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Self-assembly of dodecagonal and octagonal quasicrys-
tals in hard spheres on a plane

Etienne Fayena, Marianne Impéror-Clerca, Laura Filionb, Giuseppe Foffia, and Frank
Smallenburga

Hard spheres are one of the most fundamental model systems in soft matter physics, and have been
instrumental in shedding light on nearly every aspect of classical condensed matter. Here, we add
one more important phase to the list that hard spheres form: quasicrystals. Specifically, we use
simulations to show that an extremely simple, purely entropic model system, consisting of two sizes
of hard spheres resting on a flat plane, can spontaneously self-assemble into two distinct random-
tiling quasicrystal phases. The first quasicrystal is a dodecagonal square-triangle tiling, commonly
observed in a large variety of colloidal systems. The second quasicrystal has, to our knowledge, never
been observed in either experiments or simulations. It exhibits octagonal symmetry, and consists
of three types of tiles: triangles, small squares, and large squares, whose relative concentration
can be continuously varied by tuning the number of smaller spheres present in the system. The
observed tile composition of the self-assembled quasicrystals agrees very well with the theoretical
prediction we obtain by considering the four-dimensional (lifted) representation of the quasicrystal.
Both quasicrystal phases form reliably and rapidly over a significant part of parameter space. Our
results demonstrate that entropy combined with a set of geometrically compatible, densely packed
tiles can be sufficient ingredients for the self-assembly of colloidal quasicrystals.

1 Introduction
Hard spheres are arguably the most fundamental model system
in colloid science. The colloidal equivalent of marbles, hard
spheres only interact when colliding, but despite this simplicity
exhibit nearly all important aspects of phase behavior. As such,
colloidal hard spheres have been instrumental in enhancing our
understanding of crystal nucleation1,2, crystallization in confine-
ment3–9, two-dimensional melting10,11, glassy dynamics12–16,
crystal defects17–19, among many others. Their important role in
soft matter science stems from their theoretical simplicity, which
makes them a natural first approximation for particles with a hard
core, as well as the fact that they can be quantitatively reproduced
in the lab20–23. One aspect of colloidal phase behavior where
hard spheres have thus far not proven suitable as a model sys-
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tem is the formation of quasicrystals. These exotic structures pos-
sess long-range order but lack periodicity and typically exhibit so-
called "forbidden" symmetries, incompatible with periodic crys-
talline order. They have been predicted to form or directly ob-
served in a variety of soft-matter systems consisting of nanoparti-
cles or macromolecules24–27, as well as in several (non-additive)
2D binary Lennard-Jones mixtures28–31, but have so far remained
elusive in colloidal particles on the micrometer scale.

This is unfortunate, as such a colloidal model system that reli-
ably forms quasicrystals would be ideal for the real-time study
of quasicrystal self-assembly. In computer simulations of col-
loidal soft matter, quasicrystals are typically found in systems with
highly specific interactions – such as oscillatory potentials, patchy
interactions, and square-shoulder repulsion24,32–37 – which are
hard to realize in the lab. While complex quasicrystal approxi-
mants have been found to self-assemble in simulations of polydis-
perse mixtures of hard spheres38, and finite clusters with icosa-
hedral symmetry have been shown to form in spherical confine-
ment3,4,39, to date hard-sphere systems have not been found to
be capable of forming a quasicrystal.

Here, we demonstrate quasicrystal self-assembly in binary mix-
tures of hard spheres lying on a flat plane. In particular, we
find that this simple, purely entropic quasi-two-dimensional sys-
tem exhibits an amazingly rich self-assembly behavior, forming
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Fig. 1 Schematic depiction of the model. 3D hard spheres lying on
a flat surface (top) can be interpreted as an equivalent 2D system of
non-additive hard disks (bottom). Spheres of the same type behave like
standard hard disks (their projections cannot overlap), while the closest
projected distance between particles of different types σLS is smaller than
the sum of the radii.

not only six periodic crystal phases, but two random-tiling qua-
sicrystals as well: one dodecagonal and one octagonal. Although
dodecagonal quasicrystals are relatively common in soft matter
models25,32,33,40–42, octagonal ones are much more rare33–36.
Moreover, unlike previously observed eight-fold quasicrystals
made up of two tiles, the octagonal tiling we observe here is com-
posed of three distinct tiles, whose relative composition can be
directly tuned by changing the fraction of small spheres in the
system. Both quasicrystal phases form reliably and rapidly over
a significant part of parameter space. As binary hard spheres on
a plane are directly experimentally realizable, to the point where
they quantitatively match simulations10,43, this discovery identi-
fies an ideal model system for studying essentially all properties of
quasicrystals, including their structure, nucleation, melting, and
defect dynamics.

2 Model
We consider mixtures of hard spheres of two different sizes con-
strained to lie on a flat plane. As illustrated in Fig. 1, this system
can be mapped onto an equivalent 2D one by looking at its pro-
jection on the substrate, where spheres become disks. As the par-
ticles are constrained to move in only two dimensions, the disks
corresponding to spheres of equal size cannot overlap, and hence
interact simply as hard disks. However, for spheres of different
sizes, a small amount of overlap of the 2D projections of the par-
ticles is allowed. Specifically, the distance of closest approach
between the projections of a large particle of diameter σL and a
small particle of diameter σS is given by the geometric mean of
their diameters σLS =

√
σLσS.

The phase behavior of a mixture of NL large spheres and NS

small spheres confined to a substrate with area A is controlled
by three parameters: the size ratio q = σS/σL, the fraction of

small spheres xS = NS/(NL +NS), and the packing fraction η =

(NSσ2
S +NLσ2

L )π/4A occupied by the equivalent 2D disks. Note
that since some overlap is allowed between different species in
the 2D projection, the total packing fraction may exceed 1 in some
cases.

3 Infinite pressure phase behavior
Even for simple binary mixtures in 2D, the number of different
ordered structures that can emerge can be quite large and dif-
ficult to enumerate. To obtain an impression of the crystals we
might expect to find, we used a technique specifically designed
to detect the close-packing crystal structures that would form in
the limit of infinite pressure. To this end, we followed Ref. 44
to map out the infinite pressure phase diagram of non-additive
hard disks. Specifically, for a range of size ratios and composi-
tions, we construct a library of candidate crystal structures and
find – for each combination of q and xS – the best-packed phase
or coexistence of phases. Note that in the notation of Ref. 44,
the present case of spheres lying on a flat plane corresponds to a
size-ratio-dependent non-additivity parameter

∆(q) = 2
√

q/(1+q)−1, (1)

such that the contact distance between a small and a large sphere
can be written as

σLS = (1+∆)
σL +σS

2
. (2)

For each size ratio, we use the data from Ref. 44 for the best
packed candidate structures, which were obtained from system-
atic sampling of unit cells containing up to 12 particles using
Monte Carlo simulations with a variable box shape46. The infinite
pressure phase diagram is then constructed from these structures
by common-tangent construction44, and shown in Fig. 2.

In addition to the trivial monodisperse hexagonal crystal
phases of the large or small particles (HexL and HexS, respec-
tively), we observe a wide variety of binary phases. Since any
pure crystal phase can only occur at a single composition xS, the
densest-packed state at most points in the phase diagram (white
regions) is a coexistence between two crystal phases at differ-
ent compositions: the ones appearing directly above and below
the chosen state point. In addition to the expected monodisperse
hexagonal crystals of either large or small particles, we find a va-
riety of binary crystal phases, many of which are similar to those
found in additive systems44,45. Note that for large size ratios, the
system becomes almost additive. In the additive case, it is proven
that there exist no denser structures than a coexistence of HexL

and HexS for q ≳ 0.7447. Therefore we expect no additional bi-
nary crystal phases to appear at size ratios above our investigated
range 0.3 ≤ q ≤ 0.75.

For each phase in Fig. 2 we also depict the repeating unit that
can be used to construct the crystal phase, which we call a tile.
Unlike a unit cell, tiles can appear in the full crystal structure
in multiple orientations. Interestingly, for certain coexistence re-
gions, the two coexisting phases consist of tiles that can mix. One
realization of this occurs at low size ratios (q ≃ 0.3) where the T1
and HexL phases consist of identical triangles of large particles,
but decorated differently by small particles. In the region where
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Fig. 2 Infinite-pressure phase behavior of binary mixtures of spheres on a flat plane, as a function of the size ratio q and fraction of small particles xS.
Phases are labeled following the naming scheme of Refs. 44,45. The white regions correspond to coexistence regions between the phases directly above
and below. The striped and dotted areas indicate regions where these two phases can form random tilings or a lattice gas, respectively. Examples of
finite patches of the three possible random tilings, corresponding to the striped regions in the diagram, are displayed on the right.

these two phases mix, they can form a lattice gas where tiles of T1
and HexL are randomly mixed (dotted region in Fig. 2). Another,
much more interesting situation occurs when two tiles of differ-
ent shapes can mix. This occurs in the three striped regions in
Fig. 2. For example, at size ratios just below q = 0.5, the square
tile of the S1 phase has the same edge length as the triangular
tile of the HexL phase, allowing them to mix and form a space-
filling square-triangle tiling44,45, illustrated in the bottom right of
Fig. 2. As this mixing increases the entropy without lowering the
packing fraction, the expected phase at infinite pressure here is a
random tiling of squares and triangles, which at an ideal compo-
sition xS = (3−

√
3)/4 ≃ 0.317 is known to have 12-fold symmetry

on average48,49. Two closely related tilings, also illustrated in
Fig. 2 are found at lower size ratios. As a result, one intriguing
prediction from Fig. 2 is the possibility of a 12-fold quasicrystal
self-assembling from simple binary mixtures of colloidal spheres
on a substrate.

4 Finite pressure self-assembly

In practice, the infinite-pressure phase behavior is not a reliable
indication for the phases one might find in a real self-assembly ex-
periment. Self-assembly in a colloidal system takes place at finite

pressure, where particles can diffuse to reach their lattice site and
vibrate around it. This brings vibrational entropy contributions to
the free energy of different crystal phases which can fundamen-
tally change the phase behavior. Moreover, dynamical arrest or
competition with other candidate phases can prevent the reliable
formation of a crystal even if it is thermodynamically stable.

Hence, for a more realistic look at the self-assembly, we per-
form computer simulations at finite pressure for an extensive grid
of state points spanning size ratios 0.25 ≤ q ≤ 0.75, compositions
0.05≤ xS ≤ 0.95, and packing fractions 0.7≤η ≤ 1.0. In particular,
we run event-driven molecular dynamics (EDMD) simulations50

in the canonical ensemble, i.e. at constant number of particles
N, volume V , and temperature T . The simulation algorithm is an
adaptation of the methods described in Ref. 51. We perform the
EDMD simulations in the microcanonical ensemble, i.e. at con-
stant number of particles N, volume V , and energy E. Initial con-
figurations are obtained by starting in a dilute state at the desired
composition, and then performing an EDMD simulation in which
the particle diameters grow until the desired packing fraction is
reached.

We perform a systematic exploration of parameter space for
systems of N = 2000 particles, varying the composition xS between
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Fig. 3 Self-assembly diagram for binary mixtures of spheres on a flat plane, as a function of the size ratio q and fraction of small particles xS. For
each combination of q and xS, we perform simulations at a range of different packing fractions, and report the observed phases. Points in the phase
diagram contained in a colored region display the self-assembly of the corresponding phase. For each binary crystal phase, we include a representative
snapshot (marked as a large dot of the corresponding phase color) and the scattering pattern that results from a Fourier transform of the positions of
the large spheres. For the QC8 phase, we include two snapshots: one containing a large concentration of S1 squares (top middle) and one containing
a large concentration of S2 squares (top right). HexL and HexS are hexagonal crystals consisting of only large or small spheres, respectively, and are
not depicted. Note that at some state points, we find the self-assembly of two different phases that are either in coexistence or occur at different
packing fractions – hence some of the crystal regions overlap. At state points without an indicated crystal phase, no crystallization was observed at
any of the investigated packing fractions

0.05 and 0.95 in steps of 0.05 and the size ratio q between 0.25 and
0.75 in steps of 0.05. The packing fraction η ranged from 0.7 to
up to 1.0 in steps of 0.01, where we only considered state points
where the growing-particle simulations were able to rapidly reach
the desired packing fraction without jamming. In other words, we
assume that at packing fractions where jamming occurs during
our initial compression, the system would likely be too densely
packed to observe self-assembly on a reasonable time scale. Each
self-assembly simulation is allowed to run for at least 106τMD,

with τMD =
√

mσ2
L/kBT the simulation time unit, m the mass of

a particle (chosen equal for both species), σL the large-particle

diameter, and kB Boltzmann’s constant. Subsequently, longer sim-
ulations were performed for state points where self-assembly was
considered likely to occur on a reasonable time-scale based on the
final pressure of the first simulations. In particular, we extended
the simulations at state points with a pressure 16 ≲ Pσ2

L/kBT ≲ 33
to a total length of 5 ·106τMD.

Our results are summarized in Fig. 3. The central diagram
reports for each investigated combination of q and xS what or-
dered phases were observed. We consider a crystal to have self-
assembled for a given combination of q and xS when we find sig-
nificant clusters of the crystal in the simulation box for at least
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one packing fraction. Our simulations show that a number of the
best-packed phases we predicted in Fig. 2 indeed spontaneously
self-assemble. Naturally, this includes the trivial hexagonal crys-
tals of the large and small spheres (HexL and HexS) that can be
found at compositions close to xS = 0 and 1, respectively. Addi-
tionally, we observe large-scale crystallization into the S1 and S3
phases close to the regions expected from Fig. 2. We also ob-
serve the more complex H2 phase, albeit only in finite clusters –
a closer inspection of the systems where these form show a very
low overall mobility of the system, suggesting that crystallization
of this phase is hindered by slow dynamics. For sufficiently low
q, the system nearly always forms a hexagonal lattice of large
spheres, with the small spheres interspersed between them (la-
beled HexS

+). Depending on the composition, this may look sim-
ilar to the T1 phase (as depicted in the sample snapshot in Fig. 3),
but the number of small spheres per triangular cavity in the lattice
of large spheres appears to continuously depend on the compo-
sition xS (see SI). For xS < 2/3, this simply means that a random
selection of the triangular holes are empty, resulting in a lattice
gas or interstitial solid solution44,45. For larger xS, progressively
more small particles are included between the large spheres, but
we observe no clear structural transition between these regimes.
Hence, we choose to collectively indicate this region as HexS

+.

Most intriguingly, in addition to these periodic phases, we also
observe the self-assembly of two distinct quasicrystals, both at
size ratios between q = 0.45 and q = 0.55. The dodecagonal qua-
sicrystal (QC12) that appears at low fractions of small spheres is
indeed the square-triangle tiling48,49 expected from the infinite-
pressure diagram. It is made of regular squares and triangles
(S1 and HexL tiles). This quasicrystal is analogous to a num-
ber of quasicrystals observed in soft matter systems, including
patchy particles with five attractive patches32, hard disks with
a square-shoulder repulsion40,41, binary mixtures of nanoparti-
cles25, block copolymers26,27, and soft repulsive colloids33. Ad-
ditionally, various 3D systems have been shown to form quasicrys-
tals consisting of layers of a square-triangle tiling42,52,53. The sec-
ond quasicrystal (QC8) has octagonal symmetry, and consists of
a mixture of three tiles: the isosceles triangles that appear in the
H1 phase, the squares from the S1 lattice, and the larger squares
from the S2 lattice.

For the quasicrystals, local crystalline order is typically hard to
see by eye, and we instead rely on the symmetry of the scattering
pattern for our classification. In particular, for each simulation,
we measured the two-dimensional structure factor of the final
configuration using

S(k) =
1
N

∣∣∣∣∣ N

∑
n=1

exp(ik · rn)

∣∣∣∣∣
2

. (3)

where k is a wave vector commensurate with the periodic simula-
tion box, and rn is the position of particle n. We plot the resulting
scattering pattern S(k) in two dimensions via a logarithmic color
scale. The resulting scattering patterns for selected state points
are included in Fig. 3. Note that in the Supplemental Data,
we include a full catalogue of all final configurations and their
diffraction patterns.

5 Quasicrystal analysis
In order to examine the QC12 and QC8 quasiperiodic structures
in more detail, we perform additional simulations of N = 10000
particles in the regime where they are found to self-assemble. In
the final configurations, we reconstruct the underlying tiling from
the bond network (see SI) and use it to analyse the quasicrystals.

In Fig. 4, we show portions of the final state of three sim-
ulated mixtures of 104 particles, at different state points: one
corresponding to the QC12 phase and two corresponding to the
QC8 phase. Note that the two QC8 snapshots consist primarily of
the same three tiles, but mixed in different concentrations. The
first is dominated by small squares, while the second, which con-
tains more small particles, predominantly contains large squares.
Nonetheless, both systems possess global octagonal symmetry as
indicated by the diffraction patterns. The analysis of the tile ori-
entations shows that in all three quasicrystal phases, tiles of the
same shape occur in all possible orientations roughly with the
same frequency, which is a common feature of random-tiling qua-
sicrystals49.

All three quasicrystal configurations shown in Fig. 4 also con-
tain local patches of periodic structures, such as square or hexag-
onal regions, which may compete with the quasicrystal phase in
stability. However, we never observe long-term growth of these
patches. Instead, over the course of the corresponding simula-
tions, such patches are regularly formed and destroyed as defects
or fluid regions diffuse through the system.

For a defect-free dodecagonal square-triangle quasicrystal, it
is well-known that half of the total system area should occupied
by squares, and the other half by triangles49,54. In other words,
σ = τ = 1/2, where σ is the area fraction occupied by squares,
and τ is the area fraction occupied by triangles. Ignoring the
defects that inevitably arise during our self-assembly process, the
QC12 configuration shown in Fig. 4 corresponds to σ = 0.491 and
τ = 0.509. Given both the presence of defects and the periodic
boundary conditions of our finite system, this is fully consistent
with random quasicrystalline order.

For the QC8 phase, it is less obvious what tile concentrations
we should expect in a perfect random quasicrystal. As illustrated
in the center and right panels of Fig. 4, the relative concentrations
of the different tiles we find in the self-assembled QC8 phase vary
drastically as a function of the fraction of small spheres in the sys-
tem. Since the S2 squares contain 4 small particles each, while
the S1 squares only contain a single small sphere, higher com-
positions xS favor a larger concentration of S2 squares. For high
xS, the QC8 tiling consists almost purely of large S2 squares and
H1 triangles, with the triangles joined in pairs that form a thin
rhombus. In this limit, the tiling can be seen as a mixture of just
two types of tiles – square and rhombic – that are identical to the
tiles that form e.g. the Ammann-Beenker55,56 and Watanabe-Ito-
Soma57 octagonal aperiodic tilings. The same tiling – with dif-
ferent decorations of the tiles with particles – was previously ob-
served in simulations of soft colloids33, particles with an oscillat-
ing interaction potential34,36, and patchy particles35. However,
to our knowledge, no octagonal quasicrystals have yet been ob-
served to spontaneously self-assemble in soft-matter experiments.

Journal Name, [year], [vol.],1–10 | 5



Fig. 4 Self-assembled dodecagonal and octagonal random-tiling quasicrystals in mixtures of 104 spheres on a flat plane, at state points (Left QC12)
q = 0.45, xS = 0.35, η = 0.84, (Middle QC8) q = 0.5, xS = 0.675, η = 0.86 and (Right QC8) q = 0.55, xS = 0.725 η = 0.84. The underlying tilings are
highlighted and tiles colored according to shape and orientation. The insets show the diffraction patterns, signaling the global 12 or 8-fold symmetries.
Tile distributions (Bottom) show the number of tile in each orientation in the tiling. The grey rightmost bar labeled denotes all defects.

In contrast, at low xS the quasicrystal approaches a tiling of only
H1 triangles and small S1 squares. Interestingly, a closely related
tiling where the isosceles triangles are slightly deformed (break-
ing the 8-fold symmetry), was recently conjectured to be the
densest-packed structure for a ternary mixture of hard disks58.
Our findings suggest that a new QC8 quasicrystal made of these
two tiles - isosceles triangles and small squares - should exist,
along with a whole family of three-tile QC8 structures at differ-
ent compositions. In this respect, our results exhibit completely
new types of aperiodic octagonal tilings, which, to the best of our
knowledge, have not yet been described in the literature.

It is interesting to consider under what conditions the QC8
tiling observed here can exhibit true 8-fold symmetry. Counting
different orientations, this tiling consists of 12 different tiles: 2
orientations of large squares, 2 orientations of small squares, and
8 differently oriented isosceles triangles. In general, quasicrystal
vertices can be seen as a projection of a high-dimensional lattice
into a lower dimensional space54. As outlined in Ref. 49, this
representation can aid in determining the constraints on the rel-
ative concentrations of different tiles. As described in the SI, for
a QC8 with octagonal symmetry we find the following constraint
for the partial area fractions Σ, σ , and τ, associated with the large
S2 squares, small S1 squares, and the triangles that make up H1,
respectively:

Σ+(3+2
√

2)σ − τ = 0. (4)

Additionally, since the entire area must be occupied by tiles, these
area fractions must satisfy Σ+σ +τ = 1. Since we know the com-
position of each tile in our binary mixture, it is straightforward to

rewrite these constraints in terms of the fraction of small particles
xS, yielding:

Σ =
2
(

4+3
√

2
)

xS −4
√

2−5

6−4xS
(5)

σ =
−
(

4+
√

2
)

xS +4

6−4xS
(6)

τ =
−
(

8+5
√

2
)

xS +4
√

2+7

6−4xS
(7)

In Fig. 5, we plot this prediction together with the measured
tile concentrations in our self-assembled configurations of 10000
particles. Note that in the analysis of the simulation data, we con-
sider only the portion of the system covered by the three valid
types of tiles and omit all defects. We find that the observed
tile concentrations are essentially independent of size ratio and
packing fractions within the investigated regime. Considering the
fact that the analyzed configurations were the result of sponta-
neous self-assembly, and hence contain significant amounts of de-
fects, the agreement is excellent, demonstrating that the system
indeed favors tile compositions that correspond to an eight-fold
quasicrystalline symmetry.

Finally, in order to quantitatively assess the quality of the
quasiperiodic order, we measure the perpendicular strain (also
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Fig. 5 Area fractions of the three different tiles in the QC8 tiling, Σ,
σ , and τ, corresponding to the large squares, small squares, and trian-
gles, respectively. The lines indicate the theoretical prediction on the
assumption of a maximally symmetric and globally uniform eight-fold
tiling with no defects. Points correspond to simulation results at size ra-
tios q = 0.5 (full symbols) and q = 0.55 (open symbols). Different colors
of points correspond to different packing fractions, with 0.855 ≤ η ≤ 0.87
for q = 0.5 and 0.835 ≤ η ≤ 0.85 for q = 0.55. For the simulation data,
we only consider the area covered by non-defect tiles when calculating
the composition xS and the tile area fractions. At the top, three patches
illustrate the evolution of the tilings with the composition. From left to
right: primarily small squares, mixture of small and large squares and
primarily large squares.

often called phason strain59 * ) of the self-assembled structures.
To this end, we associate each vertex in the tilings obtained at the
end of the simulations to points in 4D spaces; a procedure known
as lifting61,62. Dodecagonal and octagonal tilings are lifted to
two different 4D spaces whose basis vectors are reported in the
SI. This assigns to each particle a position in the 4D superlattice
associated with the 2D quasicrystal. This position can then be
projected either back to its 2D parallel-space position r∥i or its 2D
perpendicular-space position r⊥i . The parallel and perpendicular
sub-spaces are orthogonal to each other, with the parallel sub-
space corresponding to the real space of our original quasicrystal
lattice. The perpendicular strain is then measured from the rela-
tion between points separation in these two projections, follow-
ing Ref. 63. In particular, we examine the behavior of the per-
pendicular displacement d⊥ as a function of d∥, where for each
pair of particles i and j, d∥/⊥

i j
.
= ∥r∥/⊥i − r∥/⊥j ∥. For large distances

in parallel space, the perpendicular displacement increases lin-
early with the separation in parallel space and its slope is a direct

* Note that there has been some debate in the literature with respect to the use of the
word ’phason’ when describing quasicrystal properties 59,60.

measure of the average perpendicular strain ξ =
√

ξ 2
1 +ξ 2

2 with
ξ1,2 the eigenvalues of the full 2× 2 perpendicular strain matrix.
For a quasicrystal with long range quasiperiodic order, the per-
pendicular strain is zero. Defective quasicrystals resulting from
self-assembly however typically exhibit some residual perpendic-
ular strain, while periodic phases have an intrinsic non-zero per-
pendicular strain. For all three configurations shown in Fig. 4,
we show the behavior of the perpendicular displacement field in
Fig. 6, and compare it to the perpendicular displacement of a ref-
erence periodic approximant structure (see SI). Clearly, the per-
pendicular strain in the self-assembled quasicrystals is non-zero,
but significantly lower than that in the periodic approximants.
In practice, we observe that the value of the measured average
perpendicular strains depend significantly on the state point and
fitting range, and is sensitive to the defects in our reconstructed
tiling. Typically, our self-assembled structures contain long dislo-
cation defects (see SI), which separate regions with significantly
different perpendicular displacements. This may be the result of
our self-assembly simulations taking place at relatively high pres-
sures. Rather than forming via a single nucleation event, self-
assembly of our quasicrystal phases tends to occur via the rapid
formation of quasicrystal tiles throughout the simulation box, fol-
lowed by a much slower relaxation that rearranges these tiles
and allows different domains to coalesce64. This slow nature of
this process means that it is difficult to obtain high-quality qua-
sicrystals. We note that other simulation studies have found much
lower perpendicular strain in quasicrystals63,65, but typically by
considering clusters of quasicrystal in direct coexistence with a
fluid, which likely allows for significantly faster relaxation.

6 Geometrical arguments for quasicrystal stability

The emergence of the QC12 phase in our system can clearly be
understood from its stability in the infinite-pressure limit. How-
ever, this is not the case for the QC8 phase: in the infinite-pressure
limit, we find only periodic phases in the regime where QC8 was
found to self-assemble. Hence, an intriguing question remains –
is there a way to understand why these octagonal quasicrystals
form? As stated, the three tiles that comprise the tiling are the
small S1 square, the large S2 square, and the H1 triangle. In or-
der to form the observed tilings, these shapes must have compat-
ible edge lengths on their shared edges. In particular, the shared
edges in the observed tilings are between the large square and
the long edge of the H1 triangle, and the small square and the
short edge of the H1 triangle. As shown in Fig. 7, the long edge
of the triangle matches up almost exactly with the edge of a large
square for size ratios between 0.5 and 0.6, in the region where
we observe the self-assembly of this phase. Similarly, the short
edge of the triangle and the small square match exactly for size
ratios below q = 2−

√
2 ≃ 0.59. The fact that a QC8 with mainly

small squares is not observed at size ratios below q = 0.45 can be
understood from a packing argument. As shown in the inset of
Fig. 7, when q is decreased below 1/2, the packing fraction of the
triangle tile, which makes up the majority of the QC8 phase, de-
creases rapidly and drops below that of competing phases, such
as the simple hexagonal lattice.
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Fig. 6 The average perpendicular displacement d⊥ as a function of the parallel-space displacement d∥ for the three self-assembled quasicrystal
configurations in Fig. 4. The red lines are linear fits to the large-distance behavior, with the slope related to the average perpendicular strain. For
comparison, we also plot the corresponding line for a periodic approximant for each system (dotted black lines).

Fig. 7 Evolution of the possible long (top) and short (bottom) edge
lengths as a function of size ratio. Matching regions are highlighted with
a darker background. For size ratios between 0.5 and 0.6, long edges
of the triangle and large square tiles on one hand, and short edges of
triangle and small square tiles on the other hand match, thus allowing
for the tiles that comprise the octagonal tiling to mix. The inset of the
bottom graph displays the packing fraction of the three individual tiles,
along with that of a coexistence of hexagonal packings of large and small
particles. Self-assembly of QC8 is indeed observed for these values of
the size ratio where edge lengths match and tiles pack better than Hex
phases.

It is interesting to note that in the case of additive hard disks
(or equivalently, spheres whose centers are constrained to a flat
plane), we can still observe a regime where the three QC8 tiles
match up geometrically, but in this regime their packing fraction
is systematically lower than that of a hexagonal lattice (see SI).
Consistently, in a self-assembly scan of additive hard disks in this
regime we observed no quasicrystal self-assembly. Taken together,
these observations suggest that the quasicrystal self-assembly re-
quires both densely packed tiles and geometric edge-matching be-
tween them.

7 Discussion
In conclusion, we have explored the self-assembled phases that
appear in binary mixtures of hard spheres on a flat plane. In ad-
dition to a variety of periodic crystals, we found that this very
simple system is capable of forming two different quasicrystal
structures: one dodecagonal, commonly observed in soft matter
systems, and one octagonal which, to our knowledge, is described
here for the first time. The octagonal quasicrystal consists of three
distinct tiles, whose relative concentration can be continuously
tuned by manipulating the number fraction of small spheres in
the mixture, while maintaining the octagonal symmetry. Both
observed quasicrystals self-assemble rapidly and reliably over a
significant region of parameter space. The tiles proportions in the
self-assembled octagonal quasicrystals are in remarkable agree-
ment with theoretical predictions and their stability can be read-
ily understood from geometrical arguments. We note that proving
whether these quasicrystal phases are truly thermodynamically
stable will require careful free-energy calculations, which we aim
to explore in a future study.

In contrast to nearly all other numerical models that have been
shown to form 2D quasicrystals, hard spheres on a flat plane can
be realized experimentally on the colloidal scale, to the point of
quantitative agreement between the experimental hard spheres
and their ideal counterparts10,43. The simplicity of the model
allows us to identify minimal ingredients for quasicrystal self-
assembly: dense tiles with matching edges and entropy alone
are sufficient to induce the formation of quasicrystals of differ-
ent symmetries. Since many colloidal particles include a repul-
sive spherical core, these simple ingredients might explain qua-
sicrystal formation in a broad range of soft matter systems, be-
yond hard-sphere colloids alone. This identifies hard spheres on
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a plane as a perfect candidate system for tackling fundamental
open questions on quasicrystals, such as the dynamics of their
nucleation, growth and annealing, the role of their unique pha-
son excitations or the dynamics of defects, both theoretically and
in colloidal experiments on the micron scale.
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Supplemental information: Self-assembly of dodecagonal and octagonal quasicrystals
in hard spheres on a plane

E. Fayen, M. Impéror-Clerc, L. Filion, G. Foffi, F. Smallenburg

FINAL CONFIGURATIONS

An archive of simulated final configurations for the data set depicted in Figure 3 of the main text is provided at
https://doi.org/10.5281/zenodo.7712001 via Zenodo. In particular, we provide a zipped archive of the final configura-
tions, snapshot images, and diffraction patterns for all simulations performed using N = 2000 particles. The files are
organized into folders and accompanied by HTML documents which allow for a rapid visualization of all simulation
results for a single size ratio.

HEXL
+ PHASE AT DIFFERENT COMPOSITIONS

As mentioned in the main text, we use the label HexL
+ to refer to any phase consisting of a hexagonal lattice

of large spheres interspersed with small spheres, regardless of the ordering of the smaller spheres. In Fig. 1, we
show snapshots for a range of different compositions. The hexagonal symmetry of the large-sphere lattice remains in
place even though the concentration of small spheres varies drastically. For low compositions xS , only a few small
spheres are randomly interspersed in the triangular holes in the lattice. This concentration increases all the way
up to xS ≃ 2/3, at which point all triangular holes in the lattice are filled, corresponding to the T1 crystal phase.
Above this concentration, the large particles start to become more separated, as additional small particles fill the gaps
between them. While this leads to local lattice distortions and a decrease in hexagonal ordering (e.g. at xS = 0.7),
overall the system maintains its hexagonal symmetry. In principle, pushing these systems to larger packing fractions
may stabilize more ordered phases, such as those predicted by the infinite-pressure phase diagram in the main text.
However, these high-density phases are likely hard to reach via spontaneous self-assembly due to the kinetic arrest
that occurs at high packing fractions.

TILING ANALYSIS

The quasicrystalline phases can be rationalised as tilings of the plane by decorated tiles. To identify the underlying
tiling in simulation snapshots, we first create bonds between all large particles within a cutoff distance of 1.3σLL

for QC12 and 1.7σLL for QC8 systems. Since the QC8 contains short and long bonds, the long cutoff distance
required to capture long bonds also generates crossing bonds within S1 tiles, which need to be removed. Tiles are
then reconstructed from cycles in the bond network, and sorted by shape and orientation.

To characterise the neighbour network, we compute the bonds length and angle distributions, as shown in Figure
2. Bond angles are relative to the horizontal. In the vicinity of the QC8 region, the bond length distribution is
clearly bimodal. A cutoff is set at the minimum of the distribution in-between the two peaks, which discriminates
between long and short bonds. Since the cutoff value can vary slightly with the composition and packing fraction of
the system, we determine it automatically for each snapshot. The bond angle distribution exhibits 16 sharp peaks
centered on the directions of an ideal tiling of large squares, small squares and equilateral triangles. Correlating the
orientation with the bond length shows that short and long bonds each follow a distinct set of 8 orientations, offset
by π/8.

TILES FRACTIONS IN QC8

For the square-triangle tiling associated with the QC12 phase, it is well known that global twelve-fold symmetry
only occurs under the condition that the two area fractions of the tiling covered by squares and triangles are the
same and equal to 1/2 [1, 2]. Here, we determine under what conditions the QC8 phase can exhibit 8-fold symmetry.
To this end, we consider a QC8 tiling consisting of large squares S, small squares s, and triangles T , with long edge
length a. Counting the different orientations, this results in a total of 12 different tiles: two orientations of both types
of squares, and 8 orientations of the triangles. These are listed in Table I. We then consider an infinite, globally
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a) xS = 0.1 b) xS = 0.2

c) xS = 0.3 d) xS = 0.4

e) xS = 0.5 f) xS = 0.6

g) xS = 0.7 h) xS = 0.8

FIG. 1. Variations of the HexL
+ phase, at size ratio q = 0.35 and varying compositions xS . The packing fractions for the

snapshots vary from η = 0.82 in (a) to η = 0.96 in (h), in steps of 0.02.

uniform[2] tiling consisting of a mixture of these tiles, with the area fraction covered by each tile type denoted as Σi

for the large squares, σi for the small squares, and τi for the triangles, where i denotes the orientation of the tile.
The first obvious constraint on our tiling is that it should cover the entire plane. Hence, the area fractions must

satisfy

Σ + σ + τ = 1, (1)

where Σ =
∑

i Σi, σ =
∑

i σi, and τ =
∑

i τi.
One set of constraints on these tile concentrations follows from the simple observation that each edge must have an

opposing partner. Considering, for example, the short edge in triangle T1, this leads to the constraint that

nT1 + ns1 = nT5 + ns1 , (2)

with nXi
denotes the number of tiles of type Xi. This trivially implies that τ1 = τ5 = τ15/2, and likewise it can be

shown that τ2 = τ6 = τ26/2, τ3 = τ7 = τ37/2, and τ4 = τ8 = τ48/2.
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FIG. 2. Neighbour bonds characterisation in systems of 104 non-additive hard disks, with size ratio q = 0.45, composition
xS = 0.35 and packing fraction η = 0.84 (Left), q = 0.5, xS = 0.675, η = 0.86 (Centre) and q = 0.55, xS = 0.725, η = 0.84
(Right). The first system forms a dodecagonal random tiling quasicrystal, while the two last ones form octagonal random tiling
quasicrystals. (Top) Bonds length distributions show a clear distinction between short and long bonds in octagonal tilings.
(Bottom) Bond angle distributions.
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FIG. 3. Projections of the 4D lift vectors on the parallel and perpendicular sub-spaces for the square-triangle (Left) and large
square-small square-isosceles triangle (Right) tilings.

Another constraint on the various tile concentrations can be obtained by using the four-dimensional representation
of the tilings. For this, we follow the procedure outlined in e.g. [1–3]. In particular, in the QC8 tiling, each long edge
can only lie along one of 4 different orientations e1 through e4, illustrated in Fig. 3(left). Short edges can then be
constructed by taking the difference between two of these vectors (e.g. e2 − e1). As a result, each vertex in our tiling
can be written as a linear combination of an integer number of the four vectors ei, and hence can be seen as a point
on a four-dimensional lattice. We then associate each vector ei with a corresponding vector e⊥i , illustrated in Fig.
3(right), such that each vertex in the tiling can be uniquely associated with a point in the perpendicular space [3, 4].

We can then consider a mapping ϕ(r) that maps each vertex in our original tiling to its corresponding point in the
perpendicular space. Within each tile, ϕ(r) is a linear interpolation between the mapped vertices of that tile. Hence,
ϕ is a continuous, piecewise linear function, with a constant hyperslope within each tile. The hyperslope within one
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Name Tile Area AXi Hyperslope BXi detBXi

S1 a2

(
1 0
0 −1

)
-1

S2 a2

(
−1 0
0 1

)
-1

s1 (2−
√
2)a2 (1 +

√
2)

(
0 −1
−1 0

)
−3− 2

√
2

s2 (2−
√
2)a2 (1 +

√
2)

(
0 1
1 0

)
−3− 2

√
2

T1,5
1

2
√
2
a2

(
1 −2
0 1

)
1

T2,6
1

2
√
2
a2

(
−1 0
2 −1

)
1

T3,7
1

2
√
2
a2

(
−1 0
−2 −1

)
1

T4,8
1

2
√
2
a2

(
1 2
0 1

)
1

TABLE I. Summary of the 12 different tiles comprising the QC8 tiling. The third column reports the area of each tile, assuming
that large squares have edges of length a. The fourth column contains the constant hyperslope of each tile, i.e. the 2x2 matrix
that maps points inside that tile in the original tiling to the perpendicular space. The last column displays the determinant of
the hyperslope for each tile, which is used to obtain Eq 6.

tile is completely determined by the vectors that form it. Hence, tiles of the same type and orientation have the same
hyperslope. Specifically, within a tile Xi, the hyperslope BXi

is given by:

BXi =

(
∂ϕx

∂x
∂ϕx

∂y
∂ϕy

∂x
∂ϕy

∂y

)
. (3)

In Table I, we report the hyperslope for each of the 12 tiles in the QC8 tiling.
In a globally uniform tiling, over long distances r, ϕ(r) has a well-defined average hyperslope B (also known as the

global perpendicular strain), which can be written as the weighted sum of the hyperslopes of the individual tiles [2]:

B =

2∑
i=1

ΣiBSi
+

2∑
i=1

σiBsi +

8∑
i=1

τiBTi
. (4)

Following Ref. [2], uniformity of the tiling then imposes that

2∑
i=1

Σi detBSi
+

2∑
i=1

σi detBsi +

8∑
i=1

τi detBTi
= detB. (5)

Using the matrices listed in Table I, this leads to the following constraint:

Σ+(3+2
√
2)σ−τ = (Σ1−Σ2)

2+(3+2
√
2)(σ1−σ2)

2−τ2+(2+2
√
2)(τ15−τ26+τ37−τ48)(σ1−σ2)+8(τ15τ37+τ26τ48). (6)
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This constraint can be regarded as the equivalent of the Nienhuis relation [2, 5] for the (QC12) square-triangle tiling,
but for our QC8 tiling.

For a maximally symmetric tiling with eight-fold symmetry, the requirement is that all orientations of each tile
appear in the same amount [2]. In other words:

Σ1 =Σ2=
Σ

2
(7)

σ1 =σ2=
σ

2
(8)

τ15 = τ26 =τ37= τ48 =
τ

4
. (9)

When we impose this, the average hyperslope B vanishes (zero perpendicular strain), and as a result the right-hand
side of Eq. 6 similarly becomes zero, yielding:

Σ + (3 + 2
√
2)σ − τ = 0. (10)

Finally, we can express the area fractions Σ, σ and τ in terms of the particle composition xS by using the known
composition of each tile, combined with equations 1 and 10 (see equations 3, 4 and 5 of the main text).

LIFT TO 4D AND PERPENDICULAR STRAIN

Mapping a tiling to its higher dimensional representation is called lifting. This procedure gives access to valuable
information for the analysis of quasicrystals. In particular, the relationship between the distances in perpendicular
and parallel projections can be used to measure the perpendicular strain of the structure at hand.

In practice, lifting a structure amounts to assigning each vertex to a points in a higher dimensional space. The
lift spaces of both square-triangle and large square-small square-isosceles triangle tilings are 4-dimensional, but with
different basis vectors. In Figure 3, we report the parallel and perpendicular projections of the lift vectors used to
analyse our tilings. We use the standard lift basis for the square-triangle tiling [2]. The vectors used to lift the
large square-small square-isoceles triangle tilings are the those commonly used for lifting the Ammann-Beenker or
Watanabe-Ito-Soma tilings [6, 7].

After reconstruction of the tilings, we lift the tiling recursively from a starting point, tile after tile. We find that
lifting the tiling tile after tile rather than bond after bond is more robust. Indeed, we lift only tiles that unambiguously
correspond to one of the allowed orientation, thus preventing the ambiguous orientation of a single bond to propagate
further in the recursive lifting. During the lift construction, we ignore the periodic boundary conditions of the
simulation box.

Once a tiling is lifted, projecting back onto the parallel subspace yields a “rectified” tiling with no thermal noise,
where all tiles have their ideal shape as illustrated in Figure 4-top. The rectified tilings contain small defects that
are local and do not disrupt the tiling further away, as well as long defect lines that nucleate at topological defects
and separate islands of tiling. Interestingly these “tears” defects were previously observed by Joseph and Elser in a
simple growth model for the QC12 tiling of squares and triangles [8]. One can also project the lifted vertices to the
perpendicular subspace 4-bottom. The perpendicular projection gives indication about the quality of the quasicrystal.
In an ideal dodecagonal quasicrystal, the vertices form a fractal-shaped pattern with 12-fold symmetry. In a random
tiling quasicrystal, this shape is blurred somewhat, but remains compact. Here, because of the many defects in the
tiling, we observe that the points spread away from the origin. Nonetheless, we note that the perpendicular projections
form a very dense cluster (note the different scales for perpendicular and parallel axis), a signature of quasicrystalline
structures.

With both parallel and perpendicular coordinates of each vertex, we can compute the perpendicular strain of
the self-assembled tilings. By binning the pair particle distances in parallel space, we compute the perpendicular
displacement field as explained in the main text [9], and measure the average perpendicular strain ξ as the slope of the
linear regime, as illustrated in the main text. We compare these average perpendicular strains with those of reference
periodic structures. For the square-triangle tilings, we take the first approximant to the dodecagonal quasicrystal
(the sigma phase, see Figure 5-Left) as a reference structure of average perpendicular strain ξref = 2

√
2−

√
6 ≈ 0.38.

For the large square-small square-isosceles triangle tilings, we use a square lattice decorated with octagons as our
reference periodic structure. The octagon can host various clusters as depicted in Figure 5-Right thus allowing to
construct periodic structures with different tiles concentrations. This family of periodic structure all have an average
perpendicular strain of ξref = 3

√
2− 4 ≈ 0.24.
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FIG. 4. Parallel (Top) and perpendicular (Bottom) projections of the lifted tilings. (Left) QC12 q = 0.45, xS = 0.35, η = 0.84.
(Centre) QC8 q = 0.5, xS = 0.675, η = 0.86. (Right) QC8 q = 0.55, xS = 0.725, η = 0.84. The empty region in to top right
corner corresponds to a fluid pocket with no tiling structure.

FIG. 5. Reference periodic phases. Black squares highlight the unit cells. (Left) The sigma phase, first approximant of the
dodecagonal tiling. (Right) A reference periodic structure based on the large square-small square-isosceles triangle tiling. The
octagons can host cluster of variable composition and orientation. Possible fillings are suggested in grey.
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FIG. 6. Comparison of the long (top) and short (bottom) edge length of the tiles expected to form an octagonal quasicrystal
in binary mixtures of additive hard disks. Size ratio intervals for which long or short edges match are highlighted with a darker
background. The inset in the bottom graph displays the packing fraction of the various tiles as a function of size ratio, along
with that of hexagonal packings.

ADDITIVE CASE

In complement to the main text analysis of spheres on a plane, which correspond to non-additive hard disks,
we examine here the geometrical constraints in mixtures of additive hard disks, which cannot overlap (i.e., the
non-additivity parameter is ∆ = 0). The 3D equivalent of this system would consist of spheres whose centers are
constrained to lie in the same plane. Figure 6 shows the short and long edge lengths of the square and triangle tiles
that can be formed with additive hard disks. While edge lengths could match for size ratios around q = 0.6, the
inset graph shows that in this regime, the packing fraction of the tiles is systematically lower than that of hexagonal
packing of large and small disks suggesting that the tiles are not dense enough to be stable in this system.

This observation was confirmed by simulating binary additive hard disk mixtures for size ratios between q = 0.4
andq = 0.6 in steps of 0.05, packing fractions between η = 0.7 and 0.9 in steps of 0.02, and compositions ranging from
xS = 0.6 to 0.9 in steps of 0.05. Quasicrystal self-assembly was observed in none of these simulations, although we
cannot exclude the possibility of QC8 formation in longer simulation or different parameter regimes. As suggested
by the above packing argument, many of the systems instead had a tendency to demix into separate large and small
hexagonal domains. This is also consistent with the sparsity of stable binary crystal structures found at infinite
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pressure for additive hard disks in this regime [10, 11].
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