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A Graph-Based Mobility Model for Electric Vehicles in Urban Traffic
Networks: Application to the Grenoble Metropolitan Area

Martin Rodriguez-Vega1, Carlos Canudas-de-Wit1, Giovanni De Nunzio2, and Bassel Othman2

Abstract— This paper introduces a new model depicting
electric vehicles (EVs) mobility and the evolution of their State-
of-Charge (SoC) in urban traffic networks. The model couples
the vehicles’ mobility described by a set of dynamic equations
over a graph capturing the Origin-Destination motion, with the
energy consumption associated with the EVs mobility patterns.
Additionally, power inputs from charging stations are included
in the model. A model calibration method based on multi-source
public data is also provided. Finally, several experiments are
conducted through simulation to evaluate the appropriateness
of the current charging station infrastructure under an increas-
ing EVs penetration rate in the whole metropolitan area of
Grenoble, France.

I. INTRODUCTION

Electric vehicles have become one of the main solutions
proposed worldwide in the search for more sustainable
and decarbonized transportation. As vehicle electrification
is ongoing, several countries have now introduced plans
to achieve a carbon-neutral transportation network in the
upcoming decades, with EVs replacing conventional vehicles
being the main component of this transition. However, the
increase in the number of EVs requires a fast adaptation
of charging infrastructure, and suitable management of the
interaction between the power network [1] and EVs energy
demand to avoid overloading the grid nodes during high
charging demand periods. Vehicle-to-Grid (V2G) is an ex-
isting technology playing a fundamental role to leverage the
use of EVs flexibility and promoting the EVs arrival to the
markets. Initiatives in that direction have been already taken
in cities like Utrecht, which has become a proving ground
for the bidirectional-charging techniques that have the rapt
interest of automakers, engineers, city managers, and power
utilities over the world (see [2]).

To promote the use of V2G technologies, and to better
design the charging infrastructure, it is first needed to model
the power needs and consumption of EVs in time and
space over typical mobility patterns. By doing this, it will
be possible to predict the location and time-varying profile
of the energy demand and supply sources. Concerning the
modeling of SoC and energy expenditure of EVs along
their trip, we can find several studies already reported in
the literature. [3]–[6] have studied the energy consumption
of single vehicles along their trajectories. [7] introduces a
microscopic simulator to track the energy consumption of
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EVs in real-world conditions, taking into account the traffic
flow. Macroscopic traffic models that take into account EVs
SoC have also been introduced for the case of highways. [8]
uses a second-order traffic model to track vehicle speeds and
acceleration used to compute the energy consumption. More
recently, [9] incorporates a coupled set of PDEs for vehicle
density and SoC.

Mobility models describe the movements of individuals
in space and time and are important in many disciplines
[10]. For instance, [11] used a mobility model to describe
the epidemic spread of disease between sectors of an urban
area. As the movement and therefore the energy consumption
of EVs is obviously linked with the mobility of people,
a coupled description of mobility and SoC is needed to
provide an accurate view of where EVs energy and power
demand are distributed in time and space. However, to the
authors’ knowledge, there are no works in the literature that
model the union between human mobility and EVs SoC.
The main contribution of this paper is the introduction of
a graph-based electromobility model including the SoC of
the EVs. The model starts with the urban human mobility
model developed previously [11] in the context of the ERC
project Scale-FreeBack [12]. Our contribution here is first
to split the people flows into several transportation modes
including EVs. Secondly, we have added an energy model,
that tracks the energy lost by the EVs during the trip. For
that, we have introduced the concept of power flow instead
of vehicle flow typically used in people’s mobility alone. The
model has been completed with the consideration of energy
provided by public and private charging stations.

This model is used to track the SoC and energy EVs at
different locations of an urban area, as well as the possible
flexibility that can be used in V2G scenarios. In this paper,
we use to model to determine the effect of several EVs
penetration rates and charging configurations on the SoC of
vehicles, to determine the maximum possible number of EVs
that can be maintained in a metropolitan area.

The paper is organized as follows: Section II presents the
electromobility model and describes its main components.
Section III presents the study case of the Grenoble metropoli-
tan area, and the data sources used to calibrate and run
the model. Two experiment scenarios and their results are
presented in Sections IV and V, using the model to predict
the maximum EVs penetration rate that can be supported
in the area using different charging infrastructures. Finally,
Section VI concludes the paper.
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Fig. 1: Overview of the Electromobility Model.

II. ELECTROMOBILITY MODEL

The Electromobility model is seeking to capture the dy-
namic motion of the EVs distribution and their state of charge
within a given area by using a dynamic graph formulation.
The mobility part of the model is described by a bipartite
graph (only round trips are considered here) structure which
provides information on how and when the people move
during a journey from a set of origin nodes to a set of
destination nodes and back again. The origins correspond to
the aggregated residential areas in a municipality, whereas
the destination nodes include five classes of destinations:
schools, workplaces, hospitals, shopping areas, and leisure.
The model states are: the number of EVs in each node Ni(t),
the EVs flow between nodes i and j, φi,j(t) [veh/h], the
normalized average State-of-Charge of the EVs at each node
εi(t) ∈ [0, 1], and the total energy contained by all the EVs
in a node Ei(t).

The model consists of seven modules as shown in Fig. 1.
The fastest-path graph module computes the paths used by
EVs to move between nodes and their parameters such
as length and average speed. The people mobility module
computes the number of people at each node and provides
the flow φh between nodes. The mode choice module com-
putes the proportion of people using EVs and feeds this
information to the EVs mobility module which transforms
people’s mobility into EVs mobility. This module’s output
(EVs number N and flow φ) are inputs for the other modules.
The power losses module computes the aggregated losses,
∆P , on a trip from one node to another. The charging station
model module computes the aggregated power injected at
each station. Finally, the State-of-Charge module computes
the aggregated SoC and energy of the EVs in each node.

A detailed description of each module is presented in the
next subsections.

A. People mobility module

To model the people’s mobility we use the model intro-
duced in [11], which is based on a set of coupled conserva-
tion Ordinary Differential Equations (ODEs) of the form

Ṅh
i (t) =

∑
j

(φhj,i(t)− φhi,j(t)) (1)

where Nh
i corresponds to the number of people in node i,

and φhi,j is the flow of people from node i to node j. For
details on the flow functions, input data, and implementation,
interested readers can find more details in [11], [13], where
the model was extended and applied to the Grenoble urban
metropolitan area.

B. Fastest-path graph module

This module produces a graph G, that for each combi-
nation of origin node i and destination node j, defines the
topology of the path (x, y coordinates) that minimizes the
free-flow traveling time of vehicles moving between i and
j. The path topology is used in the charging station module
to determine which public chargers are used by EVs in the
path.

Furthermore, for each path we compute the length `i,j , the
average vehicle speed vi,j , and the average road inclination
θi,j . The latter is computed as

θi,j = arctan((hj − hi)/`i,j) (2)
where hi is the elevation of node i. These physical parame-
ters are used in the power loss module.

C. Mode choice module

To transform people’s mobility into EVs mobility, we need
to compute first the proportion of people using a private car.
This problem is known as the modal choice analysis and
has been extensively studied in the literature, see [14], [15].
Here we adopt the well-known logit model which computes
the probability that a person uses their private vehicle (rather
than public transport) as

pcar(∆t) =
1

1 + exp(β0 + β1∆t)
(3)

where ∆t ∈ R is the traveling time difference between public
transport and private cars. In this study we use only this
descriptor variable because it has been demonstrated to be the
most representative and relatively easy to compute [16], [17],
but more general forms can be adopted as well, considering
multiple descriptor variables and modes of transport, see
[14]. The constants parameters β0, β1 ∈ R are adjusted using
public mobility data as it will be explained in Section III.

D. EVs mobility module

Once the number of cars performing each trip is known,
the corresponding number of EVs, Ni, can be computed
using the penetration rate η. From the mass conservation
property, we have:

Ṅi(t) =
∑
j

(φj,i(t)− φi,j(t)) (4)

where
φi,j(t) = ηpcar(∆ti,j)φ

h
i,j(t). (5)

E. Power loss module

The total power lost during the EVs displacement from
node i to j is described by:

∆Pi,j = φi,jE
l
i,j (6)

where Eli,j is the average energy lost per vehicle [3],
Eli,j = EF (`i,j , vi,j , θi,j) +Ev(vi,j) +Eaux(`i,j , vi,j) (7)



TABLE I: Parameters and notation for power loss model.

Symbol Description Units Value
m Vehicle mass kg 1700
A Vehicle frontal area m2 2.33
g Gravity acceleration m/s2 9.81
cr Roll friction coeff. - 0.01
cd Air drag friction coeff. - 0.3
ρair Air density kg/m3 1.2
µmot Battery-to-wheels efficiency - 0.65
µreg Regenerative braking efficiency - 0.55
Paux Power used by auxiliary systems kW 0.7
C Average EVs battery capacity kWh 40

where the first term, EF , represents the losses due to external
forces from i 7→ j, and has the following general form:

EF (`, v, θ) =

{ 1
µmot

`F (v, θ) if F (v, θ) ≥ 0

µreg`F (v, θ) if F (v, θ) < 0
(8)

where `, v, θ are the trip’s length, average vehicle speed, and
road inclination, respectively. F (v, θ) is the force required
at the wheels to keep a constant speed v against gravity and
drag forces,

F (v, θ) = (sin θ + cr cos θ)mg +
1

2
ρairAcdv

2 (9)

where the parameters are given in Table I. When F (v) is
positive (energy is lost), the power supplied by the battery
is higher than the power used at the wheels. When F (v) is
negative (energy is recovered), the battery converts a part of
the braking power to charge itself.

The second term in (7), Ev , is the kinetic energy needed
to reach a speed v without consideration of energy losses,

Ev(v) =
1

2

(
1

µmot
− µreg

)
mv2. (10)

Finally, the last term in (7), Eaux, is the energy used by
auxiliary vehicle systems (e.g. air conditioning) given by

Eaux(`, v) =
`

v
P aux (11)

where P aux is the constant power used by the auxiliary
systems.

F. Charging station module

To model the power injected by charging stations, we
consider three types of chargers: a) Home Chargers (HC),
b) Office Chargers (OC), and c) Public Chargers (PC).

1) Home chargers: These chargers are only present at
origin nodes (residential) and their injected power is modeled
as,

PHCi =

{
P avgHC min(Ni, N

HC
i )ψi if εi < εmax

0 else
(12)

where P avgHC is the average power per charger, and NHC
i is

the number of HC in node i. We assume that vehicles do
not charge above εmax ≤ 1 to protect the battery, and ψi(t)
specifies the time window when vehicles can charge at home
during the night, i.e.

ψi(t) =

{
1 if t ∈ [20:00, 6:00]
0 else .

2) Office chargers: These chargers are available at desti-
nation nodes at workplaces and shopping areas. The supply
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Fig. 2: Example with 2 OD paths and 2 PC. The arrows from the
PC to the path indicate if the PC supplies power to EVs making
this trip according to the “attraction” between the PC and the path.
δki,j is the distance between PC k and the path (i, j), and `ki,j is
the distance from i to k along the path towards j.

power from OC follows the same model as HC, namely

POCj =

{
P avgOC min(Nj , N

OC
j )ψj if εj < εmax

0 else
(13)

where P avgOC is the average charger power, and NOC
j is the

number or chargers at location j. The time window ψj(t)
for destination nodes is

ψj(t) =

{
1 if t ∈ [9:00, 18:00]
0 else .

3) Public access chargers: These chargers are used by
vehicles during their transit between nodes. We assume that
the location and average power per station of the PC in the
area are given.

As the PC are not necessarily located over a specific
Origin-Destination (OD) link but rather in their neighbor-
hood, we need to define how those charges will contribute
to supplying power to each of the links in the graph. For
that, we first specify which PC will provide power to each
graph’s link. For that, we use a gravity attraction law (see
[10]) depending on one hand on the shortest distance between
the PC geographic location of the link’s graph, and on the
other, on the average power supply capacity of each station.
The rationality behind this model is that drivers will be
more ”attracted” to close PC locations with enough power
availability.

We denote by dki,j as the shortest distance between PC k
and the path between nodes i and j, see Fig. 2. Also, denote
by `ki,j as the distance between node i and the closest point
to PC k along the path (i, j).

We define the attraction between the link and the PC as

Aki,j = P avgk exp

−(dki,j
σ

)2
 (14)

where P avgk is the average power charging station capacity,
and σ is the distance that people are willing to deviate
from their original destination path to go for a charge. Now,



introducing the normalized attraction law,

Āki,j =
Aki,j

maxn(Ani,j)
. (15)

and the design threshold parameter τ , we say PC k is
connected to (i, j) if Āki,j ≥ τ . For example, Fig. 2 shows
that PC 1 is connected to links (1, 2) and (3, 4). Conversely,
PC 2 is only connected to link (1, 2), as link (3, 4) is too far
away.

This process is repeated for all links and PC. This provides
the set Ω(i,j) of all charging stations connected to link (i, j),
and set Γk of all paths connected to charging station k.

The power provided by each station to each connected link
is computed as

P ki,j = min(Dk
i,j , S

k
i,j) (16)

where the demand D specifies the maximum power that the
flow of vehicles in the route can receive and is computed by

Dk
i,j = Cφi,j(ε

max − εi) +
`ki,j
`i,j

∆Pi,j −
∑

p∈Ω(i,j)

`pi,j<`
k
i,j

P pi,j (17)

where C is the average EVs battery capacity. The first term
is the power needed to raise the SoC of the flow to εmax,
the second term is the power loss due to the EVs movement,
and the last term is the power already provided by connected
PC upstream.

The supply S specifies how much power can be provided
by the PC. If it is connected to multiple routes, the maximum
power is divided proportionally according to the energy
needs of each route,

Ski,j = αki,jP
tot
k (18)

where

αki,j =
φi,j(ε

max − (εi − εki,j))∑
(n,m)∈Γk

φn,m(εmax − (εn − εkn,m))
(19)

such that
∑

(i,j)∈Γk
αki,j = 1, P totk is the total power from

points in the station, and εki,j = (Eli,j`
k
i,j)/(C`i,j).

4) Power in each node from all chargers contributions:
For each origin node i, the total received power from
charging is the sum of the contributions from home chargers
and public chargers located in the D/O paths,

PCSi (t) = PHCi (t) +
∑
j

∑
k∈Ω(j,i)

P kj,i(t) (20)

and for each destination node j the total received power from
charging is the sum of the contributions from office chargers
and public chargers located in the O/D paths,

PCSj (t) = POCj (t) +
∑
i

∑
k∈Ω(i,j)

P ki,j(t). (21)

G. State-of-Charge module

The dynamics of the energy stored by EVs in node i is
given by a conservation law

Ėi(t) = PCSi (t) +
∑
j

(P inj,i (t)− P outi,j (t)) (22)

where P inj,i is the power flow entering node i from j, P outi,j

is the power flow exiting node i towards j. The energy in

Fig. 3: Layout of the Grenoble metropolitan area. Large orange
circles represent Origin nodes; small purple circles are Destination
nodes.

each node is given in terms of the SoC,
Ei(t) = CNi(t)εi(t) (23)

and the power transported out by EVs is
P outi,j (t) = Cφi,j(t)εi(t). (24)

The power entering each node takes into account the link
losses

P ini,j = P outi,j −∆Pi,j . (25)

Note that from (23),
Ėi = C(Ṅiεi +Niε̇i). (26)

Substitution of (4), (6), (24), (25), and (26) into (22) and
rearranging terms gives

ε̇i =
1

Ni

PCSi
C

+
∑
j

(
φj,i(εj − εi)−

∆Pj,i
C

) . (27)

III. MODEL PARAMETER CALIBRATION

The model is calibrated for the Grenoble metropolitan area
in the French Alps, whose boundaries are shown in Fig. 3.
Highlighted in orange are the 60 origin nodes representing
the municipalities. Highlighted in purple are the 374 desti-
nation nodes. The population in the area is approximately
470.000 people.

Calibration is performed using data sources and algo-
rithms exclusively from public government agencies and
open source repositories, see Table II.



TABLE II: Data sources description for parameter calibration.
Source name Source type Function Data Ref.
INSEE National institute of statistics Calibration of people mobility Node population and capacity [18]
CEREMA, SM-
MAG

Mobility and Urbanism agencies of
Grenoble-Alpes region

Calibration of mode choice model,
and number of HC per node.

Household mobility survey
EMD2010: inter municipality trips,
and type of parking used.

[19]

OpenStreetMaps,
OSMnx

Open source data and algorithms Computation of car trajectories and
traveling time.

Car road graphs and fastest-path cal-
culation algorithms.

[20]

SMMAG Mobility agency of Grenoble-Alpes
region

Computation of public transport trav-
eling times.

Public transport map and itineraries. [21]

OpenTripPlanner Open source algorithms Computation of public transport trav-
eling times

Fastest path algorithm. [22]

MERIT-DEM Open source data Road inclination computation for en-
ergy loss.

Digital Elevation Map [23]

ENEDIS French energy distribution system op-
erator.

Calibrate the number and power of
chargers.

Number of chargers of each type at
the national level and total power.

[24]

OpenChargeMap Open source data Input data for PC. PC location and nominal power. [25]
Ministry of Eco-
logical Transition

Public organism Initial condition for EVs distribution Number of vehicles, EVs and pene-
tration rate per municipality.

[26]

A. Fastest-path calculation

To compute the paths between origin and destination
nodes, we compute the road network graph using the fastest-
path algorithm OSMnx [20] with input data from Open-
StreetMaps. The paths are given as a set of point coordinates,
and the lengths and traveling times between consecutive
points are also provided by the algorithm. Node elevations
were obtained from [23]. We used the road network graph
and the fastest-path algorithm implemented in OSMnx [20]
using the free-flow traveling time.

B. Mode choice

The parameters β0 and β1 depend on the destination class.
For calibration, the household survey EMD2010 [19] data is
used. This dataset divides the metropolitan area into sectors
and provides the number of people using car or public
transport according to: the origin and destination sectors,
and destination class. Although the sectors defined in the
EMD2010 do not match exactly with the nodes used in the
electromobility model, the parameters calibrated with the
EMD2010 data will be used in the electromobility model
as they consider the same population. A sample n of the
EMD2010 is comprised of the proportion of surveyed people
using car pcarn for an OD pair and destination class, and
the average travel time difference ∆tn is computed using
OSMnx [20] for cars, and OpenTripPlanner [22] for public
transport.

The parameters β0, β1 were calibrated using a least-
squares approach [27]. For this, we transform (3) into

log ((1− pcar)/pcar) = β0 + β1∆t. (28)
Define yn = log((1 − pcarn )/pcarn ), which can be computed
from data. As both variables yn and ∆tn are noisy, we use
a error-in-the-variables linear regression method known as
Deming regression [28],

min
β1,β0,xn

∑
n

((yn − β0 − β1xn)2 + δ(∆tn − xn)2) (29)

where xn are dummy variables and δ is the ratio between
sample variances of yn and ∆tn. The resulting values are
shown in Table III.

TABLE III: Parameters for the mode choice model.

Destination class β0 β1 [1/min]
Workplaces 2.35 -0.11
Schools 5.17 -0.11
Leisure, Shopping 2.82 -0.11
Hospitals 3.43 -0.13

C. Number of EVs by municipality

The current distribution of EVs number and penetration
rate by municipality can be seen in Fig. 4, obtained from the
Ministry of Ecological Transition [26]. Note from the right
figure that most of the EVs are concentrated in the center
of the area (corresponding to the capital city of Grenoble),
and an axis towards the northeast of Grenoble. The city
of Grenoble, however, has a lower penetration rate, as it
contains a larger vehicle population. The northeast axis,
although having fewer total vehicles, have a similar number
of EVs, as evidenced by a higher penetration rate.

It can be seen that some areas in the north have very high
penetration rates compared to the rest of the map. However,
these areas have very few vehicles in total, so the high
penetration values might be artificially high.

Fig. 4: Current spatial distribution of the number of EVs and
penetration rate by municipality.

D. Charging stations

1) Public chargers: the locations of the PC are shown
in Fig. 5 as obtained from OpenChargeMap [25]. The total
number of PC and the average power per point are shown in
Table IV. To determine which PC contributes to each link,
we use the process described in Section II-F with the paths



Fig. 5: Location of PC, and municipality outlines.

computed using OSMnx [20] and the heuristic parameters
σ = 0.3km, τ = 0.8.

2) Home chargers: To estimate the number of HC in each
municipality, NHC

i , we use parking data from EMD2010
[19], which indicates the proportion of vehicles that park
during the night in private garages, shared parking, or at
the roadside. We assume that EVs with access to a private
garage have access to an HC. Thus, we estimate NHC

i by
multiplying the proportion of vehicles that park in garages
by the total number of EVs registered in municipality i. The
average power per HC as obtained from ENEDIS [24] is 2
kW, as seen in Table IV.

3) Office chargers: To estimate the number of OC, NOC
i ,

we use the data provided by ENEDIS [24], which specifies
the ratio between the number of PC and the number OC
at a national level. As the number of PC in the area is
known, the total number of OC is calculated proportionally.
For each destination node, the number of OC is distributed in
proportion to the node capacity. The average power per OC
as obtained from ENEDIS [24] is 7 kW, as seen in Table IV.

Table IV shows the total number of charging points, the
total available power, and the average power per point for
the three categories.

Figure 6 shows snapshots of the spatial-temporal time
evolution of the model in a working journey. Note how the
TABLE IV: Number and power characteristics of charging
stations.

Type Points Total Power Avg power/point
Home 1306 2612 kW 2 kW
Office 1220 8540 kW 7 kW
Public 236 4720 kW 20 kW

Fig. 6: Spatial distribution of Energy (MWh) in each municipality
at different times of the day, for a penetration rate of 22%.

energy concentrates at the center of the area during working
hours, due to the mobility of people, and then disseminates
back to the residential areas during the night.

IV. STUDY CASE 1: PHASE-TRANSITION EVS
PENETRATION RATE FOR SUSTAINABLE CHARGING

In this first study case, we consider the current Grenoble
charging station network, as described in Section III-D. The
objective is to determine the EVs penetration rate η∗ at which
the charging station network can no longer meet the energy
demand of EVs (phase transition value). Several simulations
with an increasing penetration rate of EVs are carried out.

We consider the overall average SoC of all EVs in the
network as

ε̄(t) =

∑
iNi(t)εi(t)∑
iNi(t)

. (30)

Simulations are performed using several initial conditions
and penetration rates. Fig. 7 shows the trajectories of ε̄(t)
from an initial condition ε̄(0) = 0.4, where each color
corresponds to a different η. We note three cases: a) for
η < 0.22, ε̄ increases and then remains around a value
close to 1; b) for η > 0.22, ε̄(t) decreases until vehicles
are discharged; and c) for η = 0.22, ε̄(t) oscillates around
the initial value. Thus, there exists a phase-transition value
η∗ = 0.22 that differentiates between sustainable charging
and discharging of vehicles.

Figure 8 shows the phase portrait of ε̄(t) vs η. The plot
is divided into several regions according to the behavior



Fig. 7: Evolution of the mean state of charge with varying EV
changing penetration rates.

of the trajectory. The black band is an attractive invariant
set, i.e., initial conditions (ICs) taken outside of the band
will converge towards the band and will remain there (with
eventually small oscillations). The arrows in the figure shows
the direction of trajectories starting above or below the
invariant set. Thus, three main sub-regions are identified:
ICs starting in the green sub-region will increase ε̄(t) until
reaching the band; ICs starting in the blue region decrease
ε̄(t) until reaching the band; and ICs starting in the red region
will decrease ε̄(t) until vehicles are discharged.

V. STUDY CASE 2: DEPENDENCY OF THE
PHASE-TRANSITION PENETRATION RATE ON THE HOME

AND OFFICE CHARGERS NUMBER

As more people adopt EVs, even past the current phase-
transition penetration rate, the supply of the charging network
needs to be augmented to sustain the rising energy needs. In
this study case, we analyze the number of chargers at homes,
NHC , and at offices, NOC , that would be required to meet
the energy demands of EVs for a given penetration rate.
To do this, we simulate different configurations of charging
networks by independently varying NHC and NOC , without
changing the average power per charger shown in Table IV.
For each new configuration, we determine the new value η∗.

Fig. 9 shows the values of η∗ for charging configuration.

Fig. 8: Behavior of the average SoC trajectories according to the
penetration rate and initial conditions. The black line is an attractive
invariant set, as all points move vertically toward the line. Points
in the red region will move towards 0.

Fig. 9: Phase-transition penetration rate for varying numbers of
home and office chargers.

Fig. 10: η∗ according to HC and OC installation costs. The circle
corresponds to the configuration with the lowest cost increment to
achieve η∗ = 0.42

The square highlighted with the dotted black line corresponds
to the current charging network (the same as in study case
1). Consider for instance the case when we would like to
augment the penetration rate to 42%. In the figure, this value
corresponds to the situation NHC = 2612 and NOC = 1830.
However, note that this configuration is not unique, and in
fact, as isolines of constant η∗ can be evidenced.

An interesting problem is to determine the optimal con-
figuration for a given η∗, such that the installation cost
(for instance) is minimized. The figure shows that adding
a certain NOC yields a better increase in η∗ than the
same NHC . However, HC are usually cheaper, with an
installation cost of approx. 300 EUR, vs an installation cost
of 1200 EUR for OC. Fig. 10 shows the resulting η∗ that
corresponds to the installation cost for each configuration.
Note that for obtaining the same η∗, augmenting NHC rather
than NOC results in lesser costs. For this scenario, the
circle corresponds to the configuration that minimizes the
installation for η∗ = 42%, with an extra cost of 2.34Me.



VI. CONCLUSIONS

In this paper, we have introduced the Electromobility
model, which describes the SoC dynamics of EVs in an
urban area taking into account the mobility of the EV
population, their energy consumption, and the power inputs
from charging stations. This model consists of a set of
coupled ODE based on flow and energy conservation law
on the nodes of an origin-destination graph. We have also
presented a method to calibrate the model parameters using
publicly available data sources and showcased this for the
specific case of the Grenoble metropolitan area. The model
was used to compute the phase-transition penetration rate of
EVs such that different charging infrastructures could satisfy
the energy demand of vehicles. For future work, this model
can be used as an input to determine the optimal location
of public chargers, and control schemes to reduce the power
peaks on charging stations under power grid constraints.
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