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Abstract

The impact of a perturbation, over-expression, or repression of a key node on an organ-
ism, can be modelled based on a regulatory and/or metabolic network. Integration of these
two networks could improve our global understanding of biological mechanisms triggered by a
perturbation. This study focuses on improving the modelling of the regulatory network to facili-
tate a possible integration with the metabolic network. Previously proposed methods that study
this problem fail to deal with a real-size regulatory network, computing predictions sensitive to
perturbation and quantifying the predicted species behaviour more finely.

To address previously mentioned limitations, we develop a new method based on Answer
Set Programming, MajS. It takes a regulatory network and a discrete partial set of observations
as input. MajS tests the consistency between the input data, proposes minimal repairs on the
network to establish consistency, and finally computes weighted and signed predictions over
the network species. We tested MajS by comparing the HIF-1 signalling pathway with two
gene-expression datasets. Our results show that MajS can predict 100% of unobserved species.
When comparing MajS with two similar (discrete and quantitative) tools, we observed that
compared with the discrete tool, MajS proposes a better coverage of the unobserved species, is
more sensitive to system perturbations, and proposes predictions closer to real data. Compared
to the quantitative tool, MajS provides more refined discrete predictions that agree with the
dynamic proposed by the quantitative tool.

MajS is a new method to test the consistency between a regulatory network and a dataset
that provides computational predictions on unobserved network species. It provides fine-grained
discrete predictions by outputting the weight of the predicted sign as a piece of additional
information. MajS’ output, thanks to its weight, could easily be integrated with metabolic
network modelling.

Keywords Regulatory network, Answer Set Programming, OMIC data integration, Regulatory
and Metabolic models integration.
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1 Introduction

In recent years, there has been a sharp increase in our understanding of biological networks such
as metabolic, signalling, and regulatory networks. For many organisms, the biological networks
topology is already known, at least partially, and can be found in databases such as KEGG [1] or
BIGG model repositories [2]. In parallel, gene expression data is also widely available in databases
such as GEO [3] and provides us with gene expression profiles before and after a system perturbation.
By system perturbation we refer to an over- or under-expressed node (or set of nodes) in the system
compared to a control condition. The nodes can be either genes or proteins. Perturbations can be
studied in the context of a disease, treatment, or environmental change.

For many years, metabolic and regulatory networks have been studied separately. The methods
proposed to study them aim to simulate in silico the impact of some perturbation [4]. Regulatory
networks, composed either by genes or proteins, can be modelled with Bayesian, neural or logic
networks (Boolean or fuzzy logic), as well as with differential equations [5]. Metabolic networks
are most of the time modelled using Flux Balance Analysis (FBA) [6]. Some regulatory network
modelling tools use prior knowledge networks and gene expression data, extracted from independent
sources, to understand the mechanisms triggered by a perturbation of a biological system [7]. Other
tools such as [8] propose in silico experimental designs to discriminate regulatory network models.
The idea is to use these approaches to compare network and data in order to propose in silico
predictions which give novel insights on the biological system. Because of the incomplete, altered and
noisy nature of biological data, it is expected that inconsistent behaviours appear upon network and
data comparison. Some tools focus on the identification of such inconsistencies [9]. An inconsistent
behaviour can be reflected by a missing interaction, an inaccurate observation or a wrongly defined
logic of the interaction in the model. In some cases automatic repair of such inconsistencies is
required to propose in silico predictions.

A gene and protein regulatory network can be related to the metabolic network via the enzymes
produced by the regulatory network. Some of these enzymes have an impact on biochemical reactions
within the metabolic network. In order to understand in detail the mechanisms behind a disturbance
on the biological system, it appears essential to integrate these two types of networks.

In a previous study [10], we focused on the modelling of a regulatory network of the HIF-1 signal-
ing pathway also called Hypoxia signaling pathway, which is of great interest in neurodegenerative
diseases. We compared this regulatory network with Alzheimer’s disease gene expression data and
we perturbed the system by inducing or repressing the HIF1A protein in silico. In order to allow
us to predict the behaviour of unobserved species, the system was modelled using a logical and
a Bayesian approach. We demonstrated that the logical approach, Iggy [7], was fast and reliable
enough to predict unobserved nodes in the network upon system perturbation when compared to
the Bayesian approach, Probregnet [4]. We have encountered, however, two issues that complicate
the regulatory-metabolic network integration process. First, a quantification of Iggy’s qualitative
predictions (in a three value domain) may introduce new biases to the entire modelling process.
Second, because of the semantic of the sign consistency underlying Iggy’s modelling approach, the
comparison uses relaxed rules that do not allow us to distinguish the computational predictions
output from two types of in silico perturbations in this case-study.

We propose a novel logical approach using Answer Set Programming (ASP), named MajS, which
addresses the previously mentioned difficulties. This approach, similar to Iggy, compares a regulatory
network with gene-expression datasets, searches for inconsistencies, proposes minimal repairs and
can predict unobserved nodes. It relies, however, on a different sign-consistency rule which takes
into account the majoritarian sign of the nodes’ direct predecessors. As an output, added to the
consistent sign of a node, it proposes weights which represent the confidence of the predicted sign. We
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are therefore able to more finely quantify the unobserved nodes. Also, because of the new semantic
imposed, we are able to provide predictions more sensitive to the system perturbations. Furthermore,
the predictions associated with their confidence weights provide new quantitative insights that make
it possible to connect regulatory and metabolic models. Notice that this connection has not been
explored in this study.

Our results show that MajS is more stable than Iggy concerning the coverage (the percentage of
the number of predicted nodes against all unobserved nodes) of its predictions. In all our performed
benchmarks Iggy’s coverage fluctuates between 20% − 100% while MajS is always 100%. Besides,
MajS’ predictions are more sensitive to perturbation than Iggy’s. Indeed, for one of our benchmarks,
Iggy outputs the same predicted sign upon different perturbations whereas MajS allows measuring
the change of perturbation on predicted sign, thanks to the notion of weight. We also show that
MajS has better accuracy of its predictions compared to in vitro perturbed data. Finally, MajS’
predictions’ dynamic trend agrees with the Bayesian approach predictions.

2 Background

This section briefly describes the studied problem and then presents the Answer Set Programming
(ASP) paradigm used by our method. It also introduces two alternative approaches, Iggy and
Probregnet, which predict unobserved nodes in regulatory networks. These approaches are compared
with MajS in the Section Results.

2.1 Sign consistency modelling

The sign consistency approach tests the consistency between an interaction graph (IG) and a list of
partial discrete observations of this graph nodes derived from experimental datasets. The IG is a
signed directed graph, where the edges are signed as ”+” or ”-” and directed so that i → j means
species i influences species j. The list of discrete observations is composed of discrete (”+”, over-
expressed; ”−”, under-expressed; 0, no-change) changes associated with some nodes. This change
represents the differential expression of a gene between two system conditions (for example, normal
and perturbed). Given a sign consistency rule, a graph is said to be consistent with respect to a list
of discrete observations if the influences agree with the sign of observations for each node in the list.
In case of inconsistency, the modelling framework proposes artificial repairs allowing to establish
consistency. After consistency is established, the modelling agrees on new discrete changes on some
initially unobserved species; these agreements are called predictions.

2.2 ASP bases

ASP is a declarative programming language used to address combinatorial search problems. ASP
can define logic programming rules, expressed using first-order logic, within a discrete domain, and
find stable Herbrand models which satisfy these rules [11]. The logic program is written using a
declarative programming paradigm: what is to be solved, instead of how?. This logic program is
composed of the following ingredients:

• Generate: rules to generate the set of potential solutions.

• Test: rules to trim the set of potential solutions, eliminating unwanted ones.

• Define: (optional) rules to define auxiliary predicates.
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For some problems, optimisation constructs are defined to find optimal solutions among a solution
space. Thanks to ASP, it is also possible to handle intersection, union, enumeration and optimisation
of models. In addition, unlike other declarative approaches (e.g. Prolog), ASP allows one to work
with negation by default: a predicate is false as long as no indication allows to say that it is true.

2.3 Iggy

Iggy [7] 1 is a framework based on ASP that uses sign consistency modelling. Iggy automatically
detects inconsistencies between graph and observations, applies minimal repairs to establish consis-
tency, and predicts the sign of unobserved nodes by applying the following logical rules:

1. The observations must keep their initial sign.

2. The “+” or “-” sign for each signed node n must be justified by at least one of its received
signed influences. An influence from node p to n, is the product between the (p, n) edge sign
and p’s sign.

3. Each node signed as “0” must have only one influence signed as “0” or at least one “+” and
one “−” influence.

Iggy proposes a set of consistent models. Then, Iggy summarises all consistent models in a step
called Projection. Iggy has 6 different levels of predictions which are estimated after the Projection
step: “-”, “notPlus”, “0”, “notMinus”, “+”, “CHANGE”. “-”, “0”, “+” are strong predictions as
the node is always predicted with the same sign in all consistent models. “notPlus”, “notMinus”,
“CHANGE” are soft predictions: a node can be predicted with different signs across all consistent
models (“notPlus”: {“−”, “0”}; ‘notMinus”: {“+”, “0”}; “CHANGE”: {“+”; “−”} ). An example
of Iggy’s application on a toy example is given in the Supplementary Material.

2.4 Probregnet

The Probregnet2 pipeline [4] is a framework that allows integration of a gene regulatory model
(based on graph interactions) into a metabolic network (based on biochemical reactions) using an
integer linear programming optimisation.

For this paper, we focus on the regulatory network analysis proposed by Probregnet. This
analysis is based on Bayesian networks (BN) also called probabilistic directed acyclic models [12].
Probregnet’s input consists of both a regulatory network converted into a BN and gene expression
data used to parametrise this BN. Probregnet needs at least ten samples (e.g. patients, cells or
tissues) of gene expression data on one cellular condition or state to provide a complete param-
eterisation of all the graph nodes. Then, belief propagation is used on the BN to establish the
repercussion of the perturbation of a given node in the graph over the other nodes.

3 Results

We show in this section the results obtained after applying MajS (see Section 5) on two case-studies.
All scripts and data are available on GitHub: https://github.com/soph-lebars/MajS.

1http://bioasp.github.io/iggy/
2https://github.com/hyu-ub/prob_reg_net
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3.1 Experimental setup

We focus on the regulatory network, modelled by an interaction graph (IG), and the impact of a
perturbation on this regulatory network evaluated by discrete observations obtained from two gene
expression datasets.

Biological network - interaction graph We focus on the regulatory network of the HIF-1
signalling pathway, known to be of importance in neurodegenerative diseases [13]. This graph was
extracted from the KEGG database [1]. Nodes represent proteins or genes, and edges represent
activations or inhibitions between two nodes. We reduce the regulatory network by keeping only
nodes associated with expressed genes in the two datasets used in this study. The two networks,
respectively reduced with Alzheimer’s disease (AD) and RNA-Seq datasets, are composed of 94 and
81 nodes and 285 and 233 edges.

Datasets We evaluate our model against two datasets composed of gene differential expression
in two conditions. The Microarray dataset corresponds to cells from the hippocampus brain region
[14]. It compares data from AD patients to data from Healthy individuals. The RNA-Seq dataset
corresponds to HUVECS (Human umbilical vein endothelial cells) [15]. It compares the HUVECS
response to an induced overexpression of HIF1A to one with a normal HIF1A expression.

Benchmarks We aim to study the impact of perturbing the system with a focus on the node
HIF1A, a key protein of the HIF-1 signalling pathway. Recall that, one of the inputs of our method
consists of a list of discrete observations for which a significant change of expression is detected
between two conditions. The changes of expression our method accepts are: “+”, over-expression;
“-”, under-expression; and “0”, no-change of expression. The values of the thresholds used to detect
significant over- or under-expression are fixed according to the nature of each dataset as detailed
below.

Thresholds choice in HUVECS Benchmarks For the RNA-Seq dataset, we used the logFC
(log of gene expression) from cells with HIF1A in vitro over-expressed over normally expressed genes
that were already provided in [15]. We use a threshold of 1.5 that is commonly used for logFC as
said in [16]. The genes with logFC over 1.5 are set to “+”, the ones below −1.5 are set to “-”,
and the ones between −0.15 and 0.15 are set to “0”. Using these thresholds, we obtain 30 observed
nodes (out of 81 in the graph).

Thresholds choice in AD Benchmarks We aimed to study the impact of perturbation over
HIF1A on the enzymes for the AD dataset. We used a threshold over the fold change distribution.
The fold change is the expression of the gene in AD patients over the expression of the corresponding
gene in Healthy individuals of all the genes in this dataset. The genes with FC that are over the
third quartile are set to “+”; the ones under the first quartile are set to “-”; and the ones between
0.99 and 1.01 are set to “0”. Using these thresholds, we obtain 64 nodes (out of 96 in the graph)
that compose the input observation list of our method. For the AD case, perturbations of HIF1A
are only done in silico. We generate 3 different perturbations by adding the following observations
to the list of 53 observations, described before: (plus) HIF1A=‘+’, (minus) HIF1A=‘-’, and (zero)
HIF1A=‘0’.
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3.2 MajS applied to model HIF-1 signalling pathway and HUVECS dataset
integration

3.2.1 Data

The IG for this case study is composed of 81 nodes and 233 edges derived from the HIF-1 signalling
pathway and compared with a RNA-Seq dataset from HUVECS (see Section 3.1). This IG is
compared with two different lists of discrete observations; denoted by Benchmark 1 and Benchmark
2 in Table 1. Benchmark 1 is composed of 30 nodes that are a partial observation of the IG, generated
by estimating significantly expressed genes in the RNA-Seq dataset using specific thresholds (see
Section 3.1). Benchmark 2, composed of 25 nodes, is a modification of Benchmark 1; where we have
altered or removed the value of 9 observations, direct neighbours of HIF1A or directly linked to the
network enzymes. These modifications were done to improve the coverage of Iggy. By modifying
these observations, the problem becomes simpler to solve for Iggy, leading to a better coverage for
Iggy. All these benchmarks are available on the GitHub companion repository.

3.2.2 MajS results on HUVECS dataset

On Benchmarks 1 and 2, MajS generates predictions for all initially unobserved nodes. MajS is
configured by setting K = 3 as the maximum artificial influences per node. The computations
took approximately 97 s. 3 for each benchmark. MajS obtains 2016 optimal answer sets for both
benchmarks, that is, 2016 assignments of nodes with a sign. The number of minimal artificial
influences added by MajS to restore consistency in both benchmarks was 8. They are spread over
seven repaired nodes and a maximum of 2 artificial influences per repaired node. The HIF-1 signalling
IG is 2-consistent concerning the HUVECS dataset (see Section 5.1.3).

3.2.3 Comparison of MajS and Iggy

The aim of the sections from 3.2.3 to 3.2.5 is to understand the difference in prediction on the
HUVECS dataset between MajS and Iggy. Iggy is described in Section 2 and in [10].

In Table 1, we show a global comparison of both tools with the two different benchmarks. For
Benchmark 1, 51 nodes are unobserved in the IG. We can see that MajS was able to predict all of
them (100% of coverage), whereas Iggy could predict only 30 nodes (59% of coverage). In order to
compare the predictions’ signs for both methods, we consider for MajS the majoritarian sign of the
predicted nodes. 22 nodes are predicted with the same sign for both methods, while 8 nodes are
predicted differently between both methods. For Benchmark 2, we obtain for both methods 100%
of coverage. The number of predicted nodes in common is 48, and the number of predicted nodes
different remains 8. Besides, these 8 nodes are the same for both benchmarks.

The different coverage obtained by MajS and Iggy in Benchmark 1, is explained by the different
type of rule imposed to each graph node in both methods. Recall that Iggy implements a sign
consistency rule stating that a node sign has to be explained by at least one signed influence received,
whereas MajS implements a majoritarian sign rule stating that a node sign has to be explained by
the majoritarian sign of the influences received. When a node receives a positive and a negative
influence, Iggy cannot infer any prediction (both “+” and “-” scenarios are possible) whereas MajS
will predict either 0, in case of balance, or the majoritarian sign. For that reason, MajS is always
generating more predictions than Iggy.

This is illustrated by the coverage comparison in Benchmark 1.

3solver: clingo version 5.5.0, parallel execution on 10 cores. All computations are performed on a standard laptop
machine. Ubuntu 18.04, 64 bits, intel core i7-9850H CPU 2.60 GHz, 32 GB.
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Table 1: Table of comparison between Iggy and MajS for two benchmarks.

 Benchmark1  Benchmark2

MajS  Iggy MajS  Iggy

Predicted nodes 51 30 56 56

100.0 % 59,00 % 100.0 % 100.0 % 

22 VS 8 48 VS 8

Coverage of predicted nodes       
     

Number of predicted nodes: 
common VS  different 

3.2.4 Different computational predictions for Iggy and MajS

In Table 2, we present the eight nodes predicted differently. The six nodes in green are predictions
for which there is an intersection between Iggy and MajS predictions. For example: (i) for PLCG1,
the predicted sign of MajS, “-”, is included in the prediction “notPlus” of Iggy, and (ii) for RBX1,
the prediction of Iggy is included in the prediction of MajS. The two orange nodes in Table 2 refer
to different predictions between Iggy and MajS. However, for these nodes, the number of cases that
MajS predicted the same sign as Iggy remains high (672/2016) despite not being majoritarian.

To illustrate this prediction difference between MajS and Iggy, we can analyse PLCG nodes
(PLCG1, PLCG2) in detail. MajS summarises all the optimal answer sets, so it outputs the majori-
tarian sign, its average weight and the standard deviation. For PLCG nodes, MajS gives “-” as the
majoritarian sign, but we can see that “0” is also present in the optimal answer sets distribution.
Iggy does not allow this distribution analysis and outputs “notPlus”, which signifies that there are
“-” and “0” in the optimal answer sets but cannot allow determining the most representative one.

To conclude, MajS allows more information on predicted nodes than Iggy, and it outputs pre-
dictions that are, for most of the cases, with signs that often coincide with those predicted by Iggy.
MajS outputs more detailed information than Iggy: number of answer sets and weight distribution.

3.2.5 Comparison of MajS and Iggy predictions with real data

Using a normal distribution mixture (see Section 5.4), we compare the significance score of both
methods to predict the real fold change data. This one is extracted from HUVECS dataset (see
Section 3.1) where the perturbation was conducted in vitro. The aim of comparing this data with
both methods is to see if they are able to model a perturbation in silico and have predicted fold
change close to the fold change with an in vitro perturbation. This comparison is conducted as a
validation.

We apply our method introduced in Section 5.4 using µ− = −0.394, µ0 = 0 and µ+ = 0.489
as parameters of the three normal distributions. These values are the respective means observed in
the experimental HUVECS data using the thresholds fixed in Section 3.1. The standard deviation
is calculated using σlc = 0.5, which is approximately equal to the difference between two means
(e.g., µ+ − µ0 for instance), and σhc = 0.05. As an illustration, the computed standard deviation
is respectively 0.5 when w = 0, 0.05 when w = 100, and 0.275 when w = 50. Notice finally, that
all predictions provided by Iggy are to be considered with a high confidence weight, so they are
assumed to have weight w = 100 in our comparison.

For Benchmark 1, 21 unobserved genes (out of 51) are left out due to not being predicted by
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Table 2: Table of different predicted nodes between Iggy and MajS. SignMaj refers to the ma-
joritarian sign across all optimal answer sets. Columns 3-5 show the detailed distribution for each
predicted sign across all optimal answers (in total 2016) sets according to MajS; the numbers in
brackets refer to the number of answer sets where the node was fixed to this sign, the average weight
and its standard deviation. SignIggy refers to the sign predicted by Iggy.

Name SignMaj SignIggy

PLCG1  - [0, 0, 0] [1344, 100, 0] [672, 100, 0] notPlus

PLCG2  - [0, 0, 0] [1344, 100, 0] [672, 100, 0] notPlus

RBX1  0 / - [504, 100, 0] [756, 100, 0] [756, 100, 0] 0

VHL 0 / - [504, 100, 0] [756, 100, 0] [756, 100, 0] 0

RELA  + / 0 [756, 44, 16] [504, 44, 16] [756, 100, 0] 0

NFKB1  +  / 0 [756, 44, 16] [504, 44, 16] [756, 100, 0] 0

IFNGR1  + [756, 100, 0] [588, 100, 0] [672, 100, 0] 0

IFNGR2  + [756, 100, 0] [588, 100, 0] [672, 100, 0] 0

Sign= " + " Sign= " - " Sign= " 0 "

Iggy (see Section 3.2.3). If we focus, for example, on the PLCG1 gene prediction, MajS’s mixture
provides a higher significance score than Iggy’s (Figure 1). According to Equation 2, the obtained
mixture density function for MajS is

MMajS(x) =
1344

2016
N−(x) +

672

2016
N0(x) +

0

2016
N+(x),

with N−(x), N0(x), and N+(x) being the probability density functions of three normal laws with
different means and standard deviations (see Section 5.4 for details). Coefficients of these functions
are the ratio of answer sets for which the node sign is predicted (see columns 3-5 of the Table 2,
node PLCG1). The obtained mixture density function for Iggy is

MIggy(x) =
1

2
N−(x) +

1

2
N0(x) +

0

2
N+(x),

with the same density functions N−(x), N0(x) as for MajS in this example. Given the “notPlus”
predicted sign for PLCG1 node (see SignIggy column in Table 2), corresponding to an equivalent
prediction of “-” and “0”, the ratios for N−(x) and N0(x) density functions are equal to 1

2 .
According to Equation 4 and to predict the log fold change value of PLCG1 (−0.38), the signif-

icance scores are equal to 0.62 for MajS and 0.47 for Iggy. Thus, MajS method provides a better
prediction for the PLCG1 gene.

Considering the 30 initially unobserved genes of Benchmark 1, we found that MajS and Iggy
produce the same mixture density for 14 genes, thus providing the same prediction. However, for
the 16 other genes, MajS provides a better prediction for 10 out of 16 genes, in the sense that the
computed score for MajS is greater than the one computed for Iggy. The same observations can be
done for Benchmark 2; the computed prediction scores are equal for 16 genes; for 33 genes, MajS
provides a higher score while Iggy provides a higher score for only 7 genes. This supports that MajS
can obtain higher confidence on the predicted signs than Iggy does.
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Figure 1: Iggy’s and MajS’ mixture of PLCG1 gene.

3.3 MajS applied to model HIF-1 signalling pathway and Alzheimer’s
disease (AD) dataset integration

This section focuses on the enzyme prediction to do the link with the metabolic network. Our first
aim is to illustrate the difference in coverage and sensitivity between the two discrete approaches:
MajS and Iggy, on a Microarray dataset of Alzheimer’s Disease patients. Our second aim is to
compare MajS with a Bayesian quantitative approach, Probregnet, to point out the similarity of
predictions in terms of dynamic evolution across different perturbations. Probregnet [4] predicts
unobserved nodes with quantitative values in a regulatory network (see details in Section Background
5).

3.3.1 Data

The IG for this case study comprises 94 nodes and 283 edges. It was derived from the HIF-1 signalling
pathway (see Section 3.1) and initially compared to three different lists of discrete observations. Each
list is based on the AD Benchmark generated by estimating significantly expressed genes in the AD
dataset using thresholds (see Section 3.1). The three lists of observations were derived by fixing
the value of node HIF1A to “+”, “-”, or “0” in order to simulate in silico a HIF1A perturbation.
These three original datasets were composed of 64 observed nodes. When comparing the IG with
these original datasets, Iggy provided new predictions for only 9 nodes (out of 30 unobserved ones),
whereas MajS predicted the 30 nodes.

In order to provide a comparison of the predictions of MajS, Iggy and Probregnet for this case
study, we modified the original datasets by fixing the value of HIF1A neighbours and removing
observations referring to enzymes. In total, we performed 14 modifications. These modifications were
done with a similar idea as for the HUVECS dataset (see Section 4.3.1), to improve Iggy’s prediction
coverage. With the original dataset, Iggy predicted less than 30% unobserved nodes. Besides,
observed enzymes are removed to see if the prediction agrees with the real dataset observations.
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Our three resulting lists of observations were composed of 54 observations. We denote these three
benchmarks as: Benchmark zero, Benchmark plus, and Benchmark minus referring to HIF1A fixed
to “0”, “+”, “-” respectively. The rest of this section is presented with these modified benchmarks.

3.3.2 MajS results on AD dataset

The computation took less than 40s. for each benchmark. For Benchmark minus we obtain 480
optimal answer sets with 32 repaired nodes, for Benchmark zero we obtain 320 optimal answer sets
with 27 repaired nodes and Benchmark plus we obtain 160 optimal answer sets with 28 repaired
nodes. The number of artificial influences K added for each repaired node by MajS to restore
consistency was maximum 4. The IG is 4-consistent for the AD dataset (see Section 3.1).

3.3.3 Difference of coverage between MajS and Iggy across all benchmarks

MajS predictions’ coverage is 100% across all three benchmarks (40 unobserved nodes). For Iggy
the coverage was of 20%, 88%, and 85% for benchmarks having HIF1A set to “-”, “0”, and “+”,
respectively. MajS has better coverage than Iggy for this case study.

3.3.4 MajS is more sensitive than Iggy to nodes perturbations

This section focuses on the 15 enzymes present in our IG; a more refined discrete prediction of these
nodes may facilitate the IG model integration with a metabolic network model. Table 3 presents
the computational predictions of MajS and Iggy on the enzyme nodes when comparing the IG with
the three datasets of observations with different values (“-”, “0”, “+”) set for HIF1A. All MajS
predictions were strong predictions (i.e., no variation across all optimal answer sets) with a unique
weight.

For Benchmark minus, Iggy could not predict the enzyme signs, while MajS was able to give a
majoritarian sign of “0” associated with a weight of 100 to all the enzymes. This is explained by
the different rule imposed to each node by Iggy (sign-consistency) and MajS (majoritarian sign).
As found for the HUVECS dataset (see Section 3.2.3), Iggy constraints less the problem, generating
more answer sets and producing fewer predictions.

For Benchmark zero and Benchmark plus, Iggy proposes similar predictions; consequently, it
is not possible to observe any impact of the HIF1A perturbation. Instead, for MajS 12 enzymes
are predicted as “+”, and they hold different weights (25 and 50 respectively) according to the
benchmark. MajS is more sensitive than Iggy to perturbations on node HIF1A for this case study.
It allows a measurable repercussion of the perturbation with different strengths for most enzymes.
This is possible thanks to the weight term used in the domain of the answer sets obtained with
MajS, and the weight assignment rule (see Section 5.1.2).

3.3.5 Comparison of MajS and Probregnet evolution of prediction of the 15 enzymes
upon HIF1A perturbation

The focus here is on comparing the evolution of MajS’ predictions concerning the quantitative
predictions of Probregnet [4] for the three types of HIF1A perturbations for the 15 enzymes. The
repercussion of the HIF1A perturbation by Probregnet was monitored using the ratio, noted FC
(fold change), between the node expression in the perturbed model (expression in AD patients) and
the one in a non-perturbed model (expression in Healthy individuals).

Figure 2 shows that 4 (out of 15) enzymes have a different evolution when comparing MajS
to Probregnet. For MajS, the variation is measured by considering both the sign and the weight.
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Table 3: MajS and Iggy predictions upon perturbations of HIF1A for 3 Bench-
marks. Benchmark minus contained HIF1A=“-”; Benchmark zero contained HIF1A=“0” and
Benchmark plus contained HIF1A=“+”. Here, “Na” means that Iggy could not predict for this
Benchmark. MajS gives a predicted node as a tuple composed of the majoritarian sign and its
average weight; the standard deviation is 0. The colours are focused on Benchmark zero and Bench-
mark plus; the enzymes predicted with “+” sign appear in green. The ones predicted with “-”
appear in pink.

.

Benchmark_minus Benchmark_zero Benchmark_plus
Name MajS Iggy MajS Iggy MajS Iggy
ALDOA (0,100) Na (+,25) + (+,50) +
ENO1 (0,100) Na (+,25) + (+,50) +
ENO2 (0,100) Na (+,25) + (+,50) +
ENO3 (0,100) Na (+,25) + (+,50) +
GAPDH (0,100) Na (+,25) + (+,50) +
HK1 (0,100) Na (+,25) + (+,50) +
HK2 (0,100) Na (+,25) + (+,50) +
HK3 (0,100) Na (+,25) + (+,50) +
LDHA (0,100) Na (+,25) + (+,50) +
PFKL (0,100) Na (+,25) + (+,50) +
PGK1 (0,100) Na (+,25) + (+,50) +
SLC2A1 (0,100) Na (+,25) + (+,50) +
PDHA1 (0,100) Na (-,100) - (-,100) -
PDHA2 (0,100) Na (-,100) - (-,100) -
PDHB (0,100) Na (-,100) - (-,100) -

According to MajS, all enzymes tend to increase in the transition from HIF1A=“-” to HIF1A=“+”
except for PDH enzymes which tend to decrease. These variations agree with the IG topology;
indeed, all enzymes are activated by HIF1A except PDH enzymes which are indirectly inhibited.
According to Probregnet, 10 out of 15 enzymes are increasing (9/10 in agreement with MajS). In
the 5 decreasing enzymes, there is a smaller proportion (2/5) of agreement with MajS. 3 out of 4
disagreements correspond to Probregnet enzyme predictions which are not significant, with a delta
variation less than 0.02 when the average delta is 0.3 for the rest of the enzymes.

MajS and Probregnet give a similar dynamic trend for most enzyme predictions.

4 Discussion and Conclusion

We present in our study a new logical approach, MajS, implemented in Answer Set Programming.
MajS takes as input an interaction graph and a set of discrete observations. Discrete observations
are expressed in the forms of “+”, “-”, or “0” signs in some of the graph nodes. This information is
extracted from gene expression datasets. MajS tests the consistency between the majoritarian sign
of a node’s direct predecessors and the node’s sign; detects and repairs inconsistencies, and predicts
unobserved nodes. MajS’ prediction is given as a sign and a weight assigned to each unobserved node,
where the weight represents the sign confidence. In addition, MajS outputs information concerning
the prediction distribution across all consistent optimal answer sets or models. MajS was tested
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Figure 2: MajS and Probregnet enzymes predictions. For MajS, the evolution of prediction
across the three HIF1A perturbations is shown with a dashed line and for Probregnet, with three
consecutive bars for each enzyme. The left y-axis shows the foldchange (FC) predicted by Probregnet.
On the right y-axis is the weighted label given by MajS. The x-axis shows the names of the enzymes.
In purple, those that agree on evolution across perturbations between Probregnet and MajS. In
orange, those with a disagreement on evolution.

on two networks derived from the HIF-1 signalling pathway. These two networks were reduced
with Alzheimer’s disease (AD) Microarray and HUVECS RNA-Seq datasets. They are composed of
respectively, 94 and 81 nodes and 285 and 233 edges.

For both studied networks, MajS finds results in a couple of minutes which opens perspectives to
handle larger networks. MajS outputs informative predictions on all unobserved nodes such as the
majoritarian sign, the average weight, and the standard deviation of this weight in all benchmarks
studied.

Several results are obtained upon comparison to a similar discrete and logical approach, Iggy.
First, MajS’ coverage is higher than Iggy’s in all our tested benchmarks (see Section 3.2.3 and 3.3.3).
Second, MajS is more sensitive to the perturbation of our system thanks to the notion of weight
(see Section 3.3.4). Third, MajS is more reliable when compared to in vitro real data (see Section
3.2.5). With respect to Iggy’s implementation, MajS logical rules better constrain the network-data
integration problem. Thus, MajS can propose a wider view, together with a distribution analysis, of
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all optimal answer sets. This is hard to accomplish with Iggy; for example, enumerating all optimal
answer sets for the AD Benchmark (see Section 3.3.1) outputs 1010 solutions after 21 days without
giving a complete solution.

We also compared MajS to a Bayesian approach, Probregnet. Focusing on the enzyme nodes pre-
diction, MajS and Probregnet agree (11/15) on a similar dynamic regarding the evolution of enzyme
predictions across HIF1A perturbation. The differences observed between MajS and Probregnet
occur for enzymes for whom Probregnet prediction was not significantly varying across different
perturbations (see Section 3.3.5). As with Iggy [10], MajS uses fewer input data than Probregnet.
Also, Probregnet and MajS are used for specific purposes. Probregnet allows modelling small net-
works; whereas MajS and Iggy are adapted for larger networks. Both can measure the impact of
a single node perturbation in a system. However, MajS can model multiple nodes’ perturbations.
Probregnet works on a specific condition, whereas MajS deals with differential comparison between
two conditions. Nevertheless, it is interesting to obtain quantitative predictions, as proposed by
Probregnet, that easily adapt to linear programming metabolic modelling. MajS goes a step further
than Iggy by outputting finer discretised predictions. A perspective of this work would focus on
integrating MajS predicted enzymes into a metabolic network model and compare the results ob-
tained with respect to Probregnet’s full pipeline. MajS, contrary to Probregnet, also handles better
network inhibitions by relying on network topology. Indeed, Probregnet authors added a correction
term in their publication to cope with inhibitions [4].

One of the possible limitations of MajS could be the repair process. Different repairs can be used
in an interaction graph (e.g. remove, add or flip by changing the sign of edges; remove, add or flip
nodes). In our study, we choose to add influences (positive or negative) to agree with the majority
sign rules. Indeed, combining the repair process can appear to be a good idea, but it can become
time-consuming in practice. Another limitation of MajS is that it keeps the sign of observed nodes
even if they are inconsistent. In case of many inconsistent nodes, we should question the quality of
the experimental data or the interaction graph. Because of these inconsistencies, the method may
give predictions which are not relevant.

All in all, we have proposed MajS, a new method, fast and reliable, that tests consistency
and predicts the change of expression on unobserved nodes (sign and weights) when comparing a
regulatory network with a gene expression dataset. Our method is applied to perturbed data. In
particular, we applied this method to test consistency between the HIF-1 signalling pathway and a
HIF1A overexpressed dataset. Besides, Majs by predicting weights allows us to have a more refined
prediction and proposes predictions which are sensitive to system perturbation.

5 Methods

5.1 MajS principle

MajS requires as input data an interaction graph (IG), whose edges are directed and labelled as
activation or inhibition. It also requires a list of discrete observations on some IG nodes. This list
is composed of discrete values (colours or signs) assigned to some of the IG’s nodes. These values
measure the change-of-state of a graph’s node (gene or protein) between two specific conditions
(e.g. 2 samples corresponding to 2 different biological conditions). The type of discrete assignments
provided in the list of observations is: “+” (green) if the node is over-expressed, “-” (red) if under-
expressed, and “0” (blue) if there is no change of expression between the two conditions. Not all
the graph nodes are included in this list of observations.

We aim at predicting the sign (“-”, “0”, “+”) and weight (a score of confidence of the predicted
sign between 0, for low confidence and 100, for high confidence) of unobserved nodes of the IG after
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it is compared to the list of observations. Prediction can be only computed in case of consistency
between the IG topology and the gene expression data measurements. In order to establish consis-
tency, we search for minimal repairs in the IG by adding artificial nodes to the graph. The number
of minimal repairs is controlled by a third input K of our method. Our method workflow is detailed
in Figure 3. The following subsections aim at presenting in detail all the steps of the workflow.

IG

Test rules
MajoritySign

Predicted
Nodes

Answer sets Optimal
Answer sets

Yes

No

Minimisation

Of artificial 
Influences 
(clasp)

Add up to K artificial  Influences (clasp)

Projection
 (python)

Input

Output

 Consistent ?
(clasp)

Figure 3: MajS workflow. In light green, we show the input data: the interaction graph, IG,
and the discrete observation list, Obs. Then, we apply the logical rules implemented in MajS.
We test the consistency and in case of inconsistency, we add artificial influences using K as a
fixed parameter. That way we obtain answer sets that respect the logical rules. We minimise the
artificial influences added to these answer sets and obtain an optimal subset of them. Finally, we
project the optimal answer sets to obtain as output the predicted nodes of our model. clasp is
the Answer Set Programming solver [17] used to implement most of MajS steps. Only the projection
step was implemented in Python.

5.1.1 MajS input data

Interaction graph (IG) An interaction graph is defined by a 3-tuple (V,E, σ) where V is a set of
nodes, E ⊂ {V ×V } is the set of oriented edges and σ : E → {+,−} is a function of the edges where
the plus sign represents an activation, and the minus sign represents an inhibition.
Experimental observation (Obs) A list of discrete observations where signs of some IG nodes
are given by experimental measure. Generally, a pre-processing step of the experimental data by
fixing thresholds for significant expression is required at this point. After the discretisation process,
the observed nodes can take three different values: “+” for over-expressed nodes; “-” for under-
expressed; and “0” for unchanged nodes.

These experimentally observed nodes belong to a set denoted S. In this study, we fix the weight of
all experimental observation nodes to 100 which is the weight representing the maximal confidence.
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5.1.2 Test rules MajoritySign

In the following section, we make explicit the logical rules that are applied on the IG and the discrete
observation list to test consistency.

1. Experimental observation signs are kept: We impose that the sign {“ − ”, “0”, “ + ”} of
the experimental observations in S are kept.

2. Signed majority wins: A node is signed “+” or “-”, following the majority sign from all its
received influences in {“-”,“+”}.

3. Balanced: A node is signed “0”, either if it only receives 0-influences or if it receives the same
proportion of signed { “-”, “+”} influences.

4. Weight assignment: Every node v of the graph is associated with a sign and a weight, which
represents the score on its sign as follows:

• If v ∈ S (experimental observations), its weight is fixed to 100.

• If v is inconsistent and has been repaired, then its weight is fixed to 0.

• If v is consistent, then the weight is the ratio between the sum of the parent’s weights,
holding the majoritarian sign, and its number of parents.

The sign-weight pair is denoted as a weighted label. Experimental observations can also be
inconsistent after applying MajS rules.

We propose the two following definitions to clarify the next MajS steps.

Definition 5.1 (weighted labelling). A weighted labelling is defined as an operation which equips
each node of an interaction graph G = (V,E, σ) with a sign and a weight associated to this sign.
Formally, a weighted label (µ, ω) on a set of nodes U ⊂ V is defined as a function U → {“ −
”, “0”, “ + ”} × [0, 100], where µ(v) is a function assigning a sign to a node v in U , and ω(v) is a
weight expressing the confidence of the sign.

More precisely, µ(v) can take three different values: “+” for over-expressed nodes compared to an
initial condition; “-”, for under-expressed; and “0”, for unchanged nodes. Additionally, ω(v) varies
between low confidence (0) and high confidence (100). A weighted labelling is said to be complete
when it provides a weighted label to each node in V (i.e., U = V ). In MajS’ implementation, the
signs are integer values set to −1 for “-”; 1 for “+” and 0 for “0” which allows the use of arithmetic
operations on the sign values.

Definition 5.2 (influence). Given an interaction graph G = (V,E, σ) and a node with a sign µ and
a weight ω, for each edge of G (s, v), we define an influence I(s, v) by:

I(s, v) = σ(s, v)µ(s).

An influence is a 0-influence if and only if I(s, v) = 0. It is a positive influence if I(s, v) = 1
and a negative one if I(s, v) = −1.
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5.1.3 Consistency and repairs

A graph is consistent if all of its nodes are consistent. A node is said to be consistent if its weighted
label (µ, ω) is in adequacy either with its experimentally observed sign or with the logical rules
application, i.e., the signed-majority, the balanced, and the weight assignment (rules 2, 3 and 4
in Section 5.1.2). In case of inconsistency, MajS can repair the graph if its consistency can be
established by adding artificial influences. A node is K-repairable when it was inconsistent and
became consistent after adding at most K influences. A graph is K-consistent when all the nodes
are at least K-repairable. Therefore, the problem is to determine, given an interaction graph G,
an experimental observation set S, and an integer parameter K, if G is K-consistent. If this is the
case, the minimal sets of repairs to recover consistency are identified. If not, the logical program is
unsatisfiable. In Figure 4 we show some examples of repair of the inconsistencies on node B.

B

A Art1A

B

Art1

Art2

B

C Art3

Art1A

Art2

(c)(b)(a)

Figure 4: Inconsistencies between network topology and data. A species, gene, or protein, is
represented as a node. The nodes’ colours represent the node’s sign when comparing two conditions.
They are: blue, “0”, or no-change; red, “-”, or decrease; and green, “+”, or increase. The octagonal
nodes represent the artificial influences added by MajS to restore conistency. For Figure a) an
artificial influence, noted Art1 is added on node B with the sign “+” to balance with the sign of B’s
successor node A. For Figure b), two artificial influences, Art1 and Art2, are added to respect the
majoritarian sign-consistency rule. Same logic for Figure c).

5.1.4 From answer sets to optimal answer sets

After applying the logical rules and adding repairs in case of inconsistency, we obtain all the answer
sets that respect the logical rules. These answer sets are a reduction of the possible complete weighted
labelling presented in Section 5.2. However, these solutions are not optimal as we did not minimise
the number of possible repairs. Thus, an optimisation constraint is added to minimise the number
of repairs. This constraint respects the logical rules in Section 5.1.2 so that it is guaranteed to find
the minimal repairs to establish consistency.

5.1.5 Predicted nodes obtained after projection

After the optimisation step, many optimal (minimally repaired) answer sets can be proposed. All
these solutions are consistent with the logical rules. In order to summarise these results, we add
a step called projection. After this step, a node is assigned the following values computed after
exploring all optimal solutions: a majoritarian sign (not necessarily unique), the average weight
associated with the majoritarian sign, and the standard deviation of the weight. This triplet of
values, assigned to all graph nodes, corresponds to the MajS predictions. Finally, MajS takes into
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account the added repairs in the weight assigned at this step: a node with a 0-weight associated
with its sign implies it has been repaired.

The prediction can be either a strong or weak prediction; a strong prediction node means that
its sign remains the same across all optimal answer sets and a weak prediction node means that its
sign varies.

5.1.6 MajS application on a toy example

This section presents the results obtained while applying MajS on a toy example, an IG composed
of 10 nodes, 7 activation edges, and 1 inhibition edge (E ⊣ D). In Figure 5 we illustrate how
MajS proceeds when comparing this toy IG with one dataset of observations. First, MajS adds two
artificial influences (art1 and art2) on node I to recover consistency. Then, it predicts values over
nodes D, E, and G. In Figure 5, we show the prediction of MajS for nodes D, E, G, and the repaired
node, I. This toy example outputs two optimal answer sets: Solutions 1 and 2.

Focusing on node D, we observe that in the answer set Solution 1, the predicted weight is 75,
while in Solution 2, the predicted weight is 50. Node D has 4 parents: 3 observed (A =“-”, B =“+”,
C =“+”), and an unobserved parent E. To comply with the Signed majority wins rule (see Section
5.1.2), E can be assigned either to “-” or “0”. Both assignments give a majoritarian “+” sign on
D. When E is set to “-”, the weight of the “+” sign on D is 75 as it is defined as the percentage
ratio between the sum of the positive influences and the total number of parents of D. A similar
reasoning when E is set to “0” leads to the weight of 50 assigned to the “+” sign for D. Notice
that no answer set proposes an assignment of E to “+”. If that was the case, D’s sign would be
“0” (Balanced rule in Section 5.1.2) and would not explain the sign of its direct successor F ; this
assignment requires adding another repair and would not be an optimal solution anymore.

To illustrate how projections work (see Section 5.1.5), let us focus on nodes D and E. For node
D, the sign across all optimal solutions is “+” so the majoritarian sign given by the projection
computation is of “+” (Figure 5 (b), column Projection, left sub-column SignMaj ). We also show a
detailed view of how this majoritarian sign is represented across all optimal answer sets. First, the
number of optimal answer sets having the majoritarian sign for node D is 2. Second, the average
weight associated with this sign for D is 62.5. Third, the standard deviation of the average weight
is 17. These three values appear represented as a triplet (Figure 5 (b), column Projection, right
sub-column). Following the same logic, for node E, we have two different majoritarian signs: “0”
and “-”, equally distributed across all optimal answer sets, both average weights are 100, and there
is no standard deviation.

Finally, in Figure 5 (b), we see that for node I, the weight is fixed to 0 by MajS in all optimal
answer sets, implying that it was repaired. Indeed, J is the only predecessor of I and activates it.
Thus, J and I would have the same sign in a consistent local behaviour. To guarantee a global
consistency of the whole network, I should be repaired.

The inputs of the logical program for the toy case study can be found on GitHub: https:

//github.com/soph-lebars/MajS/tree/main/toycasestudy

5.2 MajS search space

After having the problem defined, we generate the choice rules constructs of our logic program.
These rules define the solution space of a problem and create the candidates that are later filtered
with the constraints.
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Observed « + »

Observed « - »

Observed « 0 »

Unobserved

Repaired

Artificial

(a)

Node
Solution 1 Solution 2 Projection

μ ω μ ω SignMaj [N(SignMaj),mean(ω),sd(ω)]

D + 75 + 50 + [2,62.5, 17]

E - 100 0 100 0 / -

G + 66 + 66 + [2,66,0]

I + 0 + 0 + [2,0,0]

(b)

[1,100,0] / [1,100,0]

Figure 5: Toy case study. (a) Toy network with 7 nodes that are initially observed and 3
unobserved nodes. The I node is marked as inconsistent. (b) MajS predictions on toy network
example. All unobserved nodes (grey) are predicted by MajS with a sign (µ) and a weight (ω).
The orange node is repaired by adding two artificial influences. Columns Solution 1 and 2 represent
sign and weight in optimal answer sets for unobserved and repaired nodes. Column Projection is
summarizing all Solution columns as explained in Section 5.1.5.

Possible complete weighted labellings A complete weighted labelling is composed by both a
sign function µ : V → {“−”, “0”, “+”} and a weight function ω : V → [0, 100]. We also assume that
the interval [0, 100] is discretised by the set of integers {0, . . . , 100}, in that case, the weight is simply
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rounded to the closest integer. Thus, the total number of possible complete weighted labelling is
equal to 3|V | × 101|V |.

Possible repairs Recall that K is a parameter given as input to the method. For each inconsistent
node v ∈ V we generate multiple sets of k artificial nodes and influences, with k ≤ K. Let us name
this set as p(v,k) = {p1, . . . , pk}. The search space P is defined by the union of all possible ways to
assign parents for each node in V , that is:

P =
⋃

v∈V,1≤k≤K

p(v,k) (1)

An artificial parent pi interacts with v with a positive or negative influence, i.e., I(pi, v) ∈ {−1, 1}.
Each pi is added to the graph G and its influence changes the computation of the majoritarian sign
for node v (see rule 2 in Section 5.1.2).

5.3 Different and common points between MajS and Iggy

We summarise the main differences and similarities between MajS and Iggy in Table 4.
The common points are that the two tools use the ASP paradigm to describe the inputs of the logical
program, also called an instance, and to encode the logical constraints of the problem. Secondly, the
optimisation of the problem is the same. Both methods seek to minimise the number of influences
added to repair.
The two methods are different in three ways. First, the solution space for MajS will be larger
because the sign of the nodes is also associated with a weight ranging from 0 to 100. The second
difference is that Iggy adds only one influence per node to fix inconsistencies, whereas MajS adds
several influences to reestablish consistency. The third difference is in the logical rules, which are
implemented differently. Indeed, Iggy constrains the solution space using sign consistency: the sign
of a node is consistent if it can be explained by at least one influence. Whereas, for MajS, the
sign of a node is explained by the majority of influences received. In addition, MajS also uses logic
rules to constrain the weight. The last difference is in the projection step, which allows obtaining
the nodes predicted by MajS and Iggy by summarising the complete list of optimal answer-sets
into predictions. For Iggy, the nodes are predicted according to the six values shown in Table 4.
MajS summarises the optimal answer sets by predicting the nodes with their majoritarian sign, their
associated weight and the associated standard deviation.

5.4 Comparison of discrete predictions with continuous values

Here, we describe our method for comparing the discrete predictions provided by MajS and Iggy to
the continuous experimental values of fold change. We rely on mixtures of normal distribution which
is proven to be a probabilistic model of choice for microarray experiments [18]. For each predicted
node, we define a continuous probability distribution M, whose density function is denoted as M(x)
with x ∈ R, that is a mixture of three Normal distributions whose means depend on the sign of
the prediction and whose standard deviations depend on the weight of the prediction. Precisely, for
x ∈ R the mixture density function is defined by

M(x) =
∑

s∈{−,0,+}

ϕs ·Ns(x), (2)
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Table 4: Different and common points between Iggy and MajS

Page 1 of 1

Iggy MajS
Instance (input) • An interaction graph,

whose edges are directed
and labelled as activation
or inhibition.

• A list of discrete observa-
tions on some IG nodes.

• An interaction graph,
whose edges are directed
and labelled as activation
or inhibition.

• A list of discrete observa-
tions on some IG nodes.

Search space/ Guess • Depends on node, sign ∈
{“− ”, “0”, “ + ”} (3|V |)

• 1-influence repair added by
node

• Depends on node, sign ∈
{“− ”, “0”, “ + ”}, weight
∈ [0, 100] (3|V | × 101|V |)

• K-influences repair added
by node

Logical rules • Experimental observation
signs are kept.

• A node signed as “0” must
receive only one influence
signed as “0” or at least
one “+” and one “−” in-
fluence.

• A signed node must be jus-
tified by at least one signed
influence.

• Experimental observation
signs are kept.

• A node is signed “0” ei-
ther if it only receives 0-
influences or the same pro-
portion of signed “−”, “+
” influences.

• A node is signed following
the majority sign from all
its received influences.

Optimisation • Minimise the number of
added repairs

• Minimise the number of
added repairs

Projection (predicted nodes) • Six levels of possible pre-
diction:

1 -
2 notPlus (-, 0)
3 0
4 notMinus (0, +)
5 +
6 CHANGE (+, -)

• Majoritarian sign
• Statistical information on

the weight distribution
(average, standard devia-
tion)

where ϕs is the ratio of answer sets for which the node sign is predicted as s for s ∈ {−, 0,+},
and Ns(x) is the density function of a Normal distribution N (µs, σs) with mean µs and standard
deviation σs. Precisely, one has

Ns(x) =
1

σs

√
2π

e−
1
2 ( x−µs

σs
)
2

.

In our comparison, we fix mean values using experimental HUVECS data (see Section 3.2.5 for
more details). The standard deviation is derived from the weight w ∈ [0, 100] of the sign s for a
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given node by using a simple linear transformation rule σhc · w
100 +σlc · (1− w

100 ). Here, σlc is a fixed
constant considered as a low confidence prediction (which is assigned when w = 0) and σlc is a fixed
constant considered as a high confidence prediction (which is assigned when w = 100).

To compare MajS and Iggy’s methods, once we have a (mixture) density function M(x), we
calculate:

P (fc) = Prob{|F − fc| < ε} =

∫ fc+ε

fc−ε

M(x)dx, (3)

where ε is fixed to an arbitrary value of 0.005. Different values of ε have been tested leading to
similar results (see Additional files).

In order to improve the significance of P (fc), we compute the maximum value that can be
reached by any mixture obtained within these settings. It is straightforward that the mixture that
provides the maximum value is the one corresponding to a single prediction, say “0”, with weight
100. The maximum for P (x) is then reached for x = 0. Consequently, the maximum value, denoted
as Pmax equals :

Pmax =

∫ +ε

−ε

1

σhc

√
2π

e
− 1

2

(
x

σhc

)2

dx = 0.07969

For more details, we refer the reader to Additional files. Finally, we define a significance score

S(fc) between 0 and 1:

S(fc) = P (fc)/Pmax (4)

We use this significance score to compare both Iggy and MajS methods.
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