
HAL Id: hal-04047662
https://hal.science/hal-04047662v1

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minecraft computer game performance analysis and
network traffic emulation by a custom bot

Trevor Alstad, J. Riley Duncan, Simon Detlor, Brad French, Heath Caswell,
Zane Ouimet, Youry Khmelevsky, Gaétan Hains, Rob Bartlett, Alex Needham

To cite this version:
Trevor Alstad, J. Riley Duncan, Simon Detlor, Brad French, Heath Caswell, et al.. Minecraft computer
game performance analysis and network traffic emulation by a custom bot. 2015 Science and Informa-
tion Conference (SAI), Jul 2015, London, United Kingdom. pp.227-236, �10.1109/SAI.2015.7237149�.
�hal-04047662�

https://hal.science/hal-04047662v1
https://hal.archives-ouvertes.fr

Science and Information Conference 2015
July 28-30, 2015 | London, UK

Minecraft Computer Game Performance Analysis
and Network Traffic Emulation by a Custom Bot

Trevor Alstad, J. Riley Duncan, Simon Detlor,
Brad French, Heath Caswell, Zane Ouimet

and Youry Khmelevsky
COSC Dept., OC, Kelowna, BC V1Y 4X8, Canada

Emails: {prototypeTX37, john.dunkin13, wingmansd,

bradfrench123, heath.caswell, khmelevsky}@

gmail.com, zane.ouimet@outlook.com

Gaétan Hains∗
Laboratoire d’Algorithmique,

Complexité et Logique (LACL)

Univ. Paris-Est Créteil, Paris, France

Email: gaetan.hains@huawei.com
∗Huawei France R&D Centre, Paris.

Rob Bartlett and Alex Needham
WTFast, Kelowna, BC

Emails: {rob, alex}@wtfast.com

Abstract—To simulate player traffic within the game we
developed an automated bot for a popular online game Minecraft.
The first emulation goal was for the bot to realistically replicate
network traffic that a normal player would use while playing the
game. The second emulation goal was to investigate the maxi-
mum possible workload on a virtual multicores and multi-CPUs
CentOS server by running different number of active Minecraft
games on many cores of the multi-CPU servers simultaneously.

We created a scriptable bot capable of performing many
common game actions, while generating comparable traffic to
that of a player. This facilitates network and game server
world optimization. It is allowed us to create a new testing
and emulation environment to investigation network and server
performance in our virtual Gaming Private Network (GPN)
infrastructure.

I. INTRODUCTION

Minecraft [1], [23] is a multiplayer sandbox game in a
procedurally generated world where players are able to build
structures and creation out of textured cubes similar to Lego
in the real world. Minecraft has several game modes including
a survival mode where a player must acquire resources and
build shelters to survive against NPCs and the elements, a
creative mode where a player can simply build creations with
unlimited resources, and an adventure mode where a player
can play on custom maps built by the community. Minecraft
which is heavily inspired by a similar game called Infiniminer
[11] is built in the cross-platform language Java which allowed
it to become one of the most popular games ever with a
rich community that eventually brought it to the attention of
Microsoft who purchased it in September 2014.

We chose Minecraft for our experimentation due not only
it’s vast customization ability, but because it is a well docu-
mented java application. We can see exactly what it is doing,
in both packets and code, and can predict how the game will
react. This is perfect for our controlled test network, so we can
see when improvements are made, and when changes incur
performance loss, as well as why. Most importantly we can
scale to generate volumes of traffic and incredible workload
on the game servers; Minecraft can allow a maximum of
2,147,483,647 players, all doing many various world changing
actions, resulting in generating large amounts of data transfer
and processing.

In this paper we start with a brief of information on a
conducted research project in 2014 (see [3]). Following that
we describe our bot, the solutions we used, and the outcome
of the project, including performance experiments.

In the rest of this paper we discuss existing simulation
tools which are used to investigate on-line game performance.
Then we describe our experimental infrastructure, discuss
our performance analysis results, including data collection,
measurements, and their interpretation. In the Section V we
describe the bot design and implementation for the Minecraft
game traffic and server performance analysis. In conclusion
(Section VII) we summarize our research results and outlined
our future plans in the Section VIII.

II. EXISTING WORKS

”A study of different first-person games shows that the
client traffic is characterized by an almost constant packet and
data rate” [10]. The study found that ”the average interpacket
time for client to server traffic to be 51ms for the game being
studied”. Our new bot can send the action packets at 50ms
intervals [4].

In the discussed research we are mostly concentrated on the
servers performance optimization, additionally to the network
traffic analysis [3] and design and implementation of the
custom bot for Minecraft [4]. As it was shown in [2] the
”bottleneck in the server is both game-related as well as
network-related processing (about 50-50).” In our research we
investigated the highest possible workload for the CentOS 6.5
virtual server by utilizing our custom based bot for Minecraft.

Some authors discuss interactive online games, especially
ones related to the ”first person shooter (FPS)” [5], [8] and
network traffic for such games [25]. They investigate network
impact on the games and realistic traffic generators. In our
infrastructure our aim was not to just emulate 2 or 3 players,
but 100 and even 1000 and more players. This is important
for gaming companies, because as it is shown in [15] online
games become major contributors to Internet traffic. Latency
is the another challenge for online games, as it’s reported in
[6], [20] and [18] and it’s an important factor of an online
gaming experience. We built our infrastructure to emulate
artificial latencies in the emulated traffic [3]. In [17] ”massively
multiplayer online games with a client-server architectures and

peer-to-peer game architectures” are investigated. The authors
developed a hybrid game architecture to reduce game server
bandwidth. In [16] authors even proposed to implement a
zoned federation model for the multi-player online games
trying to reduce workloads of the centralized authoritative
game servers. A US 5956485 A patent [21] describes how
to link multiple remote players of real-time games on a
conferenced telephone line, which could reduce latency for
the game players.

In the technical report from IBM [9] it was demonstrated,
that ”rapid system response time, ultimately reaching subsec-
ond values and implemented with adequate system support,
offers the promise of substantial improvements in user pro-
ductivity” and it’s even better to ”implement subsecond system
response for their own online systems”. They mentioned, that
not so many online computer systems are well balanced. They
devided system response time for two large groups: computer
response time and communication time, which are both critical
for the game players user experience as well.

In [12] authors discuss online multiplayer gaming issues
in wireless networks, which is an additional problem related
to the game players experience on the Internet. These issues
are not covered in the current paper. On the other hand, we
experienced packet loss in our infrastructure too. In paper
[24] authors investigated a multiplayer on-line game traffic
including modelling traffic in mobile networks.

III. INFRASTRUCTURE FOR THE MINECRAFT GAME

PERFORMANCE ANALYSIS

The goal of the research project was to create a collection
of Minecraft server instances and calculate the latency of
real-time and/or simulation traffic using traffic control as
well as flooding the network and servers to determine the
maximum amount of processing the network can take before
crashing. Also, another set goal is to collect data from in-game
experiments and graph the experiments.

The infrastructure for our experiments is virtual machines
(VMs) setup between three VMWare ESXi hosts (CISVMWare
3 - CISVMWare 5 in Fig. 1) and a Seanix SG166H desktop PC
for the traffic monitor in a LAN consisting of 8 virtual CentOS
6.5 VMGuests (Fig. 2). The VMs are communicating through
Virtual LANs (VLANs), isolating them from external networks
to provide untainted results free of external influence; even live
testers work from virtual machines as part of the test network
[3]. Game server has been deployed using McMyAdmin [19].

Fig. 2 shows a UML representation of the actual VMs we
tested with and the path they take through the network. A
mirrored setup allows for redundancy as well as the ability to
funnel traffic from multiple servers onto one wire for maximum
traffic going through the node. There is actually two identical
networks, our development and production networks running
in parallel; the upper and lower rows in Fig. 2 show the two
identical networks, running in different subnets. This allows
us to run and re-run multiple tests on different components in
parallel quickly [3]. We had 2 different versions of a network
route, both containing a client replay, 2 routers and the game
server. Both routes also connected with a node on vlan 11
which runs through proprietary software. A proxy was set on
the top left router which reroutes the traffic to go through

Fig. 3. Network topology diagram.

the node, back out to its normal route, comes back through
the node again, and again returning to its normal route. Here
we can collect data and latency can be tested when running
through the dedicated software.

Fig. 3 shows the entire physical infrastructure, including
all hosts, VMs, datastores, VLANs, and links between them.
There are other clients shown that were not used in the
experiments, but anything labeled ARDWTFast corresponds
to one of the machines in the UML diagram. The ”network
is constructed to ensure that we can isolate and identify the
causes of the latency we measure. The architecture structure
fits in the process of the experiments in regard to which OS
the environment runs and the state of the network (virtual or
physical). The operating system that is installed on the network
which runs the Minecraft server may affect network perfor-
mance. Running a Linux CentOS (current OS) for example
would have better network performance rather than a Windows
or Mac operating system. The network performance may also
be affected depending on if the network is virtual or is running
on a physical configuration” [3].

IV. EXPERIMENTS WITH A CHATBOT, NEW BOT AND A

HUMAN PLAYER

The initial testing tools evolved when the initial ChatBot
bot outgrew its use. The following experiments where pre-
formed with a ChatBot we found online [13]. This tool was
capable of replicating idle traffic, however it could not preform
any kind of advanced functionality.

For the original network traffic testing the clients, routers
and node were allocated with 2 CPUs running at 2.4 GHz and
2 Gb of RAM, while our servers used 2 CPUs with 1.6 GHz
and 4 Gb of RAM. The later testing for the CPU usage on
isolated cores used a single server with 8 cores running at 2.4

Fig. 1. Infrastructure architecture.

Fig. 2. VMGuests and the traffic monitor node.

GHz and 8 Gb of RAM. The CPU core isolation tests were
all done using 20 bots per server.

”All experiments were run for sixty seconds. The packet
count and traffic volume measurements are based on sums of
the captured traffic, latency values are measured by calculating
the time between the client sending a packet containing some
form of player action data to the data and the receipt of a
response packet from the server. We analyzed this latency data
from different points in the network in an attempt to isolate
the causes of latency” [3].

A. Testing methods

For our first experiments, a passive bot was used. This runs
from a windows command line, with username, password, and
server ip parameters, and simply connects to the server and
sits idle. This method should no longer be used for testing as
we have a new active bot now. The active bot is run as an
executable jar with parameters for the server ip and the script
to be loaded.

The CPU usage tests were run on a scaled down environ-
ment with only a client and server. CPU affinity was set using
the Linux taskset command.

For each experiment, the script runs the top command and
puts 20 samples taken once per second into a file. Ten such

experiments are run. The sample data is put into files, there is
one file for each core for each experiment. For each of these
files the sample values are added to a comma separated list
and added to a file, the name of the output file is taken as a
parameter and includes the number of cores and the number
of games being tested. The data captured on the idle cores
show the idle usage of the cpu, so that it must be altered by
taking 100 - value during processing. The script also has an
error when the idle usage is 100%, in which case it reports 0%
instead, this is also managed during processing of the csv files.
This script gathers the data from both the game servers and
the idle cores and puts them in a file, game servers first, then
idle cores. All data was stored in an Oracle SQL database for
easy analysis. To access data from the tables, simple queries
were crafted.

The following experiments were performed [3]:

• One player (1P) initial testing: We needed a base
case, on how the game reacts to a player. This ex-
periment involved having a human player join the
Minecraft server, where we observed traffic as the
player idled. After collecting a fair amount of idle
traffic, we ventured out into the world, and noticed
a rise in traffic. Then after further investigation, this
large spike, was the server informing the player of
new portions of the world.

• One chatbot idling experiment: We joined the chat-
bot into a server, and collected traffic. On observation,
it performed similarly to the idling portion of the
player results.

• The 10 bot (10IB) experiment (Fig. 4): We loaded
ten bots into a single server, and simply observed. We
noticed that number of bots, actually had an effect on
the amount of traffic that each bot produced; that they
where taking into account the other connections in the
server.

• The 1P2 experiment: A human player did not move
from his starting position, but interacted with blocks
only. The latency was similar to the 1B case.

• The 1 idle bot and 1 idle player (1IB1IP) connected
to the same game server experiment: The idle bot
produced almost the same amount of traffic compared
to the idle player.

• The 1 idle bot and 1 active player (1IB1P) experi-
ment: The active player produced slightly less traffic
to compare with the idle bot (see more information
about this phenomena here in [3]).

• The 1 active player and 1 idle player (1P1IP)
experiment: We found that idle players created more
traffic to compare with the active players.

B. Performance Analysis and Analysis Results

Now that we had various results using the chatbot, we
needed to figure out trends, and get solid results.

Idle players as traffic generators: When looking directly
at the data for idle players compared to active players, we
tend not to notice any jarring oddities, that the results are quite

Fig. 4. 10B: Latency.

Fig. 5. 2P2B: Packet count and traffic volume.

similar. In fact, even the bot idling was quite close to the player
traffic. This means, for the sake of tests, we can use idling
connections to increase game traffic. On the other hand, this
also means that an idle player will have negative repercussions
on game play; if somebody joins, and does nothing, they are
still causing the same influence on the server that an actual
player would be creating, lowering the resources for other
players by just that much. In the 2P2B experiments in Fig. 5 the
bots produced approximately 140% of the traffic to compare
with the players.

V. NEW BOT IMPLEMENTATION AND PERFORMANCE

MEASUREMENT

We began our simulation bot development by searching for
existing bots to emulate a Minecraft game player. We found a
chat bot that could only connect to a Minecraft server and send
chat commands, but it was too simple for the research project.
We needed something more advanced, but not just a chat bot
for Minecraft, something that would move in and interact with
the Minecraft’s game world. The student’s capstone project
group in COSC 470 course at Okanagan College in 2014 split
up attempting to find an existing bot and was met with little
success. We found the DarkBot [13] application in the Internet,
but it was not really compatible with the current version
of Minecraft. When it was clear we would not find a fully

functioning bot to meet our criteria, we decided we would have
to create our own. We had one member of the group investigate
a method using python scripts and raspberry pi hardware he
had read about online, but it turned out unsuccessful. At the
same time we examined the Minecraft source code to try and
define the different packet types that were being sent between
the client and server. We were able to define many of the
packets created by the game code, using online resources
detailing the Minecraft client/server protocol, but did not learn
enough to be able to recreate said packets correctly. The
solution we were able to use was called MCProtocolLib [14].
The MCProtocolLib is an open source library which allows
simple communication between Minecraft clients and servers.
Unlike Darkbot it was being actively developed and served a
more general use of creating connections to a Minecraft server.

The following scripts were implemented:

• Move Script: The Move Script was developed so
that the bot can move in a specified pattern on the
game server. The script can successfully move in a
rectangle in the game. When the script is executed,
the bot connects to the game server, and then moves
in a continuous rectangle in the same area which it
spawns. The bot does not change its look direction,
but only moves in its set pattern.

• Place Block Script: The Place Block Script was
developed so that the bot can continuously place
blocks in the game. The script can successfully place
numerous blocks in the game. When the script is
executed, the bot connects to the server, and then starts
placing blocks in the game where the bot spawns.

• Break Block Script: The Break Block Script was
developed so that the bot can break blocks on the
terrain in the game. The script can successfully break
blocks on the server. When the script is executed, the
bot connects to the server, and then starts inputting
commands to break the terrain which is in front of the
bot. Once the bot breaks a block in front of it, it will
step forward 1 square and then again start breaking
the block in front of it. A real user has to place either
dirt or sand blocks in front of it so that the bot can
function properly.

• Chat Script: The chat script was developed to use
chat functionality with the bots on the server. The chat
script basically replaces the name of the bots when you
input the following command: $self on the Minecraft
server. The chat also allows the bots to produce chat
messages in the server.

We started with a test program included with the library,
which was modified to suit the needs of our project. By default,
MCProtocolLib takes care of required server interactions, such
as connecting and keep alive packets. Using the library, we
generate player input packets similar to Minecraft itself, and
then send packets to the desired server, and after verifying
functionality, we setup an XML parser so that bots are cre-
ated through XML scripts, and the appropriate packets are
generated from the input. In addition the code allowed us to
control the number of times packets were sent to the server
per second. This would allow us to determine the minimum

Fig. 6. PlayerPosLook packet.

Fig. 7. EntityVelocity packet.

amount of packets that would be required for a player to appear
fully connected and not ’lagged’. The bot was then built to
perform several common user actions such as placing blocks,
moving, and destroying blocks. Further development would
add a greater degree of simple actions as well a more dynamic
behaviour such as damage avoidance or resource gathering.

A. Comparison of types of packets generated

In verifying the success of our bot we have to ensure as
well that not only is the amount of traffic correct, but that the
types of packets are transmitted are similar to that of a real
player.

PlayerPosLook packet is a Server-bound packet to update
where the player is looking (see Fig. 6). As you can see there is
a strong correlation between the running player and the running
bot as well as the square running bot.

EntityVelocity packet is a Client-bound packet to update
the velocity of a player (see Fig. 7). There is reduced amount
of update packets in the case of the straight running bot
and the idle bot. However, the square running bot generates
comparable number of packets to a real player.

UpdateHealth packet is a Client-bound packet to update
the health condition of a player (see Fig. 8). Once more it
seems that our square running bot generates similar amounts
of traffic to a real player. Conversely our straight line running

Fig. 8. UpdateHealth packet.

Fig. 9. EntityEquipment packet.

bot and idle bot do not generate similar amounts of health
update packets. Perhaps this is due to the lack of commands
and/or the complexity of the straight commands versus the
square command set.

EntityEquipment packet see in Fig. 9. We are not sure
why our bot generates so many of these packets whereas real
players do not seem to generate any. During testing there was
no involvement other than pushing a movement key in the
straight line testing. It is interesting and may require further
investigation.

The purpose of the new bot development was to generate
and compare packet data produced from a test bot as we fed
it commands from a script. The data was then analyzed and
compared with a user bot as it completed the same task(s).
In the short project duration we were able to implement a
number of different methods for the test bot and as a team we
are satisfied with the functionality our test bot affords. Using
a script, the test bot (or test bots) are capable of following
multiple commands in a row which allows for countless
comparisons and tests in diverse scenarios of action.

The above graphs illustrate differences between the two
bots, although they did not match up exactly, the majority
of tests demonstrate a close resemblance in regards to the
amount of data captured over a given time and command. In
some comparisons we noticed data packets to be off more than
anticipated which shows room for improvement of the test bot.

Fig. 10. Square pattern experiment.

Fig. 11. Square pattern volume experiment.

Fig. 12. Square pattern group volume experiment.

Our data analysis proves promising that the test bot is a viable
testing tool for its intended use but could require refactoring
in hopes of acquiring more accurate data by comparison.

On Fig. 10 is shown the comparison between the bot and
the player traffic (about 14% difference). On Fig. 11 and 12
are shown experiment results for the Square Pattern Volume
and Square Pattern Group Volume. See more chat bot test
results discussion in [3] and new bot testing results discussion
in [4].

In the followed experiments we built a scaled-down virtual-

ized GPN environment useable by game clients, then dumped
and analyzed its traffic under a wide variety of load parameters.
Those parameters include number of clients, network delay,
network traffic and routing servers response time and effec-
tiveness. Latency was both artificially generated and produced
by the software processes themselves. This setup allowed us to
produce stress-performance tests for clients and for the routing
servers. Such measurements are too risky or impossible in
the production environment and have not been published so
far. The scaled-down experimental environment allowed us to
produce numerical models that can predict extreme situations
and thus allow capacity planning for the routing servers.

The environment for these experiments was very active,
bot players would all spawn within a small radius that was
surrounded by active game elements. The players were some-
times in the same area and sometimes elsewhere. Tests were
done where the player would travel through the game world
quickly and force large amounts of information transfer. The
published data specifically applies to the case where the bots
are together in the active environment and both human players
are alone in other areas. Both game state factors like this and
technical details like the method of sending bot packets are
heavy factors in the results.

VI. PERFORMANCE OPTIMIZATION

Optimization in our project refers to the selection of the
best method of game deployment and configuration in order
to maximize CPU resource use and minimize in-game latency.
This section outlines the methods we researched in order to
achieve those means.

The goal of this optimization is to evaluate the interaction
between a Minecraft client and server on our isolated network,
and work to optimize network latency and CPU resource usage
via various methods. A large part of this work depended on
having a realistic way of simulating game traffic, so that we
could determine the major causes of latency and have a better
idea of how it could be combated. Various tests were performed
to test the new bot as it was developed. In addition to the data
published in the [3] other key comparisons were made. In Fig.
13 the composition of packets is compared between the bot
and a real human player, this composition is important for
creating realistic network traffic. The second comparison in
Fig. 14, deals with game state issues and helped us decide
the environment for our experiments in the paper. Reducing
the complexity of the environment resulted in a large decrease
in the traffic generated by the bot we had used previously,
showing how strongly the game state affects the network
traffic. The new bot was developed so that it would remain
consistent with a real player without the additional load from
a busy in game environment. The experiments were done in a
purely simple environment to try to isolate the effects of player
traffic in regards to server performance.

The following charts describe the cpu performance infor-
mation gathered on an 8-core game server running varying
numbers of game servers on varying numbers of cores. Each
game instance had 20 bots connected and running around. The
infrastructure available at the time did not allow us to collect
network information at the same time as doing cpu testing,
so this work may be replicated in the future from a network

perspective in order to see the effects of cpu overuse on game
traffic. Note that there would have been severe latency in the
game instances whenever the cpu usage for the core it is on is
above 90%. In many cases game instances would fail due to
cpu saturation, several tries were required to maintain a stable
state for experimentation.

Fig.15 shows the combined CPU usage of all cores, labeled
with the number of game servers on each core. This chart
shows the values for zero to 4 games using approximate
average values for the idle cores as we did not gather the
data for idle cores during these experiments.

Fig.16 shows the combined CPU usage of all cores, labeled
with the number of game servers on each core (3 1 means 3
games on one core, 1 game on another). This chart shows the
values for 5 to 16 games using actual values for the idle cores.
(A few values are the average as in CPU Stack 1, but most
are real data)

Fig.17 shows each core and the workload on it. For cores
running a game server (or servers) the CPU usage of the
game server process is shown, for cores without a game server
running, the system usage of hat core is shown by subtracting
the idle percentage from 100. This chart shows the values for
zero to 4 games using approximate average values for the idle
cores as we did not gather the data for idle cores during these
experiments.

Fig.18 shows each core and the workload on it. For cores
running a game server (or servers) the CPU usage of the
game server process is shown, for cores without a game server
running, the system usage of hat core is shown by subtracting
the idle percentage from 100. This chart shows the values for
5 to 16 games using actual values for the idle cores.

VII. CONCLUSION

This paper discussed results of the network and server
performance investigation by using two different bots, one pub-
licly available in Internet and another one developed specially
for this project for the online game Minecraft. The goals for the
bots were to replicate network traffic that as a normal player
would produce while playing the game and to investigate the
maximum possible workload on a virtual multicores and multi-
CPUs CentOS server by running a different number of active
Minecraft games on many cores of the multi-CPU servers
simultaneously.

We designed and developed a scriptable bot capable of
performing many common game actions, while generating
comparable traffic to that of a player. This facilitates network
and game server world optimization. It is allowed us to create
a new testing and emulation environment to investigation
network and server performance in our virtual gaming infras-
tructure.

CPU workload evaluation shows that with 8 cores, we can
deploy 2 x 8 = 16 Minecraft game servers per a physical
host. In the future we can move the Minecraft servers from an
overloaded core to another core on the same CPU or to another
not highly loaded CPU or even to another server automatically.

Fig. 13. Traffic composition.

Fig. 14. Different game states.

VIII. FUTURE WORK

Our future work will be related to automatic game servers
workload and network traffic optimization, and automatic
online game deployment. By using collected statistical data
related to network traffic and game servers performance we
are going to develop predictive models for new servers provi-
sioning. The game servers can be automatically deployed into
new servers depending on the workload of the multicore multi-
CPU game servers. ”Later, the network factors such as latency
and jitter can be artificially added to the network to simulate
real conditions of the game being played over the Internet on
a geographically remote server in order to confirm our tests in
a more realistic environment” [4].

ACKNOWLEDGMENT

The research project results, described in this paper were
achieved under support of the Computer Science department
at Okanagan College and by the NSERC of Canada in 2014
(ARD1 465659 - 14): GPN-Perf: Investigating performance
of game private networks. The custom Bot was developed by
the students in COSC 470 SW Engineering capstone project
course [7].

REFERENCES

[1] Mojang AB. Minecraft home page: https://minecraft.net/,
2015.

[2] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Behavior
and performance of interactive multi-player game servers. Cluster
Computing, 6(4):355–366, 2003.

Fig. 15. Total CPU from 0 to 4 game servers deployed.

Fig. 16. Total CPU usage with more game servers deployed.

Fig. 17. CPU usage per core.

Fig. 18. CPU usage per core.

[3] Trevor Alstad, J. Riley Dunkin, Rob Bartlett, Alex Needham, Gaétan
Hains, and Youry Khmelevsky. Minecraft computer game simulation
and network performance analysis. In Second International Conferences
on Computer Graphics, Visualization, Computer Vision, and Game
Technology (VisioGame 2014), Bandung, Indonesia, November 2014.

[4] Trevor Alstad, J. Riley Dunkin, Simon Detlor, Brad French, Heath
Caswell, Zane Ouimet, and Youry Khmelevsky. Game network traffic
emulation by a custom bot. In 2015 IEEE International Systems Con-
ference (SysCon 2015) Proceedings, 2015 IEEE International Systems
Conference. IEEE Systems Council., April 13-16 2015.

[5] Philip A Branch, Antonio L Cricenti, and Grenville J Armitage. An
arma (1, 1) prediction model of first person shooter game traffic. In
Multimedia Signal Processing, 2008 IEEE 10th Workshop on, pages
736–741. IEEE, 2008.

[6] Mark Claypool and Kajal Claypool. Latency and player actions in
online games. Commun. ACM, 49(11):40–45, November 2006.

[7] 2014. COSC 470 SW Engineering Capstone Project Course Team,
Okanagan College. A short video clip with 50 bots running in a square:
https://www.youtube.com/watch?v=KYrIO7yWekw, 2014.

[8] Antonio L Cricenti and Philip A Branch. A generalised prediction
model of first person shooter game traffic. In Local Computer Networks,
2009. LCN 2009. IEEE 34th Conference on, pages 213–216. IEEE,
2009.

[9] WJ Doherty and AJ Thadhani. The economic value of rapid
response time (ibm technical report ge20-0752-0). Zugriff via
http://www.vm.ibm.com/devpages/jelliott/evrrt.html,
1982.

[10] Johannes Färber. Traffic modelling for fast action network games.
Multimedia Tools and Applications, 23(1):31–46, 2004.

[11] Gamepedia. Infiniminer: http://tinyurl.com/o5plsbk, 2015.

[12] Preetam Ghosh, Kalyan Basu, and Sajal K Das. Improving end-to-
end quality-of-service in online multi-player wireless gaming networks.
Computer Communications, 31(11):2685–2698, 2008.

[13] Inc. DarkStorm652/DarkBot GitHub. Minecraft
thin client and automation framework:
https://github.com/Steveice10/MCProtocolLib, 2015.

[14] Steveice10/MCProtocolLib. GitHub Inc. A library for
communications with a minecraft client/server http://spacehq.org:
https://github.com/Steveice10/MCProtocolLib, 2015.

[15] Behnoosh Hariri, Shervin Shirmohammadi, and Mohammad Reza
Pakravan. A hierarchical HMM model for online gaming traffic
patterns. In Instrumentation and Measurement Technology Conference
Proceedings, 2008. IMTC 2008. IEEE, pages 2195–2200. IEEE, 2008.

[16] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned
federation of game servers: A peer-to-peer approach to scalable multi-
player online games. In Proceedings of 3rd ACM SIGCOMM Workshop
on Network and System Support for Games, NetGames ’04, pages 116–
120, New York, NY, USA, 2004. ACM.

[17] Jared Jardine and Daniel Zappala. A hybrid architecture for massively
multiplayer online games. In Proceedings of the 7th ACM SIGCOMM
Workshop on Network and System Support for Games, NetGames ’08,
pages 60–65, New York, NY, USA, 2008. ACM.

[18] Tom Jehaes, Danny De Vleeschauwer, Toon Coppens, Bart Van Doorse-
laer, Eva Deckers, W Naudts, K Spruyt, and R Smets. Access network
delay in networked games. In Proceedings of the 2nd workshop on
Network and system support for games, pages 63–71. ACM, 2003.

[19] CubeCoders Limited. Mcmyadmin 2 the minecraft control panel:
https://www.mcmyadmin.com, 2015.

[20] Joseph D. Pellegrino and Constantinos Dovrolis. Bandwidth require-
ment and state consistency in three multiplayer game architectures. In
Proceedings of the 2Nd Workshop on Network and System Support for
Games, NetGames ’03, pages 52–59, New York, NY, USA, 2003. ACM.

[21] S. G. Perlman. Network architecture to support multiple site real-time
video games. United States Patent number 5,586,257, Dec. 17, 1996.

[22] D. H. Sitrick. Video game network. United States Patent number
4,572,509, Feb. 25, 1986.

[23] Wikipedia. Minecraft: http://tinyurl.com/294abv9, 2015.

[24] Yi Wu, Hui Huang, and Dongmei Zhang. Traffic modeling for
massive multiplayer on-line role playing game (mmorpg) in gprs access
network. In Communications, Circuits and Systems Proceedings, 2006
International Conference on, volume 3, pages 1811–1815, June 2006.

[25] Qili Zhou, C.J. Miller, and Victor Bassilious. First person shooter
multiplayer game traffic analysis. In Object Oriented Real-Time Dis-
tributed Computing (ISORC), 2008 11th IEEE International Symposium
on, pages 195–200, May 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

