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There is a twofold way to study wave propagation: one can deal with infinite structures and solve a spectral
problem through Bloch waves or deal with a finite size device and solve a diffraction problem. In this work, we
concentrate on scattering theory and we define a notion of scattering measure or reciprocal density of states,
which plays the role of the classical local density of states for finite structures.
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I. INTRODUCTION

Photonic band-gap materials are periodically modula
structures that offer the possibility of controlling the prop
gation of light in all directions of space through forbidde
band effects.1–3 Defects may be introduced so as to cre
cavities with a very high quality factor, but also to desi
waveguides.4–9 Among the various approaches to the the
retical study of these objects we can distinguish Bloch-w
theory,3 grating theory,10 the finite differences in time do
main ~FDTD! method and scattering theory.11 By using
Bloch waves, it is possible to obtain the dispersion curves
the device, supposed to extend at infinity, and also so
related interesting quantities, such as the density of sta
However, this method does not allow one to compute
result of a scattering experiment, and the coupling of an
terior incident field to a resonant mode cannot be taken
account. The use of grating theory, describing the photo
crystal as a stack of diffraction gratings, permits one to so
a scattering problem, but also to compute the band struc
of the crystal. However, both these approaches cannot ha
directly the problem of the defects or the boundary effec
some geometric periodization has to be introduced. Tho
widely used, such a technique can lead to spurious phen
ena and remove some interesting properties. The two
techniques, that of the FDTD method and that of the sca
ing matrix, can handle finite structures, i.e., made out o
finite number of scatterers arbitrarily placed in space, and
it can handle easily the case of defects and also the coup
with an exterior field. From nuclear physics and quant
chemistry, where scattering theory takes its roots, it is kno
that it is possible to reconstruct the fundamental propertie
the harmonic scattering matrix from the knowledge of t
evolution of the field in time domain—for instance, by usin
complex scaling.12 We shall therefore concentrate on th
scattering theory, which furnishes directly mathemati
tools.

Such notions as that of the density of states or local d
sity of states, which are crucial in the description of t
coupling between field and matter—for instance, for cons
ering the spontaneous emission of an atom embedded
photonic crystal—cannot be straightforwardly defined for
nite structures. Some previous attempts have been mad
generalize this notion to finite-size structures.13–16 In the
present work, we define a reciprocal density of states der
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from the resonances of the scattering matrix. This quan
takes into account the shape of the modes but also the
pling of the modes with plane waves.

II. SCATTERING THEORY

In order to examplify the concepts, we use a bidime
sional finite-size photonic crystal and a crystal made o
stack of diffraction gratings as well. For the numerical co
putations, we use a multiple-scattering rigorous theory
diffraction17–19 that has been successfully compared w
experiment19 and a grating code using the differenti
method for gratings. Throughout the study, we use a tim
harmonic field with a time dependence of exp(2ivt).

The main theoretical tool in dealing with a finite structu
is the scattering matrix. It is the operator that gives the d
fracted field from the incident one. It is obtained in the fo
lowing way. Considering a two-dimensional~2D! structure,
i.e., made of infinite parallel rods, ands-polarized waves, the
electric field satisfiesDE1k0

2«E50 (k0 is the wave number
in vacuum!. Denoting byEi the incident field andEd5E
2Ei the diffracted one, we have (D1k0

2)Ed5k0
2(12«)E,

hence, denotingR(k0)5(D1k0
2)21 and R(k0 ,«)5(1/«D

1k0
2)21 we have Ed5R(k0 ,«)k0

2(121/«)Ei and so
R(k0 ,«)5@ I 2R(k0)k0

2(12«)#21R(k0). From a practical
point of view, an explicit expression is obtained by using
Fourier-Bessel expansion of the field.11 The position of the
rods being denoted by$r j5(r j ,u j )%, we write the diffracted
field outside the rods in the form

Ed~r !5(
j

(
n52`

n51`

bn
j Hn

(1)~k0ur2r j u!einu j .

Resonances are due to the existence of poles of the
tering matrix in the complex plane of wavelengths. The f
lowing generalized Laurent expansion for the scattering m
trix, as an operator inL( l 2) on (bn

j ) j ,n , holds:

S~k!5(
p

Sp

k2kp
1S0~k!, ~1!

whereSp5(1/2ip)rS(z)dz is a projector~i.e.,Sp
25mSp) on

the kernel of (1/«)D1kp
2 ~see Ref. 20 for a numerical ap

proach to this notion! andS0(k) is a regular~holomorphic!
©2003 The American Physical Society05-1
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operator. The~possibily degenerated! modes$ufp&%p associ-
ated with the poles belong to the kernel ofS21(kp), and the
associated characteristic space is the image ofSp : it is the
eigenspace generated byufp&. It is important to remark tha
Sp is not necessarily an orthonormal projector so that we
only write Sp5ufp&^fp* u whereufp* &5Sp* ufp& and the op-
eratorSp* is the adjoint of operatorSp for the ,2 inner prod-
uct.

We use the following structure: the crystal is made out
5310 parallel rods, with relative permittivity« r59, the ra-
dius over period of the rods isr /d50.3, with square sym-
metry, and we uses-polarized incident fields. Dealing with
finite device, we define the transmission ratio as the flux
the Poynting vector through a segment situated near
lower face of the crystal over the flux of the Poynting vec
of the incident field. In order to allow for comparison wit
the infinite case, we also consider a structure made of a s
of five gratings, with the same basic cell as that of the fin
structure.

We first compute the transmission ratio for an incide
plane wave for both the finite structure~light solid line in
Fig. 1! and the stack of gratings~dashed line in Fig. 1!.

Remark: It should be noted that this transmission ra
may be superior to 1.

Contrarily to what happens in case of diffraction grating
in the finite-size case shallow acceptor modes21 appear in the
first gap. These resonances appear for wavelengths tha
of the order of the size of the crystal, and so the ques
may arise as to whether these peaks are linked to the fi
ness of the structure and can be removed, for instance
illuminating the structure with a Gaussian beam whose w
is smaller than the size of the side of the photonic crys
i.e., when the incident field does not ‘‘see’’ the boundary. T
direct numerical computation for incident Gaussian bea
~bold solid line in Fig. 1! shows that there are still peak
though their widths and heights are diminished.

FIG. 1. Transmission in normal incidence. Light solid line: fini
structure with an incident plane wave. Bold solid line: finite stru
ture with an incident Gaussian beam. Dashed line: stack of grat
for an incident plane wave.
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The key to the understanding of these phenomena lie
the pole structure of the photonic crystal.18 We compute the
poles of the scattering matrix of the crystal. We find po
with real parts very near to that of the peaks of Fig. 1~see
Fig. 2!. A different insight may be gained by computing th
Bloch dispersion diagram of the structure~Fig. 3!. It can be
seen that the gap depends strongly on the angle of incide
and that there is a complete gap fors-polarized waves, tha
is, a gap for all incidence, only for the intervald/l
P@0.26,0.34# ~it is the gray zone in Fig. 3!: this is precisely
the pole-free region of the scattering matrix as seen in
pole structure diagram of Fig. 2. The apparent gap in nor
incidence that is seen on the transmission through the s

-
gs

FIG. 2. Location of some poles of the scattering matrix in t
complex plane of wavelengths.

FIG. 3. Bloch diagram of the infinite crystal. The grey ban
indicates the true gap; the arrow indicates the apparent gap in
mal incidence for the stack of gratings.
5-2



e
le
m

be
to

ng
t-
de
lin
n
t
i-
re
a

o

ul

e

f
an

the
of
eld
e

os-
the
-

les

l
ise
with
de

nd
he
l in
be

the
xis-
the

DENSITY OF STATES FOR FINITE PHOTONIC CRYSTALS PHYSICAL REVIEW B67, 085105 ~2003!
of gratings corresponds to theG-M region of the Bloch dia-
gram ~see arrow in Fig. 3!. Consequently, the peaks on th
right side of the transmission diagram correspond to po
associated with Bloch waves with a non zero horizontal co
ponent, i.e., theX-M andM -G regions in Fig. 3.

The scattering matrix only depends on the wave num
and not on the horizontal Bloch component contrarily
what happens for the scattering matrix of a stack of grati
which is written as (k,u)→S(k,u). Consequently, the sca
tering matrix accounts for all possible generalized mo
and, whatever the angle of incidence, there is some coup
between the incident field and the scattering modes, eve
they do not have the same horizontal component as tha
the incident field. This remark is crucial for a proper defin
tion of the density of states in finite photonic crystals. Mo
precisely, let us write, at least formally, the scattered field

uud&5(
p

1

k02kp
E daA~a!^fp* uui~a!&ufp&1S0~k0!uui&

~2!

for an incident monochromatic fielduui&5*daA(a)uca&,
where uca& is the ket associated witheik0(a)r. This shows
that the actual excitation of a resonance pole is linked to b
the amplitude of the field and thespectral amplitude on
mode pdefined aŝ fp* uca&. On the sphere at infinity, the
scattering mode can be written asufp&5*da^caufp&uca&.
The total field then is written as

u5E da8FA~a8!1E daA~a!r~a,a8!G uca8&,

where we define theoff-shell scattering amplitudefor the
finite structure as22

r~a,a8;k0!5(
p

^fp* uca&^fpuca8&
k02kp

1S0~k0!, ~3!

the spectral scattering measure, which is an operator-valued
measure,

M ~dk!5(
p

ufp&^fp* u ^ dkp
1S0^ dk, ~4!

and thescattering measureor reciprocal density of states
~RDOS!

m~a,a8;dk!5^ca8uM ~dk!uca& ~5!

5(
p

^fp* uca&^fpuca8&d~k2kp!1^ca8uS0uca&dk, ~6!

and we can write

r~a,a8;k0!5E m~a,a8;dk!

k02k
,

S~k0!5E M ~dk!

k02k
. ~7!

Both measures can be split into a regular and a sing
part, as in the Lebesgue theorem for the decomposition
08510
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measures: M (dk)5Msg(dk)1Mac(dk), m(a,a8;dk)
5msg(a,a8;dk)1mac(a,a8;dk) where

Msg~dk!5(
p

ufp&^fp* u ^ dkp
,Mac~dk!5S0^ dk,

msg~a,a8;dk!5(
p

^fp* uca&^fpuca8&d~k2kp!,

mac~a,a8;dk!5^ca8uS0uca&dk, ~8!

this leads to a similar decomposition forr andS.

Remarks: ~1! All these quantities are independent of th
incident field@defined byA(a)] and are intrinsic properties
of the photonic crystal, and~2! As m(dk) is not a measure on
the real line, thenr is not the Stieljes transform ofm(dk),
and consequentlym(dk)Þ(1/p)Im„r(k01 i0)….23

Let us now denote by$ufn&%n the canonical basis o
l 2(Z,C), i.e., ^uufn&5einu. The basis can be expanded as
integral of plane waves:

ufn&5E
T1

i ne2 inauca&da.

The trace of theS matrix is given by

tr~S!5(
p

^fpuS~k0!fp&.

Denoting^r&5(1/2p)*T1r(a,a;k0)da, it is not difficult to
see that

tr~S!5^r&5E
R

^m~dk!&
k02k

1E ^m~dk!&.

This quantity represents somehow a decomposition of
modes on plane waves, and it is linked to the cluster
scatterers only; i.e., it does not depend on the incident fi
@recall that A(a) accounts for the spectral density of th
incident field#.

The consequence of Eqs.~8! is that the existence of a
peak on the transmission diagram, or more generally the p
sibility of exciting a mode, depends on three parameters:
spectral amplitudêfp* uca&, the distance of the wave num
ber to the nearest poleuk02kpu, and the amplitude of the
incident fieldA(a).

Let us consider two examples—for instance, the po
d/l150.259822.02531025i and d/l250.255626.53
31025i . In Figs. 4~a! and 4~b!, we have plotted the spectra
amplitudes which have very strong lobes in some prec
directions, corresponding to the plane waves associated
the modes. However, for the first pole, the spectral amplitu
is antisymmetric with respect to the horizontal axis, a
therefore it cannot be coupled by a field illuminating t
structure on its largest side: the spectral amplitude is nul
the vertical direction. On the contrary, the other pole can
excited in normal incidence so that there is still a peak in
corresponding transmission diagram. Therefore, the e
tence or not of the peaks is linked to the symmetries of
5-3
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D. FELBACQ AND R. SMAÂLI PHYSICAL REVIEW B 67, 085105 ~2003!
incident field with respect to that of the modes.24–26 We
stress that for a plane wave under normal incidence, th
irregularities could not be removed by using a larger str
ture: indeed, the peaks are due to the presence of poles o
scattering matrix which are independent of the incident fie

We see here that the global geometry of the structure
crucial point for a clear understanding of the transmiss
properties or more generally the excitation of the modes
the crystal. Now the question arises to understand for w
reason the peaks disappear when a Gaussian beam with
ficient small waist is used. Of course, this follows the phy
cal intuition, but from another point of view, the poles a
still there, whatever the incident field. In order to get

FIG. 4. Polar plot of the spectral amplitude of the modes:~a!
d/l150.259822.02531025i , ~b! d/l250.255626.5331025i .
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deeper view into this problem, we compare the relative i
portance of the regular and singular parts of the scatte
matrix or, in other words, of the atomic and absolutely co
tinuous parts of the scattering matrix. We limit our inves
gation to the two first resonancesd/l150.259822.025
31025i and d/l250.255626.5331025i , we compute the
residu operators associated with these poles, and we wr

S~k0!5E Msg~dk!

k02k
1S̃0~k0!,

where

Msg~dk!5uf1&^f1* u ^ dk1
1uf2&^f2* u ^ dk2

.

Therefore we get two scattering operators, one associ
with the resonances,

Ssg~k0!5E Msp~dk!

k02k
dk, ~9!

and one which accounts for both the evanescent field and
remote resonances. Due to the positions of the other r
nances, it is reasonable to assume that in a small neigh
hood ofl1 andl2 we haveS̃05S0.

We use first a plane wave in normal incidence (a50) to
illuminate the structure and we compute

Ns5^c0uS* Suc0&5
1

2pET1
ur~0,a8!u2da8, ~10!

which is to be compared toNsg5^c0uSsg* Ssguc0& and N0

5^c0uS̃0* S̃0uc0&. Both curvesNsg /Ns andN0 /Ns are given
in Fig. 5. We clearly see that the scattering matrix is perfec
well represented by the singular part around the resonan
but also that the regular part plays also a non-negligible r
between resonances.

FIG. 5. Decomposition of the scattering field on resonant a
evanescent modes for an incident plane wave.
5-4
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DENSITY OF STATES FOR FINITE PHOTONIC CRYSTALS PHYSICAL REVIEW B67, 085105 ~2003!
In a second time, we use an incident Gaussian beam
cused on the center of the structure~see Fig. 6 for a map o
the field atl5l2; arrow 1 shows the focus point of th
beam!. The coefficientsNsg /Ns andN0 /Ns are given in Fig.
7. This time it is clear that it is the regular part that plays t
most important role: almost all the energy is coupled to
evanescent waves instead of the resonances, which do
appear on the transmission curve, as noted above. The
experiment consists in focusing the incident beam on a
of the crystal where the intensity of the modes is maxim
~see arrow 2 in Fig. 7!. Under that condition, we find agai
that the modes can be coupled~Fig. 8!.

The question of the converge of the properties of the fin
structure towards that of an infinite one is then posed. T

FIG. 6. Map of the mode ford/l250.255626.5331025i . The
arrows indicate the focus point of the Gaussian beam.

FIG. 7. Decomposition of the scattering field on resonant a
evanescent modes for an incident Gaussian beam focused o
center of the crystal~see arrow 1 in Fig. 6!.
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first idea that may come is to expect some sort of conv
gence of the poles and residues when the size of the cry
increases. In fact, there are different mathematical entitie
stake here: the pole structure by itself, which is just a se
points and can be expected to converge, in a Kuratow
meaning towards a curve and, if the crystals grow in
directions, towards the Bloch spectrum on the real axis.
there are also a projection-valued measure, the spectral m
sureM, and a complex atomic measurem, for which conver-
gence is not so clear. For instance, if the crystal grows in
direction only~for instance, laterally!, then the pole structure
should remain complex because that of the infinite grating

In the specific example that is given here, the finite str
ture behaves as an infinite one provided that we use a Ga
ian beam whose waist is smaller than the spatial period of
anomalous modes or concentrated on a node of the mod
natural question is to ask when it is possible to consider
structure as infinite. Unfortunately, this question is not w
posed. For instance, if we use a plane wave as an inci
field, then the above shows that the answer is ‘‘never.’’ If o
wants to compute the properties of a mode associated w
cavity, then the boundary of the crystal plays such an imp
tant role that the question has no sense. Consequent
appears to be extremely difficult to exhibit a general rule.
least can we say that some situations may be solved by c
mon sense: for instance, if the incident field is a beam c
centrated on one or two periods while the structure conta
a great number of periods, then the properties of the struc
should be that of the infinite one in the horizontal extend

In some obvious cases~i.e., where a beam illuminates
structure much larger than the waist of the beam!, the struc-
ture behaves as the one that is infinite in the horizontal
rection. But in many physical situations, the source of ligh
not a well-collimated beam—let us think, for instance, of
dipole or an atom emitting inside the structure—or else
interesting quantity is the lifetime of a resonance—for
stance, in the study of modes in photonic crystal fibers.

d
the

FIG. 8. Decomposition of the scattering field on resonant a
evanescent modes for an incident Gaussian beam focused on th
side of the crystal~see arrow 2 in Fig. 6!.
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both cases, the periodization can hardly represent adequ
the physical situation at issue.

III. CONCLUSION

Though pseudoperiodic boundary conditions are of
considered as the cornerstone of solid-state physics, it sh
be noted that, unlike electrons that barely leave the crys
photons cross the photonic crystal and hence inte
strongly with the boundary. These observations, which ra
the difficult problem of exhibiting a rigorous link betwee
finite and infinite structures, plead for a specific theory. T
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