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Purpose
DRlib is a new C++ library for modeling, simulation and inference of marked point processes. The aim is to complete existing tools such
as the spatstat library in R [1] with reliable and efficient C++ code allowing intensive Bayesian MCMC based inference for marked Gibbs
point processes. This proposal has its roots in the MPPLIB library developed mainly by [2] where exact simulation algorithms for marked
point processes were translated into C++ in order to perform massive simulation studies. The current version of the library is freely
available at the following address https://gitlab.univ-lorraine.fr/labos/iecl/drlib.

Interacting point process

The points are situated in W a compact region of R2. The marks are described by the probability
space (M,M, νM).

Unit Intensity Homogeneous Poisson Point Process with independent marks :
independence - completely random patterns
. the number of points is a Poisson r.v. ∼ P(ν(W)) with ν(W) the Lebesgue measure of W
. points are distributed uniformly in W while marks are associated to each points i.i.d. w.r.t. νM

Interactions can be specified via a probability density w.r.t. the previous process.

Strauss process : repulsive patterns Its probability density is

p(x) ∝ βn(x)γsr (x)

with n(x) the number of points, sr (x) =
∑n(x)

,j=1,<j 1{d(, j) ≤ r} the number of pairs of points
closer than the prefixed r. The model parameters are β > 0 and γ ∈]0,1].

Area interaction process : repulsive or clustered patterns Its probability density is

p(x) ∝ βn(x)γr (x)

with n(x) the number of points, r (x) = ν
�⋃

 n(x)b(, r)
�

/πr2 the volume of the union of balls
centred on the points of configuration and of radius r. The model parameters are β, γ > 0.

A practical marked extension: discs with random radius

Simulation
Problem: the normalising constant of the previous models is not always available in analytical
closed form.
Adopted solution: use MCMC methods - simulate a Markov chain whose unique equilibrium
distribution is the distribution of the point process of interest.
Algorithms: spatial birth-and-death processes, Metropolis-Hastings dynamics, Gibbs samplers,
perfect algorithms

Key ideas: add or remove a point from the current configuration till equilibrium is reached. The

construction of the acceptance probability for the proposed transition guarantees convergence

properties of the simulation algorithms [3, 4]

Posterior sampling
Problem: sampling the posterior is difficult because the normalising constant ratio does not
simplify
Adopted solution: ABC Shadow, SSA algorithms [5, 6].
Key ideas: approximate the behaviour of Markov chain that has the equilibrium distribution
the posterior of interest.
Algorithm description: fix δ and m. Assume the observed pattern is y and the current state
is θ0.
1. Generate x according to p(x|θ0).
2. For k = 1 to m do

. Generate a new candidate ψ following the density
Uδ(θ→ ψ) = 1

Vδ
1b(θ,δ/2){ψ} with Vδ vol. of the ball b(θ, δ/2).

. The new state θk = ψ is accepted with probability

αs(θk−1 → θk) =mn{1, ƒ (y|θk )p(θk )
ƒ (y|θk−1 )p(θk−1 )

ƒ (x|θk−1 )
ƒ (x|θk )

}

otherwise θk = θk−1.
3. Return θm.
4. If another sample is needed, go to step 1 with θ0=θn.

Implementation and classes diagram

From the basis structure, the following derived classes implement the corresponding models:

StraussFixedRadius : unmarked Strauss

StraussRandomRadius : marked Strauss - each point has a different range

The C++ implementation builds basic classes following the mathematical principles of the
problem on hand. For example:

• Event, Pattern, Prior classes to build configurations of objects and point processes
models

• Sampler, StandardMH classes to build simulation dynamics and the Metropolis
Hastings algorithm

• ABCShadow implements the posterior sampling

AreaInteractionFixedRadius : unmarked Area Interaction
AreaInteractionRandomRadius : marked Area Interaction - each point occupies a

different territory

Sample Area Int model - random radius
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A sample realisation of the Area
Interaction model - random radius
. log(β)=5.0; log(γ)=1.4
. radius ∼ Uniform(0.04,0.06)
. grid resolution(side)=0.005

Observed sufficient statistics com-
puted by averaging 1000 realisa-
tions:
. mean number of points=55.61
. a(r)=- srƒce coert by dsks

π(rmn+rm)/2 =-50.26

Posterior sampling model parameters
Sampling log(beta)
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Samping log(gamma)
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Posterior sampling of the model
parameters (logβ,logγ) with
the observed sufficient statistics
nt = 55.61 a(r) = -50.26

with :
r ∈ [0.04,0.06]
log(β) ∈ [3.5,5.5]
log(γ) ∈ [-5.0,0.0]
mh_time = 400
time_mh_theta = 100
nbiter_theta = 1000000

Next challenges
• superposition of interacting point processes multiple interactions
• inference from patterns with an increased number of points
• increase the number of dimensions
• communicate with R spatstat routines
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