ε)−(Σk,ε−Σk,ε)} has finite covering
numbers.

In the case of random Gaussian measure-
ments we further conjecture that the dependency
on d might be avoided with high probability with
the same RIP assumption, since we could use
a concentration argument to bound ‖A∂2

uφ(θ)‖2.
We verify numerically that this is the case in
Section C.

We obtain in the next section an upper bound
of the size of the basin that have the same growth
with respect to m.

4 An upper bound of the size
of basins of strong convexity

Let us first make a remark about the mean kernel
h. The random operator A is designed to approx-
imate a mean Gaussian kernel when the number
of measurements grows, as shown in the following
Lemma.

Lemma 4.1. Assume that αl(t) =
1√
m
c(ωl)e

−j〈ωl,t〉 where c(ωl) is a positive func-

tion of ωl, and where the (ωl)l=1,...,m are
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i.i.d. random variables in Rd with density

p(ω) = Dc(λ)
c(ω)2 e

−λ
2‖ω‖22

2 , and Dc(λ) is a normalizing

constant. Then, for any t ∈ Rd,

E
(
‖Aδt −Aδ0‖22

)
= 2Dc(λ)

(2π)
d
2

λd

(
1− e−

‖t‖22
2λ2

)
=

(2π)
d
2

λd
Dc(λ)‖δt − δ0‖2h.

(32)

Proof See Section D. �

The function t 7→ 1− e−‖t‖22/(2λ2) has a unique
global minimum on Rd. However it is convex only
for ‖t‖2 ≤ λ. As our proof of the upper bound
of strong basins of attraction is based on a strong
convexity argument, we notice that even in the
ideal mean case of the recovery of one Dirac mea-
sure, there is a fundamental (pessimistic) limit
that we cannot overcome. However, it must be
noted that in the case of multiple Dirac measures
the minimal separation ε between positions is also
a fundamental upper limit for the size of the basin
of attraction (as shown by the shape of the bound
from Theorem 3.2). This separation also forces
the choice of a kernel (i.e. a choice of λ) such
that ‖δt − δ0‖2h is small for ‖t‖2 > ε. It has also
been shown practically in [18] that λ2 must not be
too small (i.e. frequencies chosen too high). This
can potentially be explained by the fact that g
becomes very flat almost everywhere except in a
very tight neighborhood of the global optimum.
Hence, λ is generally chosen as a multiple of ε, and
Figure 1 shows that studying local (strong) con-
vexity cannot explain the situation for t between λ
and ε, although the size of the set where convex-
ity is obtained is still a multiple of ε (which is an
upper bound on the size of basins of attraction).

Fig. 1: A representation of g(t) = 2(1 − e−
t2

2λ2 )
for the case of one Dirac measure. The parameter
λ is generally chosen so that it is a multiple of ε.
The function is convex on [−λ, λ].

In order to find a meaningful upper bound of
strong basins of attraction with respect to the
number of measurements m, these considerations
suggest that only the behaviour in sets smaller
than the minimum separation matters, i.e. sets
where the interaction between Dirac masses is
small.

Considering the same operator A as in the pre-
vious section, we study the case of the recovery of
1 spike (i.e. the most favorable case for the size of
strong basins of attractions). In this case we have
that the parameter θ = t ∈ Rd is the position of
the spike.

As the problem is invariant by translation, we
consider the recovery of x0 = φ(θ∗) = φ(0) =
δ0 (in the noiseless case). We start with the
expression of the Hessian.

Lemma 4.2. Let φ(θ) = φ(t) = δt, φ(θ∗) = δ0
and αl(s) = 1√

m
c(ωl)e

j〈ωl,s〉. For ‖u‖2 = 1,

1

2
uTHθu =

1

m

m∑
l=1

c(ωl)
2|〈ωl, u〉|2 cos(〈ωl, t〉).

(33)

Proof From Proposition 3.2, we have

uTHθu = 2‖A∂uφ(θ)‖22+2Re〈A∂2
uφ(θ), A(φ(θ)−φ(θ0))〉.

(34)
The first term is

‖A∂uφ(θ)‖22 =

m∑
l=1

|〈∂uδt, αl〉|2

=

m∑
l=1

|∂uαl(t)|2

=
1

m

m∑
l=1

|〈ωl, u〉e−j〈ωl,t〉|2c(ωl)2

=
1

m

m∑
l=1

|〈ωl, u〉|2c(ωl)2.

(35)

The second term is

Re〈∂2
uAφ(θ), A(φ(θ)− φ(θ∗))〉

=

m∑
l=1

c(ωl)
2Re((∂2

uαl(t)(αl(t)− αl(0)))

=
1

m

m∑
l=1

c(ωl)
2Re

(
− |〈ωl, u〉|2e−j〈ωl,t〉(ej〈ωl,t〉 − 1)

)
= − 1

m

m∑
l=1

c(ωl)
2|〈ωl, u〉|2(1− cos(〈ωl, t〉)).

(36)
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We get

1

2
uTHθu =

1

m

m∑
l=1

c(ωl)
2|〈ωl, u〉|2(1− 1 + cos(〈ωl, t〉))

=
1

m

m∑
l=1

c(ωl)
2|〈ωl, u〉|2 cos(〈ωl, t〉).

(37)

�

The remarkable phenomenom in this calcu-
lation of the Hessian is that the whole term
‖A∂uφ(θ)‖22 is compensated by the second term.
Hence no lower bound is needed on this term
unlike the proof of Theorem 3.2. Consequently,
Theorem 3.2 might not be very tight when applied
to the favorable case of one spike. We will see in
the following how well the qualitative behaviour
of the size of basins is described by Theorem 3.2.

Take h ∈ R+, u ∈ Rd such that θ = t = hu and
‖u‖2 = 1. We define

f(u, h) :=
1

2
uTHθu

=
1

m

m∑
l=1

c(ωl)
2|〈ωl, u〉|2 cos(〈ωl, u〉h)

=
1

m

m∑
l=1

Xl

(38)

with

Xl := Xl(u, h) := c(ωl)
2|〈ωl, u〉|2 cos(〈ωl, u〉h).

(39)

Remark 4.1. Let us assume just for a moment
that c(ωl) = 1 (which is not the case in the rest of
the paper). Since ‖u‖2 = 1, c(ωl) = 1, we have

f(u, h) =
1

m

m∑
l=1

Z2
l cos(hZl) =

1

m

m∑
l=1

Xl, (40)

where Zl := 〈ωl, u〉 follows a Gaussian distribution
N (0, 1/λ2) and Xl = Z2

l cos(hZl).

We will use a concentration inequality on
f(u, h) in order to give an upper bound for the
size of strong basins of attraction of δ0 with high
probability. We need to calculate its mean with
respect to the distribution of ω.

Lemma 4.3. Let Y = Z2 cos(hZ) with Z ∼
N (0, 1/λ2). Then

E(Y ) = F (h) :=
(λ2 − h2)e−

h2

2λ2

λ4
. (41)

Proof See Section D. �

We deduce the mean of the considered random
variable with the weighting scheme included.

Lemma 4.4. Consider the random variable X =
c2(ωl)|〈ωl, u〉|2 cos(h〈ωl, u〉) where ‖u‖2 = 1 and
ωl is a random variable with density p(ω) =
Dc(λ)
c(ω)2 e

−λ2‖ω‖22 . Then

E(X) =
Dc(λ)

D(λ)
F (h) =

Dc(λ)

D(λ)

(λ2 − h2)e−
h2

2λ2

λ4
,

(42)

where Dc(λ)−1 =
∫
Rd e

−λ22 ‖ω‖
2
2c(ω)−2dω and

D(λ)−1 =
∫
Rd e

−λ22 ‖ω‖
2
2dω.

Proof See Section D. �

The behaviour of the expected value of the sec-
ond derivative is the same with or without the
weights c(ω) (up to a constant). In the mean case
(approximated by our random observations), we
do not have convexity over all the domain.

To use the concentration inequality we will use
the fact that the Hessian is a sum of subexponen-
tial random variables.

Lemma 4.5. Let X = c2(ω)|〈ω, u〉2| cos(h〈ω, u〉)
where ‖u‖2 = 1 and ω has density p(ω) =
Dc(λ)
c(ω)2 e

−λ2‖ω‖22/2 and 0 < c(ω) ≤ 1. Then X −
E(X) ∈ subE(8/λ2).

Proof See Section D. �

The hypothesis on the weights of this Lemma
is verified for c(ω) = 1

1+λ2

d ‖ω‖
2
2

. The application of

the Bernstein inequality for subexponential vari-
ables leads to the following concentration inequal-
ity.

Lemma 4.6. Consider X = (Xl)
m
l=1 with i.i.d

variables Xl = c(ωl)
2|〈ωl, u〉|2 cos(h〈ωl, u〉) with
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ωl with density p(ω) = Dc(λ)
c(ω)2 e

−λ22 ‖ω‖
2
2 and 0 <

c(ωl) ≤ 1. Let X̄ = 1
m

∑m
l=1Xl. Then for any

η > 0,

max
(
P
(
X̄ − EXl > η

)
,P
(
X̄ − EXl < −η

))
≤ e−

m
2 min(η2 λ

4

82
,η λ

2

8 ).

(43)

Proof From Lemma 4.5, X − EX ∈ subE(8/λ2).
Applying Theorem 2.1 with a = 8/λ2 yields the result.

�

Consider Γ(E, ξ) the set of functions C2 and ξ-
strongly convex on a convex set E. We can now
give an upper bound on the size of sets where g is
strongly convex.

Theorem 4.1 (Upper bound of basins of strong
convexity). Let u such that ‖u‖2 = 1. Given ξ >
0, there is h > 0 and m0 ∈ N such that for any
m ≥ m0

h2 ≤ λ2

(
1− D(λ)

Dc(λ)

8
√

2√
m

)
(44)

and

P (g ∈ Γ([0, uh], ξ)) ≤ 1

e
≈ 0.37 . (45)

Proof See Section D. �

This lemma states that g cannot be strongly
convex on basins of attraction of size larger that√
λ2
(

1− D(λ)
Dc(λ)

8
√

2√
m

)
= λ

(
1−O( 1√

m
)
)

with

high probability, i.e. with a probability close to 1.
Asymptotically, this matches the rate of the lower
bound given by Theorem 3.2. We observe in the
next experimental section that this behaviour is
still a good approximation of the size of basins for
small m.

For large m, the most important compari-
son is the asymptotic behaviour of our bounds
on the size of strong basins of attraction. The
upper bound converges to λ as expected. The
lower bound from Theorem 3.2 converges to

min

(
ε/4, λ(1−(k−1)µh−λ3ξ/2)

d
√

1+(k−1)µh

)
≈ λ

d for small ξ

and µh and sufficiently small λ. Indeed the param-
eter λ is typically chosen to be smaller that ε,
which in turn guarantees a small mutual coherence
µh of the kernel. As mentioned in the previous
section, the dependency on d might be an artifact
of a suboptimal bound in the proof of Theorem 3.2
for the particular case of random Fourier sampling
(as shown by experiments in the next section).

In terms of tightness of our bounds with
respect to m, the only question left is whether the
necessary condition of order λ

√
1−O(1/

√
m) can

be improved to λ̃
√

1−O(1/
√
m) with λ̃ < λ (the

previous comparison with Theorem 3.2 suggests it
cannot). In the case of one spike, we show that the
upper bound we gave is indeed tight in this sense.
To give a lower bound, we use an ε-net argument
to show strong convexity with high probability in
the relevant set.

Lemma 4.7 (Lower bound of basins of strong
convexity). There exists a constant C such that,
given an arbitrary high probability 1 − p0, we can
find h such that

h ≥

√
λ2 −

C
√
− log(p0)√
m

. (46)

and

P(g ∈ Γ(Λh)) ≥ 1− p0. (47)

Proof See Section D. �

We summarize the different bounds obtained
by our results in Figure 2.

5 Experiments

In this section, for random Gaussian Fourier mea-
surements, we provide experiments on the size of
basins of attraction with respect to the different
parameters of the problem: the number of mea-
surements, the dimension d of the support, the
choice of frequencies (and induced kernel) and the
minimum separation between spikes. We observe
that the experiments match the theoretical results
of the previous Sections.
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0 100 200 300 400 500

m

0

0.1

0.2

0.3
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0.5

0.6

0.7

0.8

0.9

1

h

Ideal mean case

Upper bound 1 Dirac

Lower bound 1 Dirac

RIP-based Lower bound

Fig. 2: A schematic representation of the shape
of the curves obtained by our theorems for λ = 1.
Red: h = 1 (exact bound mean case), Magenta:

h =
√

1− 1.5/
√
m (one spike upper bound), Blue:

h =
√

1− 3/
√
m (one spike lower bound), Green:

h = 0.9 · (1 − 3/
√
m) (ideal RIP-based lower

bound). The chosen constants are for illustration
purpose only and are not originated from our
Theorems. True sizes of basins of attraction are
investigated experimentally in the next Section.

5.1 Method and parameters for
experiments

Given a ground truth x0 = φ(θ∗) and a set
of parameters, we repeat the following experi-
ment 10 000 times: we perform a gradient descent
with line search (for faster practical convergence)
and with a random initialization θinit and we
record whether the descent has converged to θ∗ or
not with threshold 0.01 on the localization error
‖θnitmax − θ∗‖2 after a fixed number of iterations
(500). We calculate the size of the basin of attrac-
tion as the smallest distance β such that 99.8%
of experiments that did not converge to θ∗ were
initialized outside of Λβ , i.e. initialization in Λβ
yields convergence with a high probability.

The frequencies of the Gaussian measurements
follow a normal distribution N (0, 1

λ2 I). To illus-
trate how well the measurements approximate the
mean Gaussian kernel as their number increases,
we show the back-projection of the measurements
(i.e. the signal z(t) =

∑m
l=1 ylαl(t)) of one spike

on a grid in Figure 3.

5.1.1 Effect of the dimension

To study the effect of the dimension d, we use
the signal x0 = δ0 and take d from {1, 2, 3}. We
initialize randomly θinit with

θinit ∈ {t ∈ Rd, 0.01 ≤ ‖t‖2 ≤ 0.5}. (48)

(a) m = 32 (b) m = 64

(c) m = 128 (d) m = 512

Fig. 3: Back-projection of the signal x0 = δt
observed with m random Fourier measurements.
We observe that the measurement operator con-
verges to a Gaussian kernel as m increases.

We obtain the results shown in Figure 4.

(a) d = 1 and theoretical
curve

(b) d = 2 and theoretical
curve

(c) d = 3 and theoretical
curve

(d) d = 1, 2, 3

Fig. 4: Size of the basin of attraction with
respect to the number of measurements m with
various dimensions d. The theoretical curve is
obtained by a least squares fitting of the function
C1

√
1− C2/

√
m parametrized by C1 and C2.

We observe that the size of the basins of
attraction does not depend on d as shown in
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Section 4. This also shows the suboptimality (due
to generality) of Theorem 3.2 with respect to d.

5.1.2 Effect of the number of spikes

We verify in this section that the behaviour
with respect to m does not change with respect
to the number of spikes k. We use the signal
x0 =

∑k
i=1 δti with {t1, . . . , tk} the k-th roots

of the unit circle of radius r = 1 in order
to set a constant distance between spikes. We
perform the experiment for k ∈ {2, 3, 4, 5}. We ini-

tialize a signal xinit =
∑k

i=1 δsi such that for all
i = 1, . . . , k, 0.01 ≤ ‖ti − si‖2 ≤ 0.5. To evaluate
the distance between x0 and the estimated x∗, we
take maxi=1,...,k ‖t∗i − ti‖2. We obtain the results
shown in Figure 5. We observe that the size of
basins behave similarly for various k. There is a
small mismatch for small m as expected given the
asymptotic nature of our result.

(a) k = 2 and theoretical
curve

(b) k = 3 and theoretical
curve

(c) k = 4 and theoretical
curve

(d) k = 5 and theoretical
curve

Fig. 5: Size of the basin of attraction with respect
to the number of measurements m with differ-
ent number of spikes k. The theoretical curve is
obtain by a least squares fitting of the function
C1

√
1− C2/

√
m parametrized by C1 and C2.

5.1.3 Effect of the minimum
separation and of the choice of
measurements

We show in Figure 6 the effect of the minimum
separation between spikes on the size of basins of
attraction, for 5 spikes with a given configuration.

We change the separation parameter by simply
rescaling the positions of the spikes.

As expected the size of basins of attraction
increases with respect to the minimal separation,
but only up to a limit: this experiment shows the
impact of the choice of λ (the parameter that sets
the choice of the distribution of random frequen-
cies). In order to reach a size of basin of attraction
close to the minimum separation, it should be set
accordingly.

This is confirmed by Figure 7, where we repeat
experiments with different λ with a fixed minimum
separation ε = 0.5. This confirms our theoretical
results: the size of basins is increasing with respect
to λ, up to a limit corresponding to the minimum
separation.

(a) λ = 0.1 (b) λ = 0.2

Fig. 6: Size of the basin of attraction with respect
to the minimum separation ε.

Fig. 7: Size of the basin of attraction with respect
to the choice of the resolution parameter λ. Mini-
mum separation is ε = 0.5.

6 Conclusion

In this article, we gave an asymptotic upper bound
and lower bounds on the size of basins of strong
convexity (and also are strong basins of attrac-
tions) for the non-convex sparse spike estimation
problem with random Fourier measurements with
respect to the number of measurements. These
two bounds have a similar shape that matches
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non-asymptotic experiments (similarly as phase
transitions for conventional sparse recovery in
finite dimension). This work highlights that the
choice of measured frequencies is critical to obtain
basins of attraction as large as possible.

Future work could be a non-asymptotic study
of such bounds to confirm the observed behaviour
in our experiments. While we cannot expect much
from a direct extension to k spikes of our sufficient
condition by the direct analysis of the Hessian in
the case of one spike and random Fourier measure-
ments, such a result could be useful for the study
of measurement operators where the RIP is not
well suited (such as structured operators).
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A Proof of Bernstein
inequality for
subexponential variables
(Theorem 2.1)

In this section, we prove Theorem 2.1. For l =
1, . . . ,m, let Xl ∼ subE(a) i.i.d and let η > 0. Let
X̄ = 1

m

∑m
l=1Xl.

First notice that, by symmetry, −Xl ∼
subE(a) so we only need to prove

P
(
X̄ > η

)
≤ e−

m
2 min( η

2

a2
, ηa ). (49)

Using Chernoff inequality and the fact that the Xl

are i.i.d, we get that

∀s ≥ 0, P
(
X̄ > η

)
≤ e−sηE

(
esX̄
)

= e−sη
m∏
l=1

E
(
e
s
mXl

)
.

(50)

Now, using that Xl ∼ subE(a), we get that for
s
m ∈ [0, 1

a ],

P
(
X̄ > η

)
≤ e−sη

(
e
s2

m
a2

2

)
≤ e−sη+ s2a2

2m . (51)

Optimizing this bound consists in finding the min-

imum of f(s) = s2

m
a2

2 − sη on [0, ma ]. It is clear
that f admits a global minimum on R attained at
s∗ = ηm

a2 and

f(s∗) = −η
2m

2a2
. (52)

Then we just have to distinguish the cases s∗ ≤ m
a

or > m
a . Notice that

s∗ ≤
m

a
⇐⇒ η

a2
≤ 1

a
⇐⇒ η2

a2
≤ η

a

⇐⇒ η

a
≤ 1.

(53)

Therefore, if s∗
m ≤

1
a ,

min
[−ma ,

m
a ]
f = f(s∗) = −m

2

η2

a2
= −m

2
min

(
η2

a2
,
η

a

)
,

(54)
and if s∗

m > 1
a , since f(0) = 0, we have

min
[−ma ,

m
a ]
f = f

(m
a

)
=
m

2
− m

a
η

≤ −m
2

η

a

= −m
2

min

(
η2

a2
,
η

a

)
.

(55)

Gathering both cases, we get (49).

B Proof of Theorem 3.2

Note that the main argument is a standard proof
of convergence under a strong convexity assump-
tion. However, we must verify that each step of
the argument is valid in our setting. We also give
explicit constants.

We have that

g(θ) =

m∑
l=1

∣∣∣ k∑
i=1

e−j〈ωl,ti〉 − yl
∣∣∣2 (56)

i.e. g is a sum of m C∞ functions. It is thus C∞.

https://www.plafrim.fr
https://www.plafrim.fr
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First note that in [10], the hypotheses of
Theorem 3.1 were shown to be fulfilled in our case
with β1 = ε/4, because φ(Λ2β1

) ⊂ Σk,ε, and for
some constants Cφ,θ∗ (that will be made explicit
below) and

β2 =
(1− γ)

Cφ,θ∗
√

1 + γ
inf

θ∈Λβ1

(
‖∂θ∗−θφ(θ)‖2h
‖A∂2

θ∗−θφ(θ)‖2

)
> 0.

(57)
Under these hypotheses and with β = min(β1, β2),
it is guaranteed in [11, Proof of Theorem 2.8] that
g has L-Lipschitz gradient on Λ2β1 with L < +∞.
It is also guaranteed that for a step size τ ≤ τ0 =
1
L , the iterates (θn) of the gradient descent (15)
initialized in Λβ satisfy:

• the value of the function is decreasing:

g(θn+1)− g(θn) ≤ −τ(1− τL

2
)‖∇g(θn)‖22

≤ −τ
2
‖∇g(θn)‖22;

(58)

• we have stability of the iterates: θn ∈ Λβ .

Consider any θ ∈ Λβ and let u ∈ Rd be such
that ‖u‖2 = 1. Using the extension of the RIP
to generalized dipoles (directional derivatives of
Dirac measures, see [11, Lemma 2.1]) and Cauchy-
Schwarz inequality, we have

uTHθu =2‖A∂uφ(θ)‖22
+ 2〈A∂2

uφ(θ), A(φ(θ)− φ(θ∗))〉
≥2(1− γ)‖∂uφ(θ)‖2h
− 2‖A∂2

uφ(θ)‖2(
√

1 + γCφ,θ∗β).

(59)

We deduce that uTHθu− ξ ≥ 0 as soon as

β ≤ (1− γ)

Cφ,θ∗
√

1 + γ
inf
θ∈Λβ

inf
‖u‖2=1

(
‖∂uφ(θ)‖2h − ξ/2
‖A∂2

uφ(θ)‖2

)
.

(60)
If this last inequality is satisfied, then ξ-strong

convexity is guaranteed on Λβ . Using g(θ∗) −
g(θn) ≥ −〈∇g(θn), θn− θ∗〉+ ξ

2‖θn− θ
∗‖22 (thanks

to strong convexity), we have

‖θn+1 − θ∗‖22 =‖θn − θ∗‖22 − 2τ〈∇g(θn), θn − θ∗〉
+ τ2‖∇g(θn)‖22

≤‖θn − θ∗‖22 − τξ‖θn − θ∗‖22
+ 2τ(g(θ∗)− g(θn)) + τ2‖∇g(θn)‖22.

(61)

Using (58) for τ = 1
L and g(θ∗) ≤ g(θn+1), we get

‖∇g(θn)‖22 ≤ 2L(g(θn)− g(θ∗)). (62)

For τ ≤ τ0 = 1
L we obtain,

‖θn+1 − θ∗‖22
≤ (1− τξ)‖θn − θ∗‖22 + 2τ(g(θ∗)− g(θn))

+ 2τ2L(g(θn)− g(θ∗))

= (1− τξ)‖θn − θ∗‖22 + 2τ(1− τL)(g(θ∗)− g(θn))

≤ (1− τξ)‖θn − θ∗‖22.
(63)

This gives the convergence of θn with a linear
rate.

‖θn − θ∗‖22 ≤ (1− τξ)n ‖θ0 − θ∗‖22. (64)

We deduce that we can take βspikes as a lower
bound of the right-hand side of (60) to obtain a
strong basin of attraction. To make the constants
explicit, we need to calculate three bounds.

• Bound 1: Let θ = (t1, . . . , tk) ∈ Θ̃k,ε and
let u = (u1, . . . , uk) ∈ Rkd such that

‖u‖22 =
∑k

r=1 ‖ur‖22 = 1. Using ‖δ′tr,ur‖
2
h =

‖ur‖22|ρ′′(0)| with ρ(s) = e−
s2

2λ2 from [10,
Lemma 2.1] and Lemma 2.1, we have

‖∂uφ(z)‖2h = ‖
k∑
r=1

δ′tr,ur‖
2
h

≥ (1− (k − 1)µh)

k∑
r=1

‖δ′tr,ur‖
2
h

= (1− (k − 1)µh)

k∑
r=1

|ρ′′(0)|‖ur‖22

= (1− (k − 1)µh)|ρ′′(0)|.
(65)
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We have ρ′′(s) = e
− s2

2λ2

λ2 ( s
2

λ2 − 1) and |ρ′′(0)| =
1/λ2 which yields

inf
‖u‖=1,z∈Θ̃k,ε

‖∂uφ(z)‖2h ≥
1

λ2
(1− (k − 1)µh).

(66)
• Bound 2: Let θ = (t1, . . . , tk) ∈ Θ̃k,ε and let
u = (u1, . . . , uk) ∈ Rkd such that ‖u‖22 =∑k

r=1 ‖uk‖22 = 1. We have

‖A∂2
uφ(θ)‖22 =

m∑
l=1

∣∣∣ k∑
i=1

∂2
uiαl(ti)

∣∣∣2
≤

m∑
l=1

(
k∑
i=1

|∂2
uiαl(ti)|

)2

.

(67)

We calculate

∂2
uiαl(ti) = − 1√

m
c(ωl)|〈ui, ωl〉|2e−j〈ωl,ti〉.

(68)
Using the Cauchy-Schwarz inequality, we get

‖A∂2
uφ(θ)‖22 ≤

1

m

m∑
l=1

c(ωl)
2

(
k∑
i=1

|〈ui, ωl〉|2
)2

≤ 1

m

m∑
l=1

c(ωl)
2

(
k∑
i=1

‖ui‖22‖ωl‖22

)2

=
1

m

m∑
l=1

c(ωl)
2‖ωl‖42

(
k∑
i=1

‖ui‖22

)2

=
1

m

m∑
l=1

(
1 +

λ2‖ωl‖22
d

)−2

‖ωl‖42.

(69)

A direct study of the function v → v4/(1 +
λ2v2/d)2 shows that it is non-decreasing on
[0,+∞) and bounded by its limit d2/λ4 when
v →∞. We obtain

‖A∂2
uφ(θ)‖2 ≤

d

λ2
. (70)

• Bound 3: Let (s1, ..., sk) ∈ Λβ . Using Lemma 2.1
and e−x ≥ 1− x, we get∥∥∥∥∥

k∑
i=1

δsi −
k∑
i=1

δti

∥∥∥∥∥
2

h

≤ (1 + (k − 1)µh)

k∑
i=1

‖δsi − δti‖2h

= 2(1 + (k − 1)µh)

k∑
i=1

(
1− e−

‖si−ti‖
2
2

2λ2

)

≤ (1 + (k − 1)µh)
1

λ2

k∑
i=1

‖si − ti‖22.

(71)

Therefore we can use the explicit constant
Cφ,θ∗ = 1

λ

√
(1 + (k − 1)µh) in (20).

We finally obtain that ξ-strong convexity on
Λβ is ensured for

β ≤ (1− γ)((1− (k − 1)µh)/λ2 − ξ/2)
√

1 + γ(d/λ2)(
√

(1 + (k − 1)µh)/λ)

=
(1− γ)(λ(1− (k − 1)µh)− λ3ξ/2)
√

1 + γd
√

(1 + (k − 1)µh)
.

(72)

Rate of convergence of g(θn)− g(θ∗).
With strong convexity, we have that

g(θn)− g(θ∗)

≤ 〈∇g(θn), θn − θ∗〉 −
ξ

2
‖θn − θ∗‖22

= −ξ
2

(
−2〈1

ξ
∇g(θn), θn − θ∗〉+ ‖θn − θ∗‖22

)
= −ξ

2

(
‖θn − θ∗ −

1

ξ
∇g(θn)‖22 −

1

ξ2
‖∇g(θn)‖22

)
=

1

2ξ
‖∇g(θn)‖22 −

ξ

2
‖θn − θ∗ −

1

ξ
∇g(θn)‖22

≤ 1

2ξ
‖∇g(θn)‖22.

(73)

We deduce from this inequality and from (58)
that

g(θn+1)− g(θ∗) ≤ g(θn)− g(θ∗)− τ

2
‖∇g(θn)‖22

≤ (1− ξτ) (g(θn)− g(θ∗)).

(74)
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Rate of convergence of φ(θn). As we are in the
noiseless case g(θ∗) = 0, and using the RIP,

‖φ(θn)− φ(θ∗)‖2h ≤
1

1− γ
‖Aφ(θn)−Aφ(θ∗)‖22

=
1

1− γ
(g(θn)− g(θ∗)).

(75)

C Numerical bounds of
‖A∂2

uφ(θ)‖2 for random
weighted Fourier
measurements

For a given direction u and k = 1, we sample
m = 10000 frequencies according to the probabil-

ity density function ∝ 1
c(ω)2 e

−λ
2‖ω‖22

2 (and perform

10000 experiments for each parameter set). We
then evaluate ‖A∂2

uφ(θ)‖ in (70) and take the max-
imum value. We repeat this process for different
d and we obtain the diagram shown in Figure 8.
These experiments suggest that ‖A∂2

uφ(θ)‖2 can
be upper bounded with a constant that does not
depend on d.
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Fig. 8: Evaluation of ‖A∂2
uφ(θ)‖2 for k = 1 and

different d. Left: c(ω) = 1. Right: c(ω) = 1/(1 +
λ2‖ω‖22/d). We observe that ‖A∂2

uφ(θ)‖2 can be
bounded independently of d.

D Proofs for Section 4

Proof of Lemma 4.1 For any signed measure x, we
have

‖Ax‖22

=

m∑
l=1

|〈x, αl〉|2

=

m∑
l=1

(∫
Rd
αl(s) dx(s)

)∫
Rd
αl(u) dx(u)

=

m∑
l=1

∫
Rd

∫
Rd
αl(s)αl(u) dx(s) dx(u)

=
1

m

m∑
l=1

c(ωl)
2
∫
Rd

∫
Rd
e−j〈ωl,u−s〉 dx(s) dx(u).

(76)

Thus, for x = δt − δ0,

‖A(δt− δ0)‖22 =
1

m

m∑
l=1

c(ωl)
2(2− e−j〈ωl,t〉− ej〈ωl,t〉).

(77)
Also, for any t ∈ Rd, and any l = 1, . . . ,m, the Fourier
transform of the Gaussian gives

E(c(ωl)
2e−j〈ωl,t〉) = Dc(λ)

∫
Rd
e−j〈ωl,t〉e−

λ2‖ωl‖
2
2

2 dωl

= Dc(λ)
(2π)

d
2

λd
e−
‖t‖2

2λ2 ,

(78)

and in particular, for t = 0,

E(c(ωl)
2) = Dc(λ)

∫
Rd
e−

λ2‖ωl‖
2
2

2 dωl = Dc(λ)
(2π)

d
2

λd
,

(79)
which gives the first part of the formula. Since

h(s, u) = e−
1

2λ2
‖s−u‖22 , the second part follows imme-

diately:

‖δt − δ0‖2h =

∫
Rd

∫
Rd
h(s, u) d(δt − δ0)(s) d(δt − δ0)(u).

= 2

(
1− e−

‖t‖22
2λ2

)
.

(80)

�

Proof of Lemma 4.3 We have

E(Y ) = E(Z2 cos(hZ))

=
λ√
2π

∫ +∞

−∞
z2 cos(hz)e−

λ2

2 z
2

dz

=
1

h3

λ√
2π

∫ +∞

−∞
z2 cos(z)e−

λ2

2h2
z2dz,

(81)
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where the last equality is obtained with the change of
variable hz → z. This integral can be computed with
the Fourier tranform of the Gaussian

∀s ∈ R,
∫ +∞

−∞
eisze−a

2z2dz =

√
π

a
e−

s2

4a2 . (82)

By differentiating with respect to s twice under the
integral, we get

∀s ∈ R, −
∫ +∞

−∞
z2eisze−a

2z2dz

=

√
π

a

(
s2

4a4
− 1

2a2

)
e−

s2

4a2 .

(83)

and thus, with s = 1, taking the real part, we obtain∫ +∞

−∞
z2 cos(z)e−a

2z2dz =

√
π(2a2 − 1)e−1/(4a2)

4a5
.

(84)

Hence

E(Y ) =
1

h3

λ√
2π

√
π( 2λ2

2h2 − 1)e−
2h2

4λ2

4λ5/(4
√

2h5)

= h2 (λ
2

h2 − 1)e−
h2

2λ2

λ4

=
(λ2 − h2)e−

h2

2λ2

λ4
.

(85)

�

Proof of Lemma 4.4 Using the definition of X, we
have

E(X)

= Dc(λ)

∫
Rd
c(ω)2|〈ω, u〉|2 cos(〈ω, u〉h)

e−
λ2

2 ‖ω‖
2
2

c(ω)2
dω

= Dc(λ)

∫
Rd
|〈ω, u〉|2 cos(〈ω, u〉h)e−

λ2

2 ‖ω‖
2
2dω.

(86)

Hence

E(X) =
Dc(λ)

D(λ)
E(Z2 cos(hZ)). (87)

The result is directly deduced from Lemma 4.3.
�

The variations of the calculated mean F (h) in
Lemma 4.3 with respect to h will be useful for the
proof of Theorem 4.1.

Lemma D.1. Let F (h) := (λ2−h2)e
− h2

2λ2

λ4 . Then,
for h ≥ 0

• F (0) = 1/λ2 = maxh≥0 F (h);
• F (h) = 0 implies h2 = λ2;

• F is decreasing on [0,
√

3λ].

Proof We have λ4F ′(h) = −2he−
h2

2λ2 − h
λ2 (λ2 −

h2)e−
h2

2λ2 . Hence, F ′(h) = 0 implies h(−2 − 1 +
h2/λ2) = 0 i.e. h = 0 or h2 = 3λ2. We conclude with
a standard study of the function F . �

Proof of Lemma 4.5 Inspired by [14], we write

Ees(X−E[X]) =1 + E(s(X − E[X]))

+

+∞∑
r=2

srE((X − E[X])r)

r!

(88)

Since |X−E[X]| ≤ |X|+E[|X|], the triangle inequality

(for the norm (E|·|r)
1
r ) and the Jensen inequality give

E[(X − E[X])r]
1
r ≤ E[|X − E[X]|r]

1
r

≤ E[|X|r]
1
r + [(E[|X|])r]

1
r

≤ 2E(|X|r)
1
r .

(89)

We deduce

Ees(X−E[X]) ≤ 1 +

+∞∑
r=2

|s|r2rE(|X|r)
r!

. (90)

Since c(ω) ≤ 1, we bound

E(|X|r) =

∫
Rd

[
(c(ω))2r|〈ωl, u〉|2r|cos(h〈ω, u〉)|r

Dc(λ)

(c(ω))2
e−

λ2

2 ‖ω‖
2
2

]
dω

=Dc(λ)

∫
Rd

[
(c(ω))2(r−1)|〈ωl, u〉|2r

|cos(h〈ω, u〉)|2re−
λ2

2 ‖ω‖
2
2

]
dω

≤Dc(λ)

D(λ)

∫
Rd
|〈ωl, u〉|2rD(λ)e−

λ2

2 ‖ω‖
2
2dω.

(91)

Let Z ∼ N (0, 1/λ2), the previous inequality
implies

E(|X|r) ≤ Dc(λ)

D(λ)
E(|Z|2r). (92)

As c(ω) ≤ 1, we have (c(ω))−2 ≥ 1 and

Dc(λ)

D(λ)
=

∫
Rd e
−λ22 ‖ω‖

2
2dω∫

Rd e
−λ22 ‖ω‖

2
2(c(ω))−2dω

≤
∫
Rd e
−λ22 ‖ω‖

2
2dω∫

Rd e
−λ22 ‖ω‖

2
2dω(infω(c(ω))−2)

≤ 1.

(93)

We deduce E(|X|r) ≤ E(|Z|2r) and
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Ees(X−E[X]) ≤ 1 +

+∞∑
r=2

|s|r2r(E(|Z|2r))
r!

(94)

We have that E(|Z|2r) = 1√
π

(
2
λ2

)r
Γ((2r+1)/2) ≤

1√
π
r!
(

2
λ2

)r
. For 4|s|/λ2 ≤ 1/2 (i.e. |s| ≤ λ2/8), we

have

Ees(X−E[X]) ≤ 1 +
1√
π

+∞∑
r=2

|s|r2r
(

2

λ2

)r

= 1 +
1√
π

+∞∑
r=2

(
4|s|
λ2

)r

= 1 +
1√
π

(
4|s|
λ2

)2 +∞∑
r=0

(
4|s|
λ2

)r
≤ 1 +

1√
π

(
4s

λ2

)2
1

1− 1/2

= 1 +
32√
π

( s

λ2

)2

≤ e
64√
π
s2

2λ4 ≤ e
s2

2

(
8
λ2

)2

.

(95)

This implies that X ∼ subE(8/λ2) (Definition 2.6
with a = 8/λ2 ). �

Proof of Theorem 4.1 For 0 ≤ η ≤ 1
λ2

Dc(λ)
D(λ)

= F (0),

Lemma D.1 gives a unique 0 ≤ hη ≤ λ such that

(λ2 − h2
η)e−

h2η

2λ2

λ4

Dc(λ)

D(λ)
= η i.e. E(Xl(u, hη)) = η.

(96)
Then, with Lemma 4.6, for such (η, hη), we have

P
( 1

m

m∑
l=1

Xl > 2η
)

= P
( 1

m

m∑
l=1

Xl − E(Xl) > η
)

≤ p(m,λ, η) := e−
m
2 min(η2 λ

4

82
,η λ

2

8 ).

(97)

Since c(ω) ≤ 1 (see proof of Lemma 4.5), we have
Dc(λ)
D(λ)

≤ 1 and thus it holds that ηλ2 ≤ 1. Hence

ηλ2

8 ≤ 1 and η2 λ4

82 ≤ ηλ2

8 . We thus get that

min(η2 λ4

82 , η
λ2

8 ) = η2 λ4

82 .

Taking 0 < η ≤ F (0) and m0 such that m0
2 η2 λ4

82 ≥
1, we get p(m0, λ, η) ≤ 1/e. Hence this probabilistic
control is guaranteed for any m ≥ m0, which satisfies

(by expliciting the value of η2 )

m

2

(
(λ2 − h2

η)e−h
2
η/(2λ

2)

λ4

λ2

8

Dc(λ)

D(λ)

)2

≥ 1

i.e.

(
(λ2 − h2

η)e−h
2
η/(2λ

2)Dc(λ)

D(λ)

)2

≥ 2 · 82λ4

m

i.e. (λ2 − h2
η)e−h

2
η/(2λ

2) ≥ D(λ)

Dc(λ)

√
2 · 8λ2

√
m

.

(98)

This in turn implies

λ2 − h2
η ≥

D(λ)

Dc(λ)

√
2 · 8λ2

√
m

i.e. h2
η ≤ λ2

(
1− D(λ)

Dc(λ)

8
√

2√
m

)
.

(99)

and

P

(
1

m

m∑
l=1

Xl > 2η

)
≤ 1/e. (100)

For any sufficiently small ξ = 4η > 0, recalling
that 1

m

∑m
l=1Xl = 1

2u
THθu with θ = hu, we can find

h such that

h2 ≤ λ2
(

1− D(λ)

Dc(λ)

8
√

2√
m

)
(101)

and

P(g ∈ Γ([0, uh], ξ)) ≤ P
(

1

2
uTHhuu >

1

2
ξ

)
= P

(
1

m

m∑
l=1

Xl > 2η

)
≤ 1/e.

(102)

�

We need the following Lemma to give a lower
bound on sets Λ where g is strongly convex.

Lemma D.2. Let f(u, h) =
1
m

∑m
l=1 c(ωl)

2|〈ωl, u〉|2 cos(〈ωl, u〉h). Then

sup
‖u‖=1,0≤h≤hmax

‖∇f(u, h)‖2

≤ d
√
d

2λ2

√√√√(1 +
hmax3

√
3d

8λ

)2

+

(
3
√

3

8λ

)2

=: %(d, λ, hmax)

(103)
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Proof For ‖u‖2 = 1, with Cauchy-Schwarz inequality,∣∣∣∂f(u, z)

∂z

∣∣∣ =
∣∣∣ 1

m

m∑
l=1

c(ωl)
2|〈ωl, u〉|2〈ωl, u〉sin(〈ωl, u〉z)

∣∣∣
≤ max
l∈{1,...,m}

|〈ωl, u〉|3

(1 + λ2‖ωl‖22/d)2

≤ max
l∈{1,...,m}

‖ωl‖3

(1 + λ2‖ωl‖22/d)2
.

(104)

The derivative of v → v3/(1 + λ2v2/d)2 is zeroed for
v such that

3v2(1 + λ2v2/d)2 − 2v3(2vλ2/d)(1 + v2λ2/d) = 0

v2(1 + v2λ2/d)(3(1 + v2λ2/d)− 4v2λ2/d) = 0

v2(1 + v2λ2/d)(3− v2λ2/d) = 0

(105)

i.e. v2 = 3d/λ2 or v = 0. Hence its maximum value is
3d
√

3d
16λ3 and ∣∣∣∂f(u, z)

∂z

∣∣∣ ≤ 3d
√

3d

16λ3
. (106)

We bound the other partial derivatives.∣∣∣∂f(u, z)

∂ui

∣∣∣
=
∣∣∣ 1

m

m∑
l=1

c(ωl)
2
(

2ωl,i〈ωl, u〉 cos(〈ωl, u〉z)

− |〈ωl, u〉|2ωl,iz sin(〈ωl, u〉z)
)∣∣∣

≤ 1

m

m∑
l=1

c(ωl)
2
(
|2ωl,i〈ωl, u〉|+ |〈ωl, u〉|2|ωl,iz|

)
≤ 1

m

m∑
l=1

c(ωl)
2
(

2‖ωl‖22 + z‖ωl‖32
)

≤ 1

m

m∑
l=1

(
c(ωl)

22‖ωl‖22 + z
3d
√

3d

16λ3

)
.

(107)

The derivative of v → v2/(1 + v2λ2/d)2 is zeroed for
v such that

2v(1 + v2λ2/d)2 − 2v2(2vλ2/d)(1 + v2λ2/d) = 0

v(1 + v2λ2/d)(2(1 + v2λ2/d)− 4v2λ2/d) = 0

2v(1 + v2λ2/d)(1− v2λ2/d) = 0

(108)

i.e. v2 = d/λ2 or v = 0. Hence its maximum value of
the function is d/(4λ2) and, for z ≤ hmax,∣∣∣∂f(u, z)

∂ui

∣∣∣ ≤ d

2λ2
+
hmax3d

√
3d

16λ3
. (109)

Finally,

‖∇f(u, z)‖2

≤

√√√√d

(
d

2λ2
+
hmax3d

√
3d

16λ3

)2

+

(
3d
√

3d

16λ3

)2

=
d
√
d

2λ2

√√√√(1 +
hmax3

√
3d

8λ

)2

+

(
3
√

3

8λ

)2

.

(110)

�

Proof of Lemma 4.7 For 0 ≤ η ≤ 1
λ2

Dc(λ)
D(λ)

= F (0),

Lemma D.1 gives a unique 0 ≤ hη ≤ λ such that

(λ2 − h2
η)e−h

2
η/(2λ

2)

λ4

Dc(λ)

D(λ)
= η i.e. E(Xl) = η.

(111)
From Lemma 4.6, we have, for any ‖u‖2 = 1 and

h ≤ hη,

P

(
1

m

m∑
l=1

Xl < −η + F (h)

)

≤ p(m,λ, η) := e−
m
2 min(η2 λ

4

82
,η λ

2

8 ).

(112)

Using Lemma D.1, F (h) ≥ F (hη), hence
1
m

∑m
l=1Xl < −η + F (hη) = η implies

1
m

∑m
l=1Xl < −η + F (h) and

P

(
1

m

m∑
l=1

Xl < η

)
≤ P

(
1

m

m∑
l=1

Xl < −η + F (h)

)
≤ p(m,λ, η).

(113)

Recall that, for differentiable g, we have

|g(x+ h)− g(x)| ≤ sup
z
‖∇g(x)‖2 · ‖h‖2. (114)

We now construct (ui, hi)i∈I such that ui, hi are
the centers of balls of radius ζ covering B(1)×[0, hη] ⊂
Rd+1. The `2-ball B(1) is covered by (3/ζ1)d balls of
radius ζ1, the set [0, hη] is covered by hη/ζ2 balls of
radius ζ2.

Let us set ζ1 = ζ2 = ζ/
√

2. Taking (ui, hi)i∈I
as the cross-product of the two coverings, we have
that for any (u, h) ∈ B(1)× [0, hη], there exists ui, hi
such that ‖(u, h) − (ui, hi)‖22 ≤ ζ2

1 + ζ2
2 = ζ2. We

thus get a ζ-covering with |I| = (3
√

2/ζ)d
√

2hη/ζ =

3d
√

2
d+1

hη/ζ
d+1.

Suppose ∀i ∈ I, f(ui, hi) ≥ η. We have for all h ≤
hη, |f(u, h)−f(ui, hi)| ≤ %(d, λ, hη)ζ (with %(d, λ, hη)
given by Lemma D.2). This implies f(u, h) ≥ η −
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%(d, λ, hη)ζ. We deduce, using a union bound, that

P(∀u/‖u‖2 = 1, ∀h ≤ hη, f(u, h) ≥ η − %(d, λ, hη)ζ)

≥ P(∀ui,∀hi, f(ui, hi) ≥ η)

= 1− P(∃ui, hi, f(ui, hi) < η)

≥ 1−
∑
i∈I

P(f(ui, hi) < η)

≥ 1− |I|p(m,λ, η)

= 1− 3d
√

2
d+1

hη

ζd+1
p(m,λ, η)

(115)

Take ζ such that %(d, λ, hη)ζ = η/2. Using the fact
that hη ≤ λ, we obtain

P(∀u, ∀h ≤ hη, f(u, h) ≥ η/2)

≥ 1− 3d(2
√

2)d+1(%(d, λ, hη))d+1hηp(m,λ, η)/ηd+1

≥ 1− 3d(2
√

2)d+1(%(d, λ, λ))d+1λp(m,λ, η)/ηd+1.

(116)

Taking ξ = η, as f(u, h) = 1
2u
THhuu, we

have just showed that ξ-strong convexity is obtained
on [0, hξ] with probability 1 − p0 where p0 =

3d(2
√

2)d+1(%(d, λ, λ))d+1λp(m,λ, η)/ξd+1 and for hξ
such that

(λ2 − h2
ξ)e
−h2

ξ/(2λ
2)

λ4

Dc(λ)

D(λ)
≥ ξ. (117)

As we consider h2
ξ ≤ λ2, this is also guaranteed for

h ≤ hξ

(λ2 − h2)e−1/2

λ4

Dc(λ)

D(λ)
= ξ. (118)

For a fixed ξ sufficiently small, we have

− log(p0)

= − log(p(m,λ, ξ))− log
(

3d(2
√

2)d+1(%(d, λ, λ))d+1λ/ξd+1
)

=
m

2
ξ2λ4/82 − log

(
3d(2
√

2)d+1(%(d, λ, λ))d+1λ/ξd+1
)

= mξ2λ4/128 + %̃(d, λ) + (d+ 1) log(ξ)

(119)

where %̃(d, λ) = − log
(

3d(2
√

2)d+1(%(d, λ, λ))d+1λ
)

.

For large m, using (118), we have

− log(p0) = Ω(mξ2λ4)

= Ω(m(λ2 − h2)2).
(120)

This means there is a constant C such that an arbi-
trary small p0 is guaranteed with a size of basin h such
that

h ≥

√
λ2 −

C
√
− log(p0)√
m

. (121)

�
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