
HAL Id: hal-04047653
https://hal.science/hal-04047653

Submitted on 22 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code generation and parallel code execution from
business UML models: A case study for an algorithmic

trading system
Gaetan J.D.R. Hains, Chong Li, Daniel Atkinson, Jarrod Redly, Nicholas

Wilkinson, Youry Khmelevsky

To cite this version:
Gaetan J.D.R. Hains, Chong Li, Daniel Atkinson, Jarrod Redly, Nicholas Wilkinson, et al.. Code
generation and parallel code execution from business UML models: A case study for an algorithmic
trading system. 2015 Science and Information Conference (SAI), Jul 2015, London, United Kingdom.
pp.84-93, �10.1109/SAI.2015.7237130�. �hal-04047653�

https://hal.science/hal-04047653
https://hal.archives-ouvertes.fr


Code Generation and Parallel Code Execution from
Business UML Models:

A Case Study for an Algorithmic Trading System

Gaétan Hains∗, Chong Li†
LACL, Université Paris-Est Créteil, Paris, France

Emails: gaetan.hains@huawei.com, research@chong.li
∗Also affiliated with Huawei France R&D Centre, Paris.

†Also affil. with National Inst. of Informatics, Tokyo, Japan.

Daniel Atkinson, Jarrod Redly, Nicholas Wilkinson
and Youry Khmelevsky

Computer Science, Okanagan College, Kelowna, BC V1Y4X8

Emails: daniel atkinson@mail.com, jarrod redly@hotmail.com,

{kharnaxin, khmelevsky}@gmail.com

Abstract—In this paper we discuss several capstone student
projects conducted by the students at University of British
Columbia, Okanagan campus (UBCO) and at Okanagan College
in different years. The aim of the projects was to demonstrate
how end-users could update code for an industrial application (an
algorithmic trading system) without any programming skills and
programming experience. Another goal was to improve perfor-
mance for the applications collection of stock information from
online public sources by introducing parallel code execution on
multi-core personal computers. Real algorithmic trading system
requirements were used as a case study. An Eclipse Modelling
Framework was used to generate Java code from a UML business
model, which can be modified by unexperienced business users.
Moreover, code execution can be scaled to a specific computer
architecture and hardware for better performance and better
computer resources utilization, especially if a business user wants
to collect and analyze a long list of stocks. The last section of
the paper focuses on performance optimization and analysis.

Keywords-UML; code generation; high performance computing;
BSP; performance prediction; parallel programming; Algorithmic
Trading

I. INTRODUCTION

”Algorithmic trading systems are widely used by many

financial institutions like hedge funds, pension funds, mutual

funds, market makers and other institutional or individual

traders to manage market impact, risk, and to provide liquidity

to the market. A professional trader usually diversifies his/her

portfolio with different trading strategies (i.e. algorithms) in

different markets with different stocks in order to limit the

risk in a controllable level. The quantitative analysts (Quant)

tends to work in pairs with software engineers for coupling

trading algorithms design, development and deployment.

Quant handles the financial aspect and software engineer

deals with computer performance and code quality” [5].

Li and Hains in [12], [11] proposed the SGL software-

hardware bridging models implementation for the parallel

code execution in software applications. In our research

we tried to optimize end-user code by generating code for

different platforms from customized UML models.

Okanagan College incorporated industrial projects into

capstone COSC 224 ”Projects in Computer Science” and

Fig. 2. Console output.

COSC 470/471 ”SW Engineering” project courses starting

from 2006 [8], [7]. The discussed projects was originally

started at UBCO in a software engineering course in 2012

[9], [15], [16], then continued at Okanagan College (OC),

Kelowna campus in 2014 [6]. Both projects were supervised

by a professor and his PhD student from Université Paris-Est,

France [6].

In the first project UBCO students developed a code

generating application by using Eclipse Modelling Framework

(EMF) [4], which was able to successfully generate code from

customized business models Fig. 1 and then run application

in both modes: in console mode Fig. 2 and as a graphical

application Fig. 3. The code generation was done via plugin

implementation in Eclipse Modelling Framework (Fig. 4)

by using .ecore XML files from UML models (Fig. 5). The

source data were collected from Yahoo in real-time [15],

[16].

Our contributions are the following:

1) A visual and declarative technique for the automatic

Java code generation from UML business models in

Eclipse Modelling Framework by the end-users without

programming skills and experience.

 

Science
 
and

 
Information

 
Conference,

 
London,

 
UK,

 
July

 
28-30

 
2015.



Fig. 1. End-user customizable business UML diagram.

Fig. 3. Real-time application for the stock monitoring.

2) A software application prototype for a company in Paris.

3) Testing results of the BSP parallel code execution

optimized for a multi-core personal computer. This

can be adopted for different hardware platforms with

automatic code regeneration.

II. TESTING RESULTS WITH BSP PARALLEL PROCESSING

To test the performance benefits of implementing multi-

threading into the algorithmic trading system prototype,

experiments were run using variable numbers of stocks and

threads. Each experiment took streams of financial data from

Yahoo Finance (in 2014 - 2015) in real-time at a rate of

one record per second from a pre-initialized list of stock

symbols. Each performance experiment was run at least 11

times in order to obtain 10 artifact free result sets with which

to analyze the system’s operation. In this section we discuss

our latest original results, what we achieved by repeating all

experiments on different hardware. The initial experiments

with the BSP implementation were done in the Fall 2014

during COSC 470 capstone project.

 



Fig. 4. The code generation plugin.

Fig. 5. .ecore XML file.

A. The Implementation of Multi-Threading

Taking the initial ”Algorithmic Trading System” prototype,

we sought to integrate multi-threading techniques to improve

performance and keep the application processing time in real-

time in order to keep up with received market data. To

achieve parallelization, the Bulk Synchronous Parallel (BSP)

[19] algorithm was utilized for the multi-threading aspects of

the program. A BSP model consists of a processor on which

local computation is done, a communication network between

these processors, and a synchronization barrier. To facilitate

this model the MulticoreBSP Java framework [23] was inte-

grated into the project which handled much of the model’s

implementation. The system informs the BSP framework of

how many threads it needs and then the framework initializes

the threads. Upon their creation the thread determines what

stocks it needs to fetch which are divided between the created

threads. After the thread finishes its execution then the thread

calls the BSP sync method in the framework to inform the

parent process of its completion. The parent after creating the

threads will also have executed the sync method and will wait

for all the child processes to synchronize, and once this occurs

the parent can proceed to generate the output for the system

(Fig. 7).

B. Program Processes

HPCMulti: This program handles the initial execution

for the application. The user will begin by executing this

file with parameters for the number of threads to use and

 



Fig. 6. The parsed data snippet.

the number of stocks to monitor. For the purposes of this

experiment the number of cores that a user can select to

utilize is limited to a maximum of either. Likewise, the

range of stocks to load runs from a minimum of four up to

a limit of 24. This program stores these values along with

timestamps and a container for all the stocks. It also generates

the output log into which is placed all statistical data for

later analysis. The program then proceeds to execute the

implementation of MulticoreBSP from the class StockProcess.

StockProcess: The StockProcess class handles the

implementation of BSP for this program including the

creation and management of the child processes which will

collect the stock data, and the collation of this data into a

CSV text file for statistical analysis. Discussion of this class

is divided into two main sections; the main thread and the

parallel threads. The main thread is the parent thread for all

the child threads and handles the data output. The parallel

threads create the individual connections to Yahoo Finance

and collect data pertaining to their particular stocks.

The main thread manages the initialization of the child

processes and then the printing out of the information

that those threads gleam from the data source along with

important statistical material regarding the execution time of

the program. Using the variables that HPCMulti stored upon

its execution, this method begins by initializing a number

of threads equal to the number that the user requested at

the command line by calling the BSP framework’s begin

function. This function will spawn the child processes for

the program and start them executing the code contained in

the parallel part. This then executes the BSP synchronize

function which will force it to wait while the child processes

execute their programming. When all threads have completed

their operation and synchronized then this thread proceeds

with its own execution. It writes out all stock data to a CSV

file along with the time of execution and average execution

time of each thread in milliseconds and informs the user of

the newly created file.

The parallel section contains all code that each child process

will run. Upon its creation by the BSP framework the thread

will begin execution of this section starting with the creation

of a WebParser object which will handle communication

with the Yahoo Finance API. Continuing on, the thread

fetches its selection of stocks from a pre-initialized list of

stocks and stores them as an array of strings. The program

divides the total number of stocks by the total number

of threads to segment the list into a number of ranges and

each process uses its own process id to find its range of stocks.

Once the thread has gathered its selection of stocks, it then

proceeds to process each stock, one by one. For the purposes

of this experiment the processing of a stock is repeated 10

times to collect and record statistical data regarding this

execution. In addition to the actual stock data retrieved from

the WebParser includes start and end date of the process and

processing time. The generated Stock object is then inserted

by the thread into a static variable in HPCMulti that contains

all stock data for all retrieved stocks. The thread then injects

the stock into a static array in HPCMulti that contains all

stock data for all retrieved stocks.

When the thread has finished processing all of its stocks it

logs the total time that was required by the thread to process

all of its stocks in a static TimeStamp variable in HPCMulti.

The thread then completes and closes.

WebParser: The WebParser handles the fetching of stock

data from Yahoo Finance and parsing that into a Stock

object that the application will read. On initialization the

WebParser contains a list for stock abbreviations and a

default format for processing stocks. The list is empty at

initialization and the object awaits abbreviations to be passed

to it to be added to the list. The parser then waits until it

is requested to parse a stock either in the form of a string

stock abbreviation or the integer location of an abbreviation

in its list. The object then connects to the Yahoo Finance

API and, using the FileIn class, parses the data received

as a CSV file into a Stock object containing its name, ask

price, and bid price. An automated trading strategy will

go through the data one stock at a time and interpret it by

accumulating statistics and issuing BUY, SELL, or NIL orders.

C. Performance Data and Analysis

In this segment we will display and analyze the performance

results of our experiments using various numbers of threads

and stocks. All results were retrieved by running the program

on an AMD Phenom II X6 1055T 2.80GHz CPU with 8GB

of RAM on Windows 7 SP1 64-bit.

 



Fig. 7. Class Diagram of the BSP implementation.

TABLE I
1X4 EXPERIMENT (1 THREAD X 4 STOCKS)

Stock Average Execution Standard Deviation

GOOG 50 7.45
IBM 51 10.49
BBRY 50.8 12.24
DEL 48 7.89

Avg. Total:199.8ms Avg. Exec:49.5ms Std.Dev.:7.69

Looking at the results for our experiments we start with

experiments using four symbols. Each experiment was run

at least 11 times to get 10 artifact free trials using the exact

same set of four stocks with the only variation being the

number of threads that the test employed. Starting with the

1-thread experiment using four symbols, the time for each

test and the average time to process each stock is given in

Table I. The average time for a stock to be processed was

49.5ms with a standard deviation of 7.69, and the average

time to process all four stocks being 199.8ms. Due to the

preponderance of the other data, the outlying data spikes in

this set have been smoothed over granting a clear view of the

content found within.

The experiment in Table II employed two threads and the

TABLE II
2X4 EXPERIMENT (2 THREADS X 4STOCKS)

Stock Average Execution Standard Deviation

GOOG 48.2 5.07
IBM 48.4 5.87
BBRY 49.3 9.97
DEL 47.1 5.47

Avg. Total:98.9ms Avg. Exec:47.6ms Std.Dev.:5.06

same four stock symbols. Overall the average request time

went down to 47.6ms, and as expected the average total time

of to process all requests went down to 98.9ms. Comparing

the average total times of one and two threads reveals an

expected 2:1 ratio, because although the spawning of new

threads incurred additional overhead by separating the four

stocks onto two threads was able to offset this extra cost such

that it reaches that 2:1 ratio.

The 4-thread experiment using the same four symbols,

Table III, as the 1 and 2 thread experiments again had a

lower average request time, down to 45.6ms, and as expected

a drop in the total time, down to 48.8ms, it took for all the

requests to be executed. Comparing the average total times

for one and four threads results in an almost perfect 4:1 ratio

 



TABLE III
4X4 EXPERIMENT (4 THREADS X 4STOCKS)

Stock Average Execution Standard Deviation

GOOG 45.8 4.69
IBM 45.3 4.14
BBRY 46.3 3.53
DEL 46.2 4.18

Avg. Total:48.8ms Avg. Exec:45.6ms Std.Dev.:3.06

TABLE IV
4 STOCKS EXPERIMENT

Threads Avg. Total(ms) Fastest(ms) Slowest(ms) Std.Dev.

1 199.8 160 250 31.4
2 98.9 86 123 11.37
4 48.8 45 56 3.43

with the lower average execution time and added efficiency of

four processes offseting the added cost of additional threads.

Likewise comparing the results of the two thread experiment

to this one shows a 2:1 ratio.

Table IV gives a summary of all three experiments. This

table reveals a dramatic decrease in execution times in all

columns as the number of threads is increased. As previously

noted, in these experiments, the increase in threads directly

correlated to an exact ratio increase with 1 to 2 threads

resulting in a 2:1 improvement in total execution time, and

moving from 2 threads to 4 results again in a 2:1 improvement

in total execution time. In fact when comparing the slowest

4-thread execution against the fastest 1-thread execution the

resulting ratio works out to 2.85:1. The table also reveals

that as the number of threads increase the deviation decreases.

The experiment was repeated with a variety of thread

numbers with 12 symbols. Each experiment was run at least

11 times in order to get 10 artifact free trials using the exact

same set of 12 stocks with the only difference being the

number of processes that the test was able to use. First in

Table V is an 1-thread experiment with 12 symbols. The

average time for a stock to be processed was 45.3ms with a

standard deviation of 2.41, and an average time to process

all 12 stocks being 548.7ms, less than the 3:1 ratio that was

expected as compared to the four symbol experiment though

this can be explained by the lower average request time.

The 3-thread, 12-symbol experiment, Table VI, shows a

higher average request time, up from 45.3ms in the 1-thread

experiment to 47.1ms here. With an average total execution

time of 200ms, the average total time of execution is lower

than in the 1-thread experiment, as was expected; however,

the difference between one and three threads does not mirror

a 3:1 ratio, but this can be explained by an overall higher

average request time and the additional overhead required to

spawn the new threads.

TABLE V
1X12 EXPERIMENT (1 THREAD X 12 STOCKS)

Stock Average Execution Standard Deviation

GOOG 45 5.96
IBM 45.4 3.86
BBRY 45.2 3.19
DEL 46 3.02
APPL 44.1 3.9
CBL 43.9 4.7
CERE 46.1 7.29
CERN 48.4 11.26
CBOE 48.6 12.32
IGR 44.9 3.35
CBG 47 7.15
CAW 44.1 3.03

Avg. Total:548.7ms Avg. Exec:45.3ms Std.Dev.:2.41

TABLE VI
3X12 EXPERIMENT (3 THREADS X 12 STOCKS)

Stock Average Execution Standard Deviation

GOOG 47.2 2.48
IBM 46.9 7.26
BBRY 46.3 6.07
DEL 46.2 6.01
APPL 47.4 6.04
CBL 49 9.37
CERE 46.8 6.43
CERN 47.9 5.93
CBOE 53.6 9.95
IGR 45.9 7.84
CBG 46.1 3.21
CAW 49.5 5.87

Avg. Total:200ms Avg. Exec:47.1ms Std.Dev.:3.98

The 6-thread, 12-symbol experiment, Table VII, reveals a

lower average request time when compared to the 1-thread

experiment, down to 44.7ms, and, as expected, a lower

average total execution time. Comparing the 99.1ms average

total time of execution to the 1-thread reveals a ratio of close

to 5.5:1 and not the expected 6:1. Despite the lower average

request time, it was unable to offset the additional overhead

necessary to spawn the extra threads used in this experiment.

Table VIII offers a summary of all three discussed

experiments as well as experiments with two threads and four

threads. Similar to the other experiments despite displaying

dramatic reductions in average total execution time neither

the two thread or four thread experiment reach ratios of 2:1

or 4:1 respectively. Worth noting is that the fastest 3, 4, and

6 thread experiments meet or exceed their expected ratios

when compared against the hypothetical, average 1-thread

process, with the fastest 6-thread experiment achieving a

6.38:1 ratio when compared to the average 1-thread process.

Also of interest is that when comparing the average 6-thread

execution against the average 3-thread execution, the result is

an almost perfect 2:1 ratio showing that at these numbers it

 



TABLE VII
6X12 EXPERIMENT (6 THREADS X 12 STOCKS)

Stock Average Execution Standard Deviation

GOOG 46.4 7.03
IBM 41.6 4.25
BBRY 43.2 5.35
DEL 42.7 2.41
APPL 47.3 8.6
CBL 43.2 2.57
CERE 49.4 7.82
CERN 45.4 4.99
CBOE 45.9 9.11
IGR 44.9 3.25
CBG 49.5 12.01
CAW 44.9 2.47

Avg. Total:99.1ms Avg. Exec:44.7ms Std.Dev.:3.71

TABLE VIII
12 STOCKS EXPERIMENT

Threads Average(ms) Fastest(ms) Slowest(ms) Std.Dev.

1 548.7 505 610 31.57
2 287.5 263 370 31.13
3 200 185 245 19.01
4 146.2 135 155 6.41
6 99.1 86 119 10.57

is possible for the benefit of additional threads is capable of

offsetting the additional overhead. Similar to the four symbol

experiments there is a clear decrease in standard deviation as

the number of threads increase with a slight uptick on the

6-thread experiment which is worth mentioning.

The experiment was also conducted with various numbers

of threads with 24 symbols. Each experiment was run at least

11 times in order to get 10 artifact free trials using the exact

same set of 24 stocks was used in all iterations of the 24

symbol experiment. First in Table IX is a 1-thread experiment

with 24 symbols. The average request time was 47ms and

the average total execution time was 1139.9ms. As compared

with the 1-thread, 4-symbol experiment discussed above this

experiment’s average total time falls short of the expected 6:1

ratio, although this can be explained by the lower average

request time.

The 3-thread, 24-symbol experiment, found in Table X,

shows a lower average stock request time, 45.4ms, but the

average total time went down to 386.3ms. The difference

between the 1 and 3 thread experiments narrowly misses the

3:1 ratio. This phenomena can be explained by the overhead

to spawn additional threads.

Table XI shows 6-thread by 24-symbol experiment with

a lower average stock request time, 44.3ms, and a lower

average total time, down to 262.2ms. Again the ratio of

the results of the 1-thread experiment to the results of this

experiment fall short of the expected 6:1 ratio.

TABLE IX
1X24 EXPERIMENT (1 THREADS X 24 STOCKS)

Stock Average Execution Standard Deviation

GOOG 49.5 8.41
IBM 47.2 5.39
BBRY 48.9 5.34
DEL 48.6 4.79
APPL 45.7 3.74
CBL 46 3.4
CERE 47.5 5.46
CERN 46.3 3.47
CBOE 48.5 8.28
IGR 46.8 5.53
CBG 49.9 7.65
CAW 46.1 3.38
CDI 46.2 3.26
CDKVV 45.9 3.75
CDW 45.8 3.58
CECE 45.8 4.05
FUN 45.7 3.02
CDR 47.9 8.31
GTU 49.2 6.48
CGI 47.1 4.33
CPXX 54.4 13.34
CLS 46.8 4.47
CELG 46.3 4.64
CELGZ 47.8 5.9

Avg. Total:1139.9ms Avg. Exec:47ms Std.Dev.:3.86

TABLE X
3X24 EXPERIMENT (3 THREADS X 24 STOCKS)

Stock Average Execution Standard Deviation

GOOG 45 4.71
IBM 44.1 3.98
BBRY 46 6.15
DEL 46.6 4.09
APPL 48 10.06
CBL 45.1 4.72
CERE 48 10.59
CERN 46 3.94
CBOE 46 3.94
IGR 49 7.38
CBG 47.5 3.54
CAW 47 4.22
CDI 46 3.94
CDKVV 47 6.32
CDW 46 3.16
CECE 45.8 4.44
FUN 45.5 3.69
CDR 43.5 3.37
GTU 46 5.16
CGI 46.6 5.38
CPXX 44.4 3.06
CLS 44.7 4.81
CELG 46.5 4.12
CELGZ 46.5 3.37

Avg. Total:386.3ms Avg. Exec:45.4ms Std.Dev.:1.9

 



TABLE XI
6X24 EXPERIMENT (6 THREADS X 24 STOCKS)

Stock Average Execution Standard Deviation

GOOG 44.7 2.95
IBM 47.2 3.08
BBRY 45 3.33
DEL 45 3.33
APPL 43.5 3.37
CBL 43.9 4.12
CERE 44.7 4.69
CERN 44.3 4.14
CBOE 43.5 2.42
IGR 44.4 2.84
CBG 45 4.71
CAW 44.2 4.52
CDI 45.5 2.84
CDKVV 44.9 4.72
CDW 47.5 8.25
CECE 45 3.33
FUN 48.7 12.26
CDR 44.4 5.5
GTU 46 6.99
CGI 43.7 3.97
CPXX 44.2 3.77
CLS 45 3.33
CELG 44.4 4.97
CELGZ 44 3.94

Avg. Total:197.6ms Avg. Exec:44.3ms Std.Dev.:1.06

The 8-thread experiment with 24 symbols displays an

average stock request time of 44.6ms in Table XII, and, as

expected, a lower average total time, down to 149.5ms. As

with the 6-thread experiment the average total time does

not match up to the expected 8:1 ratio as compared to the

1-thread experiment but rather ends up at 7.6:1. This can

be explained by an additional overhead cost required in the

spawning of new threads which offsets the lower average

stock request time, 44.6ms here versus 47ms in the 1-thread

experiment.

Table XIII gives a summary of all three discussed

experiments as well as experiments with two threads and with

four threads. Unlike the other experiments the 2-thread and

4-thread experiments were able to achieve an almost exact

2:1 and 4:1 ratio respectively, each able to offset the cost of

spawning new threads with increased processing efficiency.

This table shows that there are significant benefits to be had

from implementing multi-threading in a system like this even

if it does not reach the expectations that we had. It is of

note that when comparing the fastest 2, 3, 4, 6, and 8 thread

executions against the hypothetical 1-thread execution the

result of each one meets or exceeds their expected ratio. As

with the other two experiment groups the standard deviation

decreases dramatically as the number of threads is increased.

All the data we collected from the experiments was taken

and charted in the graph found in Fig. 8.

TABLE XII
8X24 EXPERIMENT (8 THREADS X 24 STOCKS)

Stock Average Execution Standard Deviation

GOOG 47.1 9.5
IBM 45.6 4.48
BBRY 44.6 4.5
DEL 48.5 7.28
APPL 44.6 4.27
CBL 45.7 6.31
CERE 43 2.91
CERN 43.5 4.86
CBOE 43.9 3.81
IGR 45.6 4.4
CBG 43 3.68
CAW 43.8 4.34
CDI 48.9 7.02
CDKVV 43.5 4.99
CDW 44.8 5.41
CECE 47.8 8.59
FUN 48.4 8.49
CDR 45 4.11
GTU 44.8 6.16
CGI 45.8 5.18
CPXX 42.8 4.47
CLS 47.6 8
CELG 44.8 2.74
CELGZ 43.8 2.86

Avg. Total:149.5ms Avg. Exec:44.6ms Std.Dev.:2.17

TABLE XIII
24 STOCKS EXPERIMENT

Threads Average Execution Min(ms) Max(ms) Standard Deviation

1 1139.9 980 1285 91.52
2 575 505 626 42.7
3 386.3 360 430 22.09
4 285.1 275 315 13.56
6 197.6 185 220 9.95
8 149.5 140 172 10.06

The graph displays the amount of time required to process

stocks using various numbers of threads by the number

of stocks that they processed. Measured on the Y-axis

is the length of time in milliseconds necessary for the

processing. The X-axis shows the total number of stocks.

Each line shows number of executing threads. Additionally,

the standard deviation was calculated by measuring 10 sets

of results generated by the program for each experiment.

Shown on the graph are the experiments for 1, 2, 3, 6,

and 8 threads. These experiments were chosen because they

showed a noticeable difference from one to the next and so

their values were easy to read. Experiments were however,

conducted for 4, 5, and 7 threads.

Fig. 8 displays a linear increase in processing time for

a number of stocks and threads, although analysis of the

data suggests that this may not be the case especially as

the number of stocks is increased with total execution time

 



Fig. 8. Time vs threads

differences falling short of expected goals.

In terms of processing scalability, we observe that by

increasing the number of threads almost always improve

performance Fig. 8, performance improvement is non-

linear for different number threads and stocks. But this

improvement is different for different stocks and threads. Our

goal of providing users with a cost-benefit prediction of this

algorithmic trading system requires more experimentation

and analysis.

Nevertheless, the experiments provided demonstrate that

overhead costs for generating new threads can be non-

negligible despite the ostensibly insignificance of their expense

using this parallel processing scheme, but that impressive

increases in speed can be obtained with a small number of

cores and threads.

III. RELATED WORKS

In [17] the author discusses a central question in computing

related to computer programming and automation of this

process, as well as about end user programming. ”Given

the difficulty of specifying and implementing large software

systems, these solutions will (at least initially) focus on

the automatic generation of relatively small but still useful

solutions to everyday problems”, what was actually done in

our several student research projects. H. Liberman at el. in

[13] explains, that ”the goal of human-computer interaction

will evolve from just making systems easy to use (even

though that goal has not yet been completely achieved) to

making systems that are easy to develop”, but until now the

development or modification of new applications requires

considerable knowledge and programming expertise and

skills, which is still rare for most people. In our paper an

example was given for how a simple industrial application

can be easily modified by the end-users without any deep

experience in programming and software development and

the generated application can be adopted to the specific

hardware.

F. Mischkalla et el. in [14] has shown, that UML is

used for the software design and modelling, but ”there is

still a big gap from UML modelling to the code synthesis

environment”. They demonstrates SystemC code generation

from SysML UML in two case studies. In our case study

we demonstrated how to use Java code generation from the

widely used UML business models. On the other hand, C.

Scaffidi et el. confirmed in [18], that ”as users continue to grow

in number and diversity, end-user programming is playing an

increasingly central role in shaping software to meet the broad,

varied, rapidly changing needs of the world”. Many modern

companies are concentrated on the development of software

development tools ”enabling end users to create programs”. In

[24] was confirmed, that ”code generation is used to produce

executable code from abstraction models” and it’s ”closely

fitted to the problem domain, and that better hide technical

 



details” of the programming solutions. In [3], [20] authors

discuss different topics about code generation from UML

models as well, including ”simulation, model-checking or test

generation tools”. This is a growing area of interest, because

it can reduce cost and increase accuracy, maintainability of

the software applications. The ”rapid development of high

quality code is achievable by model-driven code generation”

as well as a reduction in errors as compared to the manual

code development [2].

IV. CONCLUSION

In this student research paper we discussed results of code

generation from business UML models and testing results of

parallel code execution for an Algorithmic Trading System

industrial software prototype. Our testing results confirm that

code execution by using BSP parallel model can improve

performance of the generated application on multi-core

systems. This is important nowadays because every year

we have more cores in personal computers, but CPU speed

has remained almost the same. That means we need to find

better ways to adopt our industrial software applications to

changing hardware. Redesign and reprogramming of computer

applications is time consuming professional work, but in

our case study we proved that code regeneration from UML

business models can be done relatively easily even without

any programming experience by the end-users. Additionally,

code parallelization can be achieved and optimized for the

current hardware platform by using code generation from

UML models with using already developed libraries. That

means, if the business user changes hardware, the application

execution can be optimized automatically to the new hardware

platform without any additional time consuming programming

work.

In our performance experiments we sought to demonstrate

how the system operates when given varying data and hard-

ware specifications. The results obtained have shown that the

system we designed scales to process the variable number of

stocks and/or the variable number of CPU’s cores with which

to operate and that performance benefits are obtained. We

displayed a selection of results for a variety of experiments

that were run and discussed how they related to one another

in terms of performance and posited reasons behind each

outcome.

ACKNOWLEDGEMENT

Our thank to the sponsors of the Okanagan College Gray-

Con Group and Amazon, and to the University Paris-Est

Créteil for their support of the student capstone projects.

REFERENCES

[1] Computer Science Department at the University of Illinois at Urbana-
Champaign. The llvm compiler infrastructure: http://llvm.org,
2015.

[2] Jeannette Bennett, Kendra Cooper, and Lirong Dai. Aspect-oriented
model-driven skeleton code generation: A graph-based transformation
approach. Sci. Comput. Program., 75(8):689–725, August 2010.

[3] Franck Chauvel and Jean-Marc Jézéquel. Code generation from uml
models with semantic variation points. In Proceedings of the 8th
International Conference on Model Driven Engineering Languages and
Systems, MoDELS’05, pages 54–68, Berlin, Heidelberg, 2005. Springer-
Verlag.

[4] Eclipse Foundation. Eclipse modeling framework (emf):
http://www.eclipse.org/modeling/emf/, 2015.

[5] Gaétan Hains, Chong Li, Youry Khmelevsky, Brandon Potter, Jesse
Gaston, Andrew Jankovic, Sam Boateng, and William Lee. Generating
a real-time algorithmic trading system prototype from customized uml
models (a case study). 2012.

[6] Gaetan Hains, Chong Li, Nicholas Wilkinson, Jarrod Redly, and Youry
Khmelevsky. Performance analysis of the parallel code execution for an
algorithmic trading system, generated from uml models by end users.
In Parallel Computing Technologies (PARCOMPTECH), 2015 National
Conference on, pages 1–10. IEEE, 2015.

[7] Youry Khmelevsky. Sw development projects in academia. In Proceed-
ings of the 14th Western Canadian Conference on Computing Education,
pages 60–64. ACM, 2009.

[8] Youry Khmelevsky. Research and teaching strategies integration at post-
secondary programs. In Proceedings of the 16th Western Canadian
Conference on Computing Education, pages 57–60. ACM, 2011.

[9] Youry Khmelevsky, Gaétan Hains, and Chong Li. Automatic code gen-
eration within student’s software engineering projects. In Proceedings of
the Seventeenth Western Canadian Conference on Computing Education,
pages 29–33. ACM, 2012.

[10] Chong Li. Un mode‘le de transition logico-mate rielle pour la simpli-
fication de la programmation paralle‘le. PhD thesis, E cole Doctorale
Math & STIC, Universite P aris-Est., July 2013.

[11] Chong Li and Gaétan Hains. A simple bridging model for high-
performance computing. In High Performance Computing and Simula-
tion (HPCS), 2011 International Conference on, pages 249–256. IEEE,
2011.

[12] Chong Li and Gaétan Hains. Sgl: towards a bridging model for
heterogeneous hierarchical platforms. International Journal of High
Performance Computing and Networking, 7(2):139–151, 2012.

[13] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. End-
user development: An emerging paradigm. Springer, 2006.

[14] Fabian Mischkalla, Da He, and Wolfgang Mueller. Closing the gap
between uml-based modeling, simulation and synthesis of combined
hw/sw systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010, pages 1201–1206. IEEE, 2010.

[15] B Potter, J Gaston, A Jankovic, S Boateng, and W Lee. Parallel code
generation plug-in xml to java plug-in project documentation: Source
code and design diagrams. team epik. cosc 319” sw engineering project”
final project report. Computer Science Department, University of
British Columbia Okanagan, Kelowna, BC, Canada.[Online]. Available:
http://sourceforge. net/projects/pestplugin/files, 2012.

[16] B. Potter, J. Gaston, A. Jankovic, S. Boateng, and W. Lee. Parallel
code generation plug-in xml to java plug-in project documentation. team
epik. cosc 319 “sw engineering project” final project report, computer
science department, university of british columbia okanagan, kelowna,
bc, canada. April 2012.

[17] Martin C Rinard. Example-driven program synthesis for end-user
programming: technical perspective. Communications of the ACM,
55(8):96–96, 2012.

[18] Christopher Scaffidi, Joel Brandt, Margaret Burnett, Andrew Dove, and
Brad Myers. Sig: end-user programming. In CHI’12 Extended Abstracts
on Human Factors in Computing Systems, pages 1193–1996. ACM,
2012.

[19] Utrecht University. The bulk synchronous parallel model
http://www.multicorebsp.com/main/model/, 2013.

[20] Muhammad Usman, Aamer Nadeem, and Tai-hoon Kim. Ujector: A tool
for executable code generation from uml models. In Proceedings of the
2008 Advanced Software Engineering and Its Applications, ASEA ’08,
pages 165–170, Washington, DC, USA, 2008. IEEE Computer Society.

[21] Wikipedia. Mean reversion (finance):
http://tinyurl.com/p9rlhfc, 2015.

[22] Wikipedia. Pairs trade: http://tinyurl.com/dkgrfa, 2015.
[23] Albert-Jan N. Yzelman. Multicorebsp for java:

http://www.multicorebsp.com/download/java/, 2011.
[24] Steffen Zschaler and Awais Rashid. Towards modular code generators

using symmetric language-aware aspects. In Proceedings of the 1st
International Workshop on Free Composition, page 6. ACM, 2011.

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




