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There is a twofold way to study wave propagation: one can deal with infinite structures and solve a spectral
problem through Bloch waves or deal with a finite size device and solve a diffraction problem. In this work, we
concentrate on scattering theory and we define a notion of scattering measure or reciprocal density of states,
which plays the role of the classical local density of states for finite structures.
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[. INTRODUCTION from the resonances of the scattering matrix. This quantity
takes into account the shape of the modes but also the cou-
Photonic band-gap materials are periodically modulategling of the modes with plane waves.

structures that offer the possibility of controlling the propa-
gation of light in all directions of space through forbidden Il. SCATTERING THEORY
band effects® Defects may be introduced so as to create _ »
cavities with a very high quality factor, but also to design !N order to examplify the concepts, we use a bidimen-
waveguide€® Among the various approaches to the theo-sional fm@e-smg photo_nlc crystal and a crystal made of a
retical study of these objects we can distinguish Bloch-wav&tack of diffraction gratings as well. For the numerical com-
theory? grating theory® the finite differences in time do- PUtations, we use a multiple-scattering rigorous theory of
main (FDTD) method and scattering thedry.By using dlffrac"uon1 that has peen successfully comp_ared Wlth
Bloch waves, it is possible to obtain the dispersion curves ofxperiment® and a grating code using the differential
the device, supposed to extend at infinity, and also som@ethod for gratings. Throughout the study, we use a time-
related interesting quantities, such as the density of stateBarmonic field with a time dependence of exfét).
However, this method does not allow one to compute the The main t'heoretlcgl toql in dealing with aflnlfte structur_e
result of a scattering experiment, and the coupling of an exS the scattering matrix. It is the operator that gives the dif-
terior incident field to a resonant mode cannot be taken intdracted field from the incident one. It is obtained in the fol-
account. The use of grating theory, describing the photonitoWing way. Considering a two-dimensiof@D) structure,
crystal as a stack of diffraction gratings, permits one to solvé-€-» made of infinite parallel rods, aisepolarized waves, the

a scattering problem, but also to compute the band structur@ectric field Sat'Sf'_eﬂE+k58E:Q (ko is the wave number
of the crystal. However, both these approaches cannot handfé vacuum. Denoting byE' the incident field ancE’=E
directly the problem of the defects or the boundary effects— E' the diffracted one, we haveA(+kg)E?=kj(1-¢)E,
some geometric periodization has to be introduced. Thoughence, denotingR(ko) = (A+k3) ! and R(kg,&)=(1/sA
widely used, such a technique can lead to spurious phenomk- k%)*1 we have EY= R(ko,s)ké(l—lla)Ei and so
ena and remove some interesting properties. The two laR(ky,s)=[1—R(ko)k3(1—&)] *R(ko). From a practical
techniques, that of the FDTD method and that of the scattefpoint of view, an explicit expression is obtained by using a
ing matrix, can handle finite structures, i.e., made out of &ourier-Bessel expansion of the fiefdThe position of the
finite number of scatterers arbitrarily placed in space, and sgods being denoted byri=(rl, ')}, we write the diffracted

it can handle easily the case of defects and also the couplingeld outside the rods in the form

with an exterior field. From nuclear physics and quantum

chemistry, where scattering theory takes its roots, it is known n=te

that it is possible to reconstruct the fundamental properties of Ed(r)= z > bl HWO(Ko|r—ri])en.

the harmonic scattering matrix from the knowledge of the Ion==e

evolution of the field in time domain—for instance, by using .
complex scaling? We shall therefore concentrate on the Resonances are due to the existence of poles of the scat-

scattering theory, which furnishes directly mathematicallé'ing matrix in the complex plane of wavelengths. The fol-
tools. lowing generalized Laurent expansion for the scattering ma-
Such notions as that of the density of states or local dent™, & an operator iC(1%) on (by);,n. holds:

sity of states, which are crucial in the description of the

coupling between field and matter—for instance, for consid- S(k)zz Sp +5y(K) )
ering the spontaneous emission of an atom embedded in a p k=k, '

photonic crystal—cannot be straightforwardly defined for fi-

nite structures. Some previous attempts have been made ‘t1ereS,=(1/2i m)§S(z)dz s a projectori.e., S;= uS;) on
generalize this notion to finite-size structuf&s'® In the  the kernel of (1#)A+kj (see Ref. 20 for a numerical ap-
present work, we define a reciprocal density of states derivegroach to this notionand Sy(k) is a regular(holomorphig
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FIG. 1. Transmission in normal incidence. Light solid line: finite

structure with an incident plane wave. Bold solid line: finite struc- FIG. 2. Location of some poles of the scattering matrix in the
ture with an incident Gaussian beam. Dashed line: stack of gratingsomplex plane of wavelengths.
for an incident plane wave.

The key to the understanding of these phenomena lies in
the pole structure of the photonic crystiWe compute the
poles of the scattering matrix of the crystal. We find poles
with real parts very near to that of the peaks of Figsée

ig. 2). A different insight may be gained by computing the
loch dispersion diagram of the structuféig. 3). It can be
seen that the gap depends strongly on the angle of incidence
and that there is a complete gap fpolarized waves, that
]js, a gap for all incidence, only for the interval/\
€[0.26,0.34 (it is the gray zone in Fig. 3 this is precisely
the pole-free region of the scattering matrix as seen in the
pole structure diagram of Fig. 2. The apparent gap in normal
}ncidence that is seen on the transmission through the stack

operator. Thepossibily degeneratg¢anodesf{| ¢,)}, associ-
ated with the poles belong to the kernelS)Tl(kp), and the
associated characteristic space is the imaggofit is the
eigenspace generated hyp>. It is important to remark that
is not necessarily an orthonormal projector so that we ca

only write S,=|¢,)(¢y| where|¢p)=S;|#p) and the op-
eratorSLk is the adjoint of operata8, for the €2 inner prod-
uct.

We use the following structure: the crystal is made out o
5% 10 parallel rods, with relative permittivity, =9, the ra-
dius over period of the rods igd=0.3, with square sym-
metry, and we use-polarized incident fields. Dealing with a
finite device, we define the transmission ratio as the flux o
the Poynting vector through a segment situated near the
lower face of the crystal over the flux of the Poynting vector
of the incident field. In order to allow for comparison with
the infinite case, we also consider a structure made of a stac

0.5

045

of five gratings, with the same basic cell as that of the finite 0.4t
structure.
We first compute the transmission ratio for an incident 035¢
plane wave for both the finite structutight solid line in osh
Fig. 1 and the stack of gratingslashed line in Fig. 1 an '
Remark It should be noted that this transmission ratio 02sf Apparent gap
may be superior to 1.
Contrarily to what happens in case of diffraction gratings, 02r

in the finite-size case shallow acceptor mGdeppear in the

first gap. These resonances appear for wavelengths that a Bl
of the order of the size of the crystal, and so the question ol
may arise as to whether these peaks are linked to the finite
ness of the structure and can be removed, for instance, b 0.05}
illuminating the structure with a Gaussian beam whose waisl
is smaller than the size of the side of the photonic crystal, 0

i.e., when the incident field does not “see” the boundary. The v } xoo

direct numerical computation for incident Gaussian beams FIG. 3. Bloch diagram of the infinite crystal. The grey band
(bold solid line in Fig. 1 shows that there are still peaks, indicates the true gap; the arrow indicates the apparent gap in nor-
though their widths and heights are diminished. mal incidence for the stack of gratings.
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of gratings corresponds to ti&M region of the Bloch dia- measures: M(dk)=Mgy(dk) +Me(dk), m(a,a’;dk)
gram (see arrow in Fig. B Consequently, the peaks on the =Mgy(a,a’;dK) +m,(a,a’;dk) where
right side of the transmission diagram correspond to poles
associated with Bloch waves with a non zero horizontal com- _ * _
ponent, i.e., th&X-M and M-I regions in Fig. 3. Msg(dk) Ep: |$o){ 651 9, Macldk) = Sp@ dk

The scattering matrix only depends on the wave number
and not on the horizontal Bloch component contrarily to . —
what happens for the scattering matrix of a stack of gratings Mg, @’ dk) = % (@5 W) (Dol thar) S(k=kp),
which is written as K, 8) — S(k, ). Consequently, the scat-
tering matrix accounts for all possible generalized modes Mac(a, e’ ;dK) = (| So| o) K, (8)
and, whatever the angle of incidence, there is some couplin
between the incident field and the scattering modes, even fhis leads to a similar decomposition foand S
they do not have the same horizontal component as that of
the incident field. This remark is crucial for a proper defini-
tion of the density of states in finite photonic crystals. More
precisely, let us write, at least formally, the scattered field a

Remarks (1) All these quantities are independent of the
incident field[defined byA(«)] and are intrinsic properties
of the photonic crystal, an@) As m(dk) is not a measure on
The real line, therp is not the Stieljes transform ah(dk),
1 _ _ and consequentlyn(dk) # (1/7) Im(p(ky+i0)).%
luhy=2 mf daA(a)(dp|u'(@))|dp)+So(ko)[u') Let us now denote by|¢,)}, the canonical basis of
poR0 T @ 1%(2,C), i.e.,{0] ¢,y =€"". The basis can be expanded as an

_ integral of plane waves:
for an incident monochromatic fielfl') = fdaA(a)|¥,),
where|y,,) is the ket associated with'*o(®)", This shows _f ine-inal 4 v
that the actual excitation of a resonance pole is linked to both | 6n)= Tll e " y,)da.
the amplitude of the field and thspectral amplitude on
mode pdefined as(¢y|#,). On the sphere at infinity, the
scattering mode can be written pg,) = [da(i,|p)| ).
The total field then is written as tr(S) =, (dplS(ko) p).

P

U=J da’

where we define theff-shell scattering amplitudéor the dk)
S m
finite structure &8 tr(s):<p>:JR< (—k>+J (m(dky).

* D Er— kO
pla,a’;ko)=>, <¢’p|9ia>_<<li>p|¢//a,>
P 0

The trace of theS matrix is given by

A(a’)+f daA(a)p(a,a’) || ), Deno}j[]ing<p>=(1/27T)fT1p(a,a;k0)da, it is not difficult to
see that

+Soko), (3 This quantity represents somehow a decomposition of the
] o modes on plane waves, and it is linked to the cluster of
the spectral scattering measunehich is an operator-valued gcaterers only; i.e., it does not depend on the incident field
measure, [recall thatA(a) accounts for the spectral density of the
incident field.
M(dk)=2 |¢p><¢’,§|®6k + Sy dk, (4) The consequence of Eg&) is that the existence of a
P ° peak on the transmission diagram, or more generally the pos-
and thescattering measurer reciprocal density of states Sibility of exciting a mode, depends on three parameters: the
(RDOS spectral amplitud¢ ¢ |4,), the distance of the wave num-
ber to the nearest polgo—Kkpy|, and the amplitude of the
mM(a,a’;dk)=(gq [M(dK)| ) 5 incident fieldA().
Let us consider two e5xamples—for instance, the poles
= * NSK—=K)+ (. K d/N;=0.2598-2.025<10 ° and d/r,=0.2556-6.53
Ep: (b aX dol e ) Sk o) + (Y| Sol )k, () %1075, In Figs. 4a) and 4b), we have plotted the spectral
amplitudes which have very strong lobes in some precise
directions, corresponding to the plane waves associated with

p

and we can write

mM(a,a’;dk) the modes. However, for the first pole, the spectral amplitude
P(“!a'?ko):J’ T ko—k is antisymmetric with respect to the horizontal axis, and
therefore it cannot be coupled by a field illuminating the
M (dk) structure on its largest side: the spectral amplitude is null in
S(ko)=J Ko—K ° (7)  the vertical direction. On the contrary, the other pole can be

excited in normal incidence so that there is still a peak in the
Both measures can be split into a regular and a singulagorresponding transmission diagram. Therefore, the exis-
part, as in the Lebesgue theorem for the decomposition dence or not of the peaks is linked to the symmetries of the
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FIG. 5. Decomposition of the scattering field on resonant and
(a) 270 evanescent modes for an incident plane wave.

deeper view into this problem, we compare the relative im-
portance of the regular and singular parts of the scattering
matrix or, in other words, of the atomic and absolutely con-
tinuous parts of the scattering matrix. We limit our investi-
gation to the two first resonanced/A,=0.2598-2.025

X 107° andd/\,=0.2556-6.53x< 10 i, we compute the
residu operators associated with these poles, and we write

Mgo(dk)
S<ko>:f kog(k)+so(ko),

where
Mg(dK)=|B1)( T ® 8y, + | do)( B3] © by,

Therefore we get two scattering operators, one associated
with the resonances,

M (dk
Sufko) = [ M2k ©

(b) 270

and one which accounts for both the evanescent field and the
remote resonances. Due to the positions of the other reso-
nances, it is reasonable to assume that in a small neighbor-

incident field with respect to that of the modds? we  hood ofx; andx, we haveSy=S,. o

stress that for a plane wave under normal incidence, these e USe first a plane wave in normal incidence<(0) to

irregularities could not be removed by using a larger strucilluminate the structure and we compute

ture: indeed, the peaks are due to the presence of poles of the

scattering matrix which are independent of the incident field. Ne={ 0| S* S| o) = 1
We see here that the global geometry of the structure is a s 0 0

crucial point for a clear understanding of the transmission = .

properties or more generally the excitation of the modes ofVhich is to be compared tlsg= (10| S5¢Ssgl th0) and No

the crystal. Now the question arises to understand for what (| Sg Sol o). Both curvesNgy/Ng andNg /N are given

reason the peaks disappear when a Gaussian beam with sirf-Fig. 5. We clearly see that the scattering matrix is perfectly

ficient small waist is used. Of course, this follows the physi-well represented by the singular part around the resonances,

cal intuition, but from another point of view, the poles are but also that the regular part plays also a non-negligible role

still there, whatever the incident field. In order to get abetween resonances.

FIG. 4. Polar plot of the spectral amplitude of the modes:
d/N;=0.2598-2.025x 1075, (b) d/\,=0.2556-6.53x 10" 5i.

2 )1

lp(0,a")|?da’, (10
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FIG. 6. Map of the mode fod/\,=0.2556-6.53x 10 %. The  evanescent modes for an incident Gaussian beam focused on the left

arrows indicate the focus point of the Gaussian beam. side of the crysta(see arrow 2 in Fig. 6

In a second time, we use an incident Gaussian beam fdirst idea that may come is to expect some sort of conver-
cused on the center of the structusee Fig. 6 for a map of J€Nce of the poles and residues when the size of the crystal
the field ath=\.: arrow 1 shows the fo.cus point of the increases. In fact, there are different mathematical entities at
beam). The coeffizéientwsg/NS andN, /N, are given in Fig. stake here: the pole structure by itself, which is just a set of

7. This time it is clear that it is the regular part that plays thePOINts an(tzl can dbe expected (tjo _?ot%verge, tml a Kurat_owsII|<|
most important role: almost all the energy is coupled to thdl'€aning towards a curve and, 1t the crystals grow in a

evanescent waves instead of the resonances, which do n&;%erztlgrnesélt(s)(\)lvzrdrso%stiilr?%gljggcrtrr]lég]sgrnetr;ﬁer?sale?:)t(rlzi rilcjeta
appear on the transmission curve, as noted above. The fin ! reM. and a cor% IJex atomic measure for v’vhich (?onver
experiment consists in focusing the incident beam on a paﬁ ' P ure

of the crystal where the intensity of the modes is maxima3€nce Is not so cI_ear. For instance, if the crystal grows in one
(see arrow 2 in Fig. )7 Under that condition, we find again direction only(for instance, laterally then the pole structure
that the modes can be coupléig. 8 ' should remain complex because that of the infinite grating is.

The question of the converge of the properties of the finite Int}hﬁ specific exar?pllte that is g'v.ﬁndhtehre{ the finite SGUUC'
structure towards that of an infinite one is then posed. Théure ehaves as an Infinite one provided that We use a >auss-
lan beam whose waist is smaller than the spatial period of the

anomalous modes or concentrated on a node of the mode. A
natural question is to ask when it is possible to consider the
i structure as infinite. Unfortunately, this question is not well
posed. For instance, if we use a plane wave as an incident
field, then the above shows that the answer is “never.” If one
wants to compute the properties of a mode associated with a
cavity, then the boundary of the crystal plays such an impor-
] tant role that the question has no sense. Consequently, it
appears to be extremely difficult to exhibit a general rule. At
least can we say that some situations may be solved by com-
. mon sense: for instance, if the incident field is a beam con-
centrated on one or two periods while the structure contains
a great number of periods, then the properties of the structure
8 should be that of the infinite one in the horizontal extend.

In some obvious casdgse., where a beam illuminates a
structure much larger than the waist of the bgatime struc-
ture behaves as the one that is infinite in the horizontal di-
rection. But in many physical situations, the source of light is
not a well-collimated beam—Iet us think, for instance, of a

FIG. 7. Decomposition of the scattering field on resonant anddipole or an atom emitting inside the structure—or else the
evanescent modes for an incident Gaussian beam focused on th#eresting quantity is the lifetime of a resonance—for in-
center of the crystalsee arrow 1 in Fig. 6 stance, in the study of modes in photonic crystal fibers. In

0 I I ' ' ' ' L L L
0.238 0.24 0242 0244 0248 0248 0.25 0252 0254 0256 0.258
d/A
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both cases, the periodization can hardly represent adequatglyesent study is only a first step in that direction, though we

the physical situation at issue. have already implicitly applied similar concepts to the study
of resonant cavities and nonlinear photonic crystafs.A
Il. CONCLUSION more complete work should deal with the phenomenon of

spontaneous emission, where certainly the finiteness of the

Though pseudoperiodic boundary conditions are ofterstructure plays an important role, and also deal with the elec-
considered as the cornerstone of solid-state physics, it shoutdomagnetic field quantization, which hopefully could be per-
be noted that, unlike electrons that barely leave the crystaformed by means of the generalized modes of the structure
photons cross the photonic crystal and hence interadimportant results in that direction have been obtained in
strongly with the boundary. These observations, which rais®ef. 29 for one-dimensional photonic cryspal&inally, it
the difficult problem of exhibiting a rigorous link between should be noted that the above approach can be extended to
finite and infinite structures, plead for a specific theory. Thedeal with 3D photonic crystals.
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