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Abstract—The WTFast’s Gamers Private Network (GPN R©) is
a client/server solution that makes online games faster. GPN R©

connects online video-game players with a common game ser-
vice across a wide-area network. Online games are interactive
competitions by individual players who compete in a virtual
environment. Response time, latency and its predictability are
keys to GPN R© success and runs against the vast complexity of
internet-wide systems.

We have built an experimental network of virtualized GPN R©

components so as to carefully measure the statistics of latency
for distributed Minecraft games and to do so in a controlled
laboratory environment. This has led to a better understanding of
the coupling between parameters such as: the number of players,
the subset of players that are idle or active, the volume of packets
exchanged, the size of packets, latency to and from the game
servers, and time-series for most of those parameters.

In this paper we present a mathematical model of those
system game network parameters and show how it leads to: (1)
realistic simulation of each of those network or game parameters,
without relying on the experimental setup; (2) very large-scale
numerical simulation of the game setup so as to explore various
internet-wide performance scenarios that: (a) are impossible to
isolate from internet “noise” in their real environment and;
(b) would require vast supercomputing resources if they were
to be simulated exhaustively. We motivate all elements of our
mathematical model and estimate the savings in computational
costs they will bring for very large-scale simulation of the GPN R©.
Such simulations will improve quality of service for GPN R©

systems and their reliability.

I. INTRODUCTION

The “GPNPerf” (2014-2015) project has built a laboratory
version of a Games Private Network R© that is used for ex-
tensive and controlled-environment experiments to investigate
the conditions of low and stable latency in online games.
Experiments conducted since 2014 with the Minecraft network
game have produced an ever-increasing quantity, quality and
variety of measurements.

Our key objective is to understand the evolution of network
traffic volume, latency of network + game server responses and
game server CPU loads. Those target variables are measured
against a mixture of:

• Time (as time series in minutes or seconds)
• Number of server VMs
• Number of physical cores/CPUs to run the servers
• Number of human game players
• Number of artificial (bot) game players

• Game-idleness or action of the players

Initial analysis published in 2015 led to the explanation
of most measurement’s average and standard-deviation val-
ues. Precisely because our experiments are controlled, the
measured time-series are constant or almost flat lines with a
degree of noise that accounts for standard deviations of a few
percent to 10% or 20%. The possible variation in game envi-
ronment and server configuration are not mixed within those
measurements but rather explored with multiple experiments,
each one having a fixed environment and server configuration.
This allows mapping the multi-dimensional space of game
evolutions in a rational manner.

We are now building a better understanding of this space
with a mathematical model of all the experiment variables and
will continue to enrich it so as to cover the full variety of game
situations for realistic network optimization. One experimental
dimension that cannot be covered by our laboratory network
is internet-scale measurements. To compensate for that lack
of scale, the “GPNPerf2” project (2016-2019) will design,
implement and use a mathematical simulation of very-large-
scale game networks. To this end we introduce in this paper
the model elements that will allow us to simulate hundreds
of thousands of players, served by hundreds of thousands of
game servers in realistic game simulations. Parallel computing,
numerical modelling and symbolic computation will all be
applied towards this end.

Once the model is completely implemented it will lead to
the exploration of specific scenarios and in particular those
that lead to server crashes or network overload (unlikely with
games but important for general applications). The model and
its simulations will thus become an experimental bench for
characterizing some “critical” situations and allow internet
applications to have a database of “situation signatures” to
enable alert capabilities and better reaction times. This project
objective is thus to have game networks serve the general
benefit of internet reliability.

II. MODEL ELEMENTS

In this section we explain the mathematical model elements.
The time series are modelled as Markov chains, as in the

work of Mallick-Hains-Deme [1] for predictive monitoring.
Each time-series vertical axis is divided into sequence

of intervals from its lowest possible value to its largest
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possible value. For example if the value is a percent-
age we could divide its vertical axis into 10 buckets
[0, 10%), [10%, 20%), . . . , [90, 100%]. The choice of 10 in-
tervals arbitrary but creates a balance between precision and
computational cost: n intervals yield an n× n Markov matrix
as we now explain.

We consider the observed time-series as a trace of a stochas-
tic change of vertical level i.e. as the evolution of a Markov
chain. Following the classic textbook [2] section 10.6, we
estimate the transition probabilities of this Markov chain by
the observed frequencies of state changes. In our example the
Markov chain’s transition matrix M is 10 × 10 and M(i, j),
and the transition probability from state i to state j is estimated
by the fraction of observed transitions M(i, ) that have j as
destination. For example if interval 1 is [0, 10%) and interval 3
is [20, 30%) then M(1, 3) is the fraction of immediate changes
from a state in [0, 10%) that lead to a state in [20, 30%).

Once the Markov matrix of a time-series is estimated in this
way, it can be used to produce random but realistically similar
time-series by tracing one-dimensional random walks with the
matrix:

1) compute the steady-state probabilities of being in each
state, or just estimate that distribution of states by their
frequency in the time-series.

2) draw an initial state randomly with probability distribu-
tion given by 1. Call this state X(t) = i.

3) draw the next state X(t+1) with probability distribution
given by M(i, 1),M(i, 2), . . . ,M(i, n).

Many other things can be computed from the matrix but for
the purpose of our initial model this will be sufficient. From
an observed time-series compute its estimated Markov chain
matrix M and from M an infinite variety of similar time-series
can be cheaply and simply computed.

The scaling factors are modelled (naively for now) by
polynomial interpolations and extrapolations. For example
we found that some value is approximately quadratic in the
number of bots b so we fitted a degree-two curve on this data
with dependent variable b.

A. Future model components:

Time-series combined with scaling curves allow us to ex-
trapolate the time series. In other words a linear- or quadratic
fit will be found to a parametric series of time-series e.g. a
similar time-series for b = 1, 2, 3, . . . may be extrapolated and
simulated to a larger value of b. As always, the quality of this
simulation will depend on the quantity of our statistical data.

Also, game-state variable vectors have yet to be analyzed
and modelled. Initial analysis of data in this direction is
described below in section III-E.

Finally Khmelevsky’s model with signal + noise function
networks will be applied in future versions of the model. This
could lead to less naı̈ve “glass-box” models of the network
and perhaps interact intelligently with game-state simulation.

Fig. III.1. Square pattern experiment.

III. MEASUREMENT DATA

We begin by organizing and then analyzing the measure-
ment data. For each type of dataset we propose a mathematical
model element to be used in the general model construction.

A. Packet count time-series for human and bot players

Here we compare square pattern group packet count for
human and bot player. The square pattern is a specific game
situation for which 16 minutes of network packet counts have
been measured for both a bot (artificial player) and (human)
player (Fig. III.1). The unit is packets/min.

The experiment (Table I) shows that similar communication
volumes of 700-800 packets/min have been generated with
a slight but consistent difference of +14% more packets for
the bot. We analyzed the time series with a Markov chain to
prepared for large scale simulation. Data for the bot sample is
at Table I.

The 11 states of the corresponding Markov chain have been
built by intervals 5-wide as follows at Table II.

Their relative and cumulative frequencies are used to gen-
erate a random initial state as follows (Table III). We generate
a pseudo-random number between 0 and 1. If for example it
falls between 81 and 87% then state 8 is chosen. The bot time-
series Markov chain M bot has been computed as explained
in Section II.

A probabilistic simulation of the bot’s time-series is ob-
tained by:

1) Drawing a random initial state (explained above).
This takes a number of instructions proportional to
O(logS bot) where S bot is the number of states. The
reason is that the random number generation is in constant
time and then searching through the sorted list of cumu-
lative probabilities can be done by dichotomic search in
logarithmic time.

2) From that initial state, for example state 4, draw the next
state according to the probabilities in matrix line M [4, ].
In our example this would mean 13 chance of remaining
in state 4 and 23 chance of moving to state 5. This is also
done in O(logS bot) operations by dichotomic search
through the cumulative probabilities in that matrix line.

 



TABLE I
THE EXPERIMENT RESULTS

Time (min) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bot 827 833 809 811 824 822 849 813 817 840 810 822 818 834 836 799

7 8 3 4 6 6 11 4 5 10 4 6 5 8 9 1

TABLE II
11 STATES OF THE CORRESPONDING MARKOV CHAIN BY INTERVALS

5-WIDE

Bot state Interval Interval Freq. Cumul.
1 795 799 6% 0.06
2 800 804 0% 0.06
3 805 809 6% 0.13
4 810 814 19% 0.31
5 815 819 13% 0.44
6 820 824 19% 0.63
7 825 829 6% 0.69
8 830 834 13% 0.81
9 835 839 6% 0.88
10 840 844 6% 0.94
11 845 849 6% 1

TABLE III
THE BOT TIME-SERIES MARKOV CHAIN M BOT

1 2 3 4 5 6 7 8 9 10 11
1 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9%
2 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9%
3 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 33% 67% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 50% 0% 50% 0%
6 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 50% 0% 0% 0% 0% 0% 50% 0% 0%
9 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
11 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Even if the number of states was about 1000, that would
mean a simulation of T time steps could be completed in
time O(T log 1000) O(10T ) or a few dozen Flops per time
step. This means that for example one hour of this time series,
simulated in steps of 1 minute would take time estimated to 60
x 10 ∼ 60 Flops or less than 100ns on modern architectures.
At this rate, millions of such time-series can be simulated in
a few seconds on a single processor or even a single core.

The time series for the human player required more states.
It is listed here but the computational cost of using it for
simulation is well below the estimate above for 1000 states
(Table IV).

The player’s time-series Markov chain M player is 26 x 26
(Table V):

B. Multiple game servers on multiple cores, CPU load and
balancing

We ran 1 or 2 or 3 Minecraft game servers per core
and executed 10-50 bots against each game server and then
collected information about each core CPU utilization. This
was a stress test for each core. We started with 1 game server

TABLE IV
THE TIME SERIES FOR THE HUMAN PLAYER

Player State Interval Interval Freq. Cumul.
1 690 694 19% 0,19
2 695 699 6% 0,25
3 700 704 0% 0,25
4 705 709 6% 0,31
5 710 714 19% 0,50
6 715 719 13% 0,63
7 720 724 6% 0,69
8 725 729 6% 0,75
9 730 734 0% 0,75
10 735 739 0% 0,75
11 740 744 13% 0,88
12 745 749 0% 0,88
13 750 754 0% 0,88
14 755 759 0% 0,88
15 760 764 6% 0,94
16 765 769 0% 0,94
17 770 774 0% 0,94
18 775 779 0% 0,94
19 780 784 0% 0,94
20 785 789 0% 0,94
21 790 794 0% 0,94
22 795 799 0% 0,94
23 800 804 0% 0,94
24 805 809 0% 0,94
25 810 814 0% 0,94
26 815 819 6% 1,00

and finished 2 game servers per core out of 8 cores - totally
16 game servers. 3 game servers per core don’t work — a
core is used by 100% and games crashes.

For any given server-games configuration, experimental data
yields a mostly flat time-series of CPU load. This can be
modelled by a Markov chain with the method described above
and very low computational cost. But game servers are a more
critical resource in the games network than network bandwidth
or simulation costs. As a result we must model and later
simulate CPU load against the number of games and server
computational cores. A key factor is load-balancing between
the cores: only two games can be run on each core.

The first experiment ran 5 games on 8 cores: 3 games on
core 7, two games on core 6 and cores 0 to 5 were left “idle”
(with only OS activity but no game functions). If we ignore
the time dimension its results measurements are the following
(Table VI).

As shown by the low standard-deviation, the CPU load
time-series are quite flat. Their simulation as time series will
therefore be extremely light in computation. Their average
value is the most important statistic. As mentioned above that
part of the test that loads core 7 with 3 games led to a crash
with 100% CPU load. The test with two games on core 7

 



TABLE V
THE PLAYER’S TIME-SERIES MARKOV CHAIN M PLAYER IS 26 X 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 0% 0% 0% 0% 67% 0% 0% 33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
3 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
4 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 33% 0% 0% 33% 0% 0% 0% 0% 0% 0% 33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 50% 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
9 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%

10 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
11 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 50%
12 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
13 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
14 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
15 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
17 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
18 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
19 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
20 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
21 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
22 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
23 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
24 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
25 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
26 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

TABLE VI
THE FIRST EXPERIMENT RAN 5 GAMES ON 8 CORES: 3 GAMES ON CORE 7, TWO GAMES ON CORE 6 AND CORES 0 TO 5 WERE LEFT “IDLE”.

Core 7 Core 6 Core5 Core4 Core3 Core2 Core1 Core0
Game1 Game2 Game3 Game1 Game2
Average Average Average Average Average

Average 34,0 33,4 32,6 42,2 44,5 1,0 1,2 5,0 7,8 4,8 8,7
StDev 0,6 0,6 0,4 1,0 0,9 0,3 0,3 0,4 0,5 0,7 0,7

loaded it with ∼ (42 + 44) = 86% of its capacity, while the
idle game instances only loaded those cores by a variable but
low value of 1-9%. Immediate conclusions could be that:

• Running one game per core is never an optimal use of
hardware resources

• Running three games per core is impossible or very risky
• Running two games per core puts the server hardware in

a state close to CPU overload but stable in time (very
low standard deviation).

A second experiment ran 10 games on 8 cores with mea-
surements as follows: two games on core 7, two games on
core 6, one game on core 5 and cores 0 to 4 in game-idleness
(Table VI).

Here the load on Core 7 and Core 6 is very similar to that
on Core 6 during the previous experiment: a total of 86%
CPU load for Core 7 or Core 6. The game-idle run on Cores
0 to 4 led to a similar behaviour as before: between 1 and 7%
load. But the run on Core 5 yielded a load of 44% despite
executing a single game. The following conclusions are now
formulated:

• Running one game per core is not an optimal use of
hardware resources

• Running three games per core is impossible or very risky
• Running two games per core puts the server hardware

at almost 90% CPU load, but stable in time (very low
standard deviation).

• An idle game-server instance load its CPU core by 1 to
7%, stable in time.

A third experiment was run with 6 games on 8 cores: Five
cores were left idle, two cores ran two games and one core
ran three games (Table VIII).

The 3-game run led to a crash by CPU overload and
the other runs confirmed our previous measurements. The
conclusion on this set of experiments is rather simple:

• An idle game-server running alone on a CPU core loads
it by less than 9%, stable in time.

• Two game servers running on the same CPU core load it
by a little less than 90%, stable in time.

• Running three games per core is impossible or very risky.

One straightforward conclusion is that our laboratory setup
can run experiments for 2 × p game servers when installed
on a p-core physical machine. As we saw earlier, millions
of traffic volume time-series can be simulated easily, so a
complete simulation would represent a 1000-fold or more scale

 



TABLE VII
A SECOND EXPERIMENT RAN 10 GAMES ON 8 CORES WITH MEASUREMENTS AS FOLLOWS: TWO GAMES ON CORE 7, TWO GAMES ON CORE 6, ONE GAME

ON CORE 5 AND CORES 0 TO 4 IN GAME-IDLENESS.

Core7 Core 6 Core5 Core4 Core3 Core2 Core1 Core0
Game1 Game2 Game1 Game2 Game1
Average Average Average Average

Average 42,3 42,5 43,7 45,2 44,5 1,2 4,6 5,0 10,7 7,4
StDev 0,9 1,0 0,9 1,0 1,5 0,4 1,0 1,1 0,9 1,1

TABLE VIII
LOADS ON CORE 7 AND CORE 6.

Core7 Core 6 Core5 Core4 Core3 Core2 Core1 Core0
Game1 Game2 Game3 Game1 Game1 Idle Idle Idle Idle Idle
Average Average Average Average

Average 33,0 33,5 33,6 43,9 45,1 1,1 8,1 4,3 8,6 9,0
StDev 0,3 0,6 0,7 1,5 1,0 0,3 0,6 0,5 0,9 0,9

TABLE IX
TWO SERVERS-CORES LOADS

isol2 %CPU
Average Sdev

s1 20,4 0,42
s2 20,0 0,57

StDev 0,3

improvement over explicit laboratory experiments with our
current hardware. It remains to measure how running one or
two game-server per core affects game latency. Once that effect
is understood, a mathematical model will be designed to simu-
late it over hypothetical- and very-large server configurations.

C. Multiple game servers on isolated cores and maximal CPU
load

In those experiments we measured two to 6 game servers
running on isolated CPU cores. Each one was running a game
instance and serving 50 bots (artificial players). The value of
50 bots was found to be a maximum: beyond this capacity the
game servers crashed. In each configuration the experiment
was repeated ten times. The standard deviations over the ten
runs are very low, on order of a few percent, which confirms
the average values computed over the set of runs. With two
servers-cores the loads are as follows (Table IX):

The right column means that on server 1 the value of 20,4%
load only varied by +/- 0,42% over the 10 runs. Similarly for
server 2 at 20% +/- 0,57%. This measures time variability of
loads and is very low. The last line means that the variation
between both servers’ loads (20,4 or 20,0%) is +/ − 0.3: it
measures load imbalance and is also very low. With three to
six servers-cores the results are as follows (Table X, Table XI,
Table XII, Table XIII).

In every case time-variations and load-imbalance are very
low and we can neglect those effects unless further experi-
ments indicate otherwise. There is no clear correlation between
the number of server-core pairs and their loads. This is intu-
itively natural since their computational loads are independent,
they are running different game instances and communicating

TABLE X
THREE CORES

isol3 %CPU
Average Sdev

s1 19,2 0,58
s2 19,6 0,73
s3 17,9 0,55

StDev 0,9

TABLE XI
FOUR CORES

isol4 %CPU
Average Sdev

s1 18,0 0,54
s2 18,8 0,98
s3 18,6 0,22
s4 18,4 0,26

StDev 0,3

TABLE XII
FIVE CORES

isol5 %CPU
Average Sdev

s1 19,5 0,76
s2 18,9 0,37
s3 20,6 0,24
s4 20,5 0,30
s5 19,8 1,50

StDev 0,7

TABLE XIII
SIX CORES

isol6 %CPU
Average Sdev

s1 18,8 0,25
s2 18,8 0,33
s3 19,6 0,43
s4 20,7 0,54
s5 19,8 0,37
s6 20,2 0,23

StDev 0,8

 



TABLE XIV
TRAFFIC VOLUME AND LATENCY AGAINST AN INCREASING NUMBER OF

BOTS

n Packets/s KB/s
1 70 5,8 measured
3 97 7,3 measured
5 251 18 measured

10 2101 160 measured

with different sets of 50 bots. The provisional conclusion of
this experiments is:

• Up to six game servers running independent game in-
stances, sharing the network but each serving 50 indepen-
dent bots (artificial players) are each loaded at approxi-
mately 20%CPU + / − 0, 4% stable over experimental
runs and independent of the number of server-core pairs.

• Beyond 50 bots per server the same configuration led to
a server crash.

It remains to explain how a ∼ 20% CPU load can become
an overload and server crash when running the experiment
with more than 50 bots per game. In other words: what was
the cause of this crash if the CPU load did not rise to 100%
before it happened?

A possible explanation for this phenomenon is given in the
next subsection.

D. Traffic volume for increasing number of bots. Maximal
server capacity

Here we measured traffic volume and latency against an
increasing number of bots.

In experiments conducted in 2014 and analyzed in 2015
we measured the (time-series of) network traffic in volume
and number of packets for a variety of player configurations.
From zero to two (human) players played with 1 to 10 bots
(artificial players). Ignoring the time-variations (that can be
modeled efficiently by Markov chains) we observed the rate
of growth of traffic with an increasing number of bots (n)
playing the game (Table XIV):

To extrapolate on this we applied a quadratic regression
and obtained the following curves:

Packets/s = 214− 159n+ 35n2

KB/s = 17− 13n+ 2.7n2

Extrapolation of the traffic volume leads to the following
values (Table XV):

So if 51 bots shared the network and shared also a game
server they would have generated 8.9 MB/s = 71 Mb/s
which is unlikely to have overloaded the switches. A possible
explanation for the server crash could be an out-of-memory
error in its queues or local data structures.

E. Network traffic vs game states and player types

Packet counts over time or over a series of tests. Here we
measure traffic volume in packet counts. The measurements

TABLE XV
EXTRAPOLATION OF THE TRAFFIC VOLUME

n Packets/s KB/s
1 70 5,8 measured
3 97 7,3 measured
5 251 18 measured

10 2101 160 measured
20 11034 837 extrapolated
30 26944 2057 extrapolated
40 49854 3817 extrapolated
50 79764 6117 extrapolated
51 83140 6377 extrapolated
60 116674 8957 extrapolated

TABLE XVI
EXPERIMENT THAT HAD A NON-NEGLIGIBLE TIME-VARIATION

Test (packets/min) Average
Bot 2342

Player 2276

Fig. III.2. Square Pattern Group Packet Count.

are either a series of 16 statistical tests OR a time-series
over 16 minutes (not to be confused). A novel and interesting
dimension is the new varieties of player-bot. As was often the
case, the controlled-environment experiments lead to rather
flat time series or flat series of tests. In this initial analysis
we ignore their time dimension, knowing that they can be
modelled and efficiently simulated by Markov chains.

This series of experiments is an initial step towards of
mathematical understanding and simulation of the game state.
It measured the traffic generated by different types of players
and player-situations. Values are in packets/min. In all cases
the bidirectional traffic is very heavily dependent on the game
state and the updates sent by the server.

The only experiment that had a non-negligible time-
variation is a pure comparison between bot and human player
(Table XVI).

The human produces almost as much volume as the bot but
he does so with time variation of 5 to 6% (Fig. III.2).

Future experiments will analyze packet types to investigate
this minor but unexplained difference between bot and player.
It will be ignored in the rest of this section because we

 



TABLE XVII
BOT-VS-PLAYER IN A QUALITATIVE DIMENSION

Test (packets/min) Average
Original Bot 647
Square Bot 2128

Square Player 2153

TABLE XVIII
A SECOND EXPERIMENT COMPARED MORE PLAYER-GAME VARIABLES

Test (packets/min) Average
Square Bot (NO ANIMALS) 847

Original Bot (NO ANIMALS) 245
Player IDLE/NO ANIMALS 709

Player 722

concentrate on a less well understood aspect of our model
elements: the multi-dimensional space of game states and
player types.

A first experiment compared bot-vs-player in a qualitative
dimension. The “original” bot is a passive software to emit
packets that we recovered from an open-software source
without adaptation to Minecraft. All other bots have been
developed by our team specifically for the Minecraft experi-
mental setup. “Square” refers to repeated behaviour and cyclic
game-world geometry (Table XVII).

The results of this first experiment show that:
1) Minecraft-specific bots and human players generate 3.5

times more traffic than the original bots when in “square”
behaviour

2) Square bots and square players are almost identical in
traffic volume.

A second experiment compared more player-game variables
(Table XVIII).

Here “NO ANIMALS” means that the game-state contains
no animals and otherwise it does. Only humans moved in this
experiment (neither bots nor animals did). Parameter “IDLE”
means “just connected without activity” i.e. only connection
for the voice communication. Initial observations can be made
here.

• The “original” bot, non-specific to Minecraft, generates
very little activity because it ignores the game world.

• The human player generates from 709 to 722 (+2%)
traffic from an idle state without animals to an active state
in the presence of animals. It has been observed that in a
normal game world (hills, trees and animals) the server
sends a lot of information about the environment.

• The square bot generates about 20% more traffic without
animals than the idle player without animals. This is
coherent with, but more significant, than the excess in
volume generated by the bot vs the player in their pure
comparison experiment above.

A last set of experiments with even more varied setups gave
the following measurements (Table XIX).

Despite the early and incomplete nature of those ex-
periments, some clear trends are emerging, thanks to the

TABLE XIX
A LAST SET OF EXPERIMENTS WITH EVEN MORE VARIED SETUPS

Test (packets/min) Average
Square Bot 2084

Square Player 2161
Square Bot (NO ANIMALS) 847

Original Bot (NO ANIMALS) 245
New Bot (IDLE/NOP) 229

Player IDLE/NO ANIMALS 709
Player Square Running (NO ANIMALS) 722

controlled-environment of our laboratory network. The follow-
ing observations can be made and many others are possibly
emerging from this cube of binary variables.

• The excess volume generated by a bot over a human
player is not systematic: in the first two lines we see
an active “square” bot generate 4% less traffic than
the “square” active human player. In all cases bot and
player generate similar traffic volumes for an equivalent
situation.

• The square bot (NO ANIMALS) generates more than 3
times the volume of a passive “original” bot. That had
already been measured in the second experiment above.

• Square behaviour takes a human player (without animals
in the environment) from 709 to 722 (+2%) packets/min.

• The idle new bot’s traffic is similar to that of the
“original” game-oblivious bot at 229 or 245 packets/min.

For the purpose of simulation, this data is still insufficient
but its use is clear: for a given game configuration we can
estimate from the above tables the traffic volume generated
by each type of player in its context. Then we can apply
the quadratic curve-fit to yield traffic vs n (n = number of
player type) as was done in earlier sub-sections for the bots.
More experiments are needed for the exact curve fits for each
type of player. Once that is done, we can extrapolate the
volume generated for each type of player, and add them to
obtain a total expected traffic volume. This can be done by
simple arithmetic in time proportional to the number of types
of players.

IV. LARGE-SCALE GPN SIMULATION

The last section has analyzed our experimental measure-
ments and given us many model elements that will be inte-
grated into a global game model. This model will allow the
very-large scale simulation of game performance.

The datasets and their analysis should be completed by
similar model elements for network latency. If latency can be
related to our, now predictable, parameters of traffic volume
and server loads, its simulation should follow.

For now we can already outline the general version of this
black-box model and its computational cost.

1) Millions of time series can be simulated on a single
computational core by their Markov chain model. That
holds for all of our parameter’s time-series because they
are mathematically similar: relatively flat with noise but
vertical level highly dependent on context.

 



2) Traffic volume can be estimated by a quadratic extrapola-
tion in a few floating-point operations from the number of
players, for a given type of player (confirmed for bots, to
be confirmed for other types of bots). This quadratic form
of curve is likely to be universal because we explain it
through a basic property of game communications: state-
changes from every player need to be communicated to
every other player, hence their quadratic count.

3) Server CPU load is predictable and even constant for a
given game state: zero, one or two servers per (simulated)
physical core lead to possibilities of sharing the network
with many game instances. The upper limit in number of
players per game appears to be in the few dozens (e.g.
50 bots).

4) Varied types of players and game situations lead to net-
work behaviors that are stable in time (“noise” variations
of a few %) and whose quadratic growth curve for
traffic is specific to the type of player-situation. Once the
parameters are known for all important cases, they can
lead to an estimate of the traffic in a very few arithmetic
operations per type of player-situation.

The resulting model will operate as follows once calibrated:
an automaton whose states are the known configurations of
number of players-situations x number of servers and cores. It
will generate a probabilistic Markov-chain sequence of traffic
volumes, CPU loads, network latencies, until it changes state
etc. This kind of simulation can be done over tens of thousands
of players with a single computational core if a few dozen
player-situations appear in each state. With a parallel program
and a multicore or multi-node computer it can be lifted to
dozens of millions of players simulated.

A second phase in the project will lead to a stochastic
exploration of the game-state evolutions (which we only
understand on their own for now: how many player-situations
of each type) and this will lead to another dimension of
Markov models. The result will a realistic very-large scale
simulation of the game with its game-specific evolutions. In
all cases the model can be scaled to the simulation of internet-
size situations because it highly compact.

Once the model is completely implemented it will lead to
the exploration of specific scenarios and in particular those
that lead to server crashes or network overload (unlikely with
games but important for general applications). The model and
its simulations will thus become an experimental bench for
characterizing some “critical” situations and allow internet
applications to have a database of “situation signatures” to
enable alert capabilities and better reaction times. This project
objective is thus to have game networks serve the general
benefit of internet reliability.

V. EXISTING WORKS

Predictable and sub-second response time has long been
a key concern for interactive computer systems [3]. For a
majority of video games this is an obvious requirement that
modern hardware has satisfied, despite a continuous rise in
graphics and interaction quality. A video game network is a

distributed set of “apparatus which are capable of exhibiting
an interactive single identity game”, as defined in a patent
dated 1986 [4]. The requirements for response time are even
more stringent in this context and in addition to inevitable
network latencies, “the on-line service’s computers themselves
introduce latencies, typically increasing as the number of
active users increases” [5]. The work described here is an
experimental analysis of the conditions for satisfying this key
requirement, namely low and predictable response time for a
game network faced with a scalable number of players.

The last decade had seen a growing interest in tackling this
problem. Some researchers like Iimura, Jardine and co-authors
have proposed peer-to-peer architectures for multiplayer online
video games [6], [7], this with the intention of reducing the
bandwidth and processing requirements on servers. This can in
theory provide better scaling but “opens the game to additional
cheating, since players are responsible for distributing events
and storing state”. Pellegrino et al. [8] have then proposed a
hybrid architecture called P2P with central arbiter. The band-
width requirements on the arbiter are lower than the server of a
centralized architecture. Like many non-functional properties
of online services (security, scalability, reliability etc.) the
choice between centralization and distribution is not one that
can be given a definitive answer. Our work concentrates on a
logically centralized architecture, its potential for predictability
and scalability of the server and router (“arbiter”) performance.
Other work [9] has studied the same performance problems
in the presence of mobile player nodes. Despite its clear
importance for the future, this line of study appears even less
mature than the P2P approach.

Zhou, Miller, and Bassilious [10] have made the obvious but
central observation that “Internet delay is important for FPS
games because it can determine who wins or loses a game.”
Many game mechanics are time sensitive, but it is the time the
information reaches the server that matters, not the time the
player actually pushes the button. Our experiments measure
packet size and inter-packet times or traffic volume as they
have in their statistical model. Those authors’ investigation
also took into account the effects of other Internet traffic. But
our study will exclude those effects precisely because we wish
to isolate the scalability and load-resistance of the server and
routing modules.

Claypool and Claypool [11] have observed that Internet
latency’s effect is strongest for games with a first-person
perspective and a changing model. The work we describe
here takes this into account by experimenting with the game
Minecraft, which is first-person and has changing game envi-
ronments.

More recent studies [12], [13] of first-person shooter games
have modeled time series behaviour of game traffic and tested
the model on up to eight different games. According to our
previous comment, such a comparative study would not have
allowed us to get very stable load measurements, hence our
choice of a single first-person game. Indeed the study of
Wu, Huang and Zhang [14] shows that “the server-generated
traffic has a tight relationship with specific game design”,

 



again from our point of view confirming the need for precise
measurements of a given architecture on a single game. Hariri
et al. go even further in this line of thought by designing a
model of the player’s activity to extract traffic patterns [15].
Such a representation is beyond the scope of this paper but
is certainly relevant and its combination with our conclusions
should be the object of future work.

“A study of different first-person games shows that the client
traffic is characterized by an almost constant packet and data
rate” [16]. The study found that “the average interpacket time
for client to server traffic to be 51ms for the game being
studied”. Our new bot can send the action packets at 50ms
intervals [17].

Our research mostly concentrates on the servers’ perfor-
mance optimization, additionally to the network traffic analysis
[18] and design and implementation of the custom bot for
Minecraft [17]. As it was shown in [19] the “bottleneck in
the server is both game-related as well as network-related
processing (about 50%-50%)”. In our research we investigated
the highest possible workload for the CentOS 6.5 virtual server
by utilizing our custom based bot for Minecraft.

Some authors discuss interactive online games, especially
ones related to the “first person shooter (FPS)” [12], [13]
and network traffic for such games [10]. They investigate
network impact on the games and realistic traffic generators.
In our infrastructure our aim was not just to emulate 2 or
3 players, but 100 and even 1000 and more players. This
is important for gaming companies, because as it is shown
in [15] online games become major contributors to Internet
traffic. Latency is the another challenge for online games, as
it’s reported in [11], [8] and [20] and it’s an important factor
of an online gaming experience. We built our infrastructure
to emulate artificial latencies in the emulated traffic [18].
In [7] “massively multiplayer online games with a client-
server architectures and peer-to-peer game architectures” are
investigated. The authors developed a hybrid game architecture
to reduce game server bandwidth. In [6] authors even proposed
to implement a zoned federation model for the multi-player
online games trying to reduce workloads of the centralized
authoritative game servers. A US 5956485 patent [5] describes
how to link multiple remote players of real-time games on a
conferenced telephone line, which could reduce latency for the
game players.

In the technical report from IBM [3] it was demonstrated
that “rapid system response time, ultimately reaching subsec-
ond values and implemented with adequate system support,
offers the promise of substantial improvements in user pro-
ductivity” and it’s even better to “implement subsecond system
response for their own online systems”. They mentioned that
not so many online computer systems are well balanced. They
divided system response time for two large groups: computer
response time and communication time, which are both critical
for the game players user experience as well.

In [9] the authors discuss online multiplayer gaming issues
in wireless networks, which is an additional problem related
to the game players experience on the Internet. These issues

are not covered in the current paper. On the other hand, we
experienced packet loss in our infrastructure too. In paper
[14] the authors investigated a multiplayer on-line game traffic
including modelling traffic in mobile networks.

VI. CONCLUSION

In this work we have built the elements and general structure
of a mathematical performance model of GPN latency time-
series in the presence of a variety of hardware-player configu-
rations. Human vs artificial players are covered, scalability
with the number of players, virtualization of game servers
is also modelled with its (limited) scalability and effect on
latency. Elementary aspects of the game-state have begun to
be explored for their effect on latency: the presence of animals,
idleness of players etc. Finally, the computational cost of
numerically computing the model has been estimated. This
provides an initial estimate of its application to very-large scale
simulations.

The GPNPerf project aims at a deep understanding of game
network latency. It appears natural not to consider bandwidth
saturation effects for online games are not as heavy in traffic
consumption as video streaming, data streaming for example.
In all our experiments the amount of traffic was very low com-
pared with the overall bandwidth of the network equipment.
The only overload that could be measured is the computational
load (CPU monitoring levels) on the game servers. That
is being measured precisely and modeled mathematically.
But currently game traffic never overloads the experimental
network bandwidth and in practice never overloads internet
bandwidth. Any configuration where bandwidth becomes a
bottleneck is likely to correspond to a very degraded state
of services. This is either beyond the scope of our research,
or will be precisely estimated once our large-scale simulations
are operational.

Our ultimate goal of a lab simulator for internet-scale GPN
is now a little closer. Remaining work on the way contains at
least the following elements:

• Extensive statistical testing of the time-series and of all
aspects of the model.

• More realistic bots with game-state models and their
lightweight simulation.

• Design of various game scenarios and system configura-
tions to be simulated in the very-large internet scale.

• Choice of pseudo-random number generators with very
long periods: to avoid simulation bias that is invisible at
small scale but important for very-large simulations.

• Choice of the resulting trace, visualization or statistics to
be produced out of each simulation for interpreting its
result.

A general long-term question to investigate: is large-scale
GPN simulation similar to weather prediction or more like
the stock exchange? The former is chaotic but follows general
laws while the latter is unpredictable beyond the near future
or global tendencies.
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