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Abstract: In recent years, the demand for hyperspectral imaging devices has grown significantly,
driven by their ability of capturing high-resolution spectral information. Among the several
possible optical designs for acquiring hyperspectral images, there is a growing interest in
interferometric spectral imaging systems based on division of aperture. These systems have the
advantage of capturing snapshot acquisitions while maintaining a compact design. However,
they require a careful calibration to operate properly. In this work, we present the interferometer
response characterization algorithm (IRCA), a robust three-step procedure designed to characterize
the transmittance response of multi-aperture imaging spectrometers based on the interferometry
of Fabry-Perot. Additionally, we propose a formulation of the image formation model for
such devices suitable to estimate the parameters of interest by considering the model under
various regimes of finesse. The proposed algorithm processes the image output obtained from
a set of monochromatic light sources and refines the results using nonlinear regression after
an ad-hoc initialization. Through experimental analysis conducted on four different prototypes
from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of
our approach for characterization. The associated source code for this paper is available at
https://github.com/danaroth83/irca.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The demand for imaging spectrometers, also known as hyperspectral (HS) cameras, has expe-
rienced significant growth in recent years. This surge in popularity can be attributed to their
outstanding ability to capture high-resolution spectral information, especially in comparison
to classic multispectral devices. These cameras find applications in various fields, such as
astronomy, precision agriculture, molecular biology, biomedical imaging, geosciences, physics,
and surveillance [1–4]. Of particular importance is their role in accurately measuring atmo-
spheric gases, which is vital for climate change monitoring, air quality studies, and compliance
to regulatory requirements [5].

Traditional imaging spectrometers that rely on scanning mechanism, such as whiskbroom
and pushbroom, face limitations in capturing spatially varying scenes and are forced to make
compromises between spectral and spatial resolution [6]. Consequently, significant research
efforts have been recently dedicated to the development and production of computational spectral
imaging systems. These systems aim to enhance spectral, spatial, and temporal resolution and
operate by encoding hyperspectral information in low-dimensional projected domains. However
the retrieval of the full spectral and spatial HS datacube requires the application of sophisticated
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Fig. 1. Optical concept of multi-aperture interferometric imaging spectrometers and
examples of ImSPOC devices. (a) Cross-section view of the optical concept for an
ImSPOC imaging system. In the pictured design, the interferometers are air cavities
of different thickness carved within a glass optical plate and coated with a reflective
layer in titanium dioxide (TiO2). An external spectral filter can be also used to limit
the input wavenumber range of the device for certain applications, such as NO2 gas
detection [9]. (b), (c) Examples of Image SPectrometer On Chip (ImSPOC) prototypes;
their specific characteristics are described in the experimental section.

reconstruction algorithms [7, 8].
In this paper, we focus our attention on the characterization of the transmittance response of

multi-aperture interferometric imaging spectrometers [10]. This class of instruments includes
miniaturized snapshot acquisition systems for HS imagery, whose optical design consists of a
matrix of microlenses and a staircase-shaped optical plate superposed to a focal plane array.
Fig. 1 shows the optical design of one of such devices, known as ImSPOC [5,11–14].

Fig. 2 illustrates an example of acquisition. The acquired image is composed of several
subimages, with each subimage being the result of filtering the incident radiance using the
transmittance response of a unique interferometer/microlens unit. The set of readings obtained
from the various subimages, arranged in ascending order of interferometer thicknesses, can
be viewed as a sampled representation of a continuous interferogram linked to the spectrum
of the particular region of the scene being viewed by the device. In comparison to traditional
hyperspectral cameras, multi-aperture interferometric imaging spectrometers offer several
advantages such as snapshot acquisitions, compact dimensions, while preserving competitive
spectral resolutions ranging from 5 to 10 nm. However, they do face limitations in terms of
spatial resolution and potential parallax effects.

The identification of the image formation model for these devices is a crucial step that boils
down to the estimation of the instrument optical transformation. Furthermore, regular calibration
of the instrument becomes essential to maintain up-to-date device characterizations. This is
especially relevant when considering potential changes in the instrument’s physical properties
over time, resulting from factors like instrument aging or variations in acquisition conditions,
such as temperature. As an example scenario, due to the limited accuracy in either manufacturing
or assembling the various device parts, the real thickness of the interferometers may be different
with respect to the value they were designed for. As shown in Fig. 3, if this information is
not taken into account, the interferogram samples are then placed incorrectly in domain of the
optical path difference (OPD), which may cause inaccuracies on the quality of the reconstructed
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Fig. 2. Visual representation of the operating principle of a multi-aperture interfero-
metric imaging spectrometer. In this example, the acquisition is a 512 × 640 image
taken by an ImSPOC device. The image is filtered by 70 interferometer/microlens units,
resulting in the scene being split into multiple subimages. Matching pixels across these
subimages are then arranged to form an interferogram for each ground point, which is
subsequently processed to reconstruct the spectrum [15, 16]. The purpose of this figure
is purely illustrative.
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Fig. 3. Illustration of the effect of the errors in the estimation of the interferometer
thickness. If the thicknesses of the optical components are known with an error (depicted
by an orange dashed outline), the interferometer may sample the interferogram at a
position that does not accurately correspond to the actual OPD value. In the specific
case of the presented interferogram, the samples shift from the blue to the orange
positions.

spectrum.
To address this issue, we propose in this work a general procedure for the parametric

characterization of the instrument. The procedure is divided into a measurement session, where
the device is illuminated with a set of flat field monochromatic sources, and an algorithmic
estimation of the parameters of interest for the transmittance response, which we coin as
interferometer response characterization algorithm (IRCA).

The image formation model for the devices that we aim to characterize is also recalled in
this work. However, with respect to the typical formulation of the literature, we derive the
formation model in terms of the parameters of interest. We formalize the mathematical model
of the transmittance response of the device, specifically in terms of the OPD, reflectivity, gain,
and phase shift. We also express this transmittance response under different finesse regimes.
Each regime corresponds to a specific number of emerging waves in the Fabry-Perot (FP) cavity,
arranged in descending order of optical power. Previous studies [16, 17] implicitly characterized
such devices under the assumption of 2 emerging waves, prioritizing conceptual simplicity over a
precise parameter estimation. Our formulation enables us to describe previous techniques within
our proposed framework, allowing for the application of similar trade-offs if desired.

Other than for ImSPOC devices, the IRCA can also be potentially employed to characterize
and regularly update the calibration of various devices that exhibit a response based on the
interferometry of Fabry-Perot. This includes compressive imagers [10, 18] and hyperspectral
imaging systems with dielectric mirrors [19, 20], among others.

The IRCA is defined by a three step procedure: the overall optical gain is firstly addressed
discarding any interferometric effect, then a first rough assessment of the remaining parameters is
performed by casting the problem as a maximum likelihood (ML) estimation of the characteristics
of a sinusoidal signal. We refine this estimation by casting the problem as a nonlinear regression
and solving it with the Levenberg-Marquardt (LM) algorithm [21]. The nonlinear regression
approach was also employed in other works [22], but we focus our attention here on a robust
solution for optical devices whose sensors are particularly sensitive to noise, as the different
parameters are made separable by imposing that their polynomial expression in terms of
wavelength has a limited degree.

To summarize, the novel contributions of this work are:



Table 1. Selection of variables used in this paper, grouped in their respective categories.

Symbol Description Symbol Description
A

cq
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𝜎 Wavenumbers s Focal plane coordinates

𝝎 = (\ [𝑖 ] , 𝜙 [𝑖 ] ) Direction of incidence {Ω 𝑗 } 𝑗∈ [1, ... , 𝑁𝑝 ] Solid angle of incidence

L(𝜎,𝝎) Input spectral radiance {Φ 𝑗𝑘 } 𝑗∈ [1, ... , 𝑁𝑝 ] ,𝑘∈ [1, ... , 𝑁𝑖 ] Received flux

{𝑆𝑘 }𝑘∈ [1, ... , 𝑁𝑖 ] Entrance pupil surface {𝑑𝑘 }𝑘∈ [1, ... , 𝑁𝑖 ] Interferometer thickness
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ra

m
et

er
s 𝜹 = { 𝛿𝑖 }𝑖∈ [1, ... , 𝑁𝑖 ] OPDs 𝜑0 Phase shift

A(𝜎) Gain a = {𝑎𝑚}𝑚∈ [0, ... , 𝑁𝑑 ] Gain coefficients

R(𝜎) Surface reflectivity r = {𝑟𝑚}𝑚∈ [0, ... , 𝑁𝑑 ] Reflectivity coefficients

𝜷 = {𝛽𝑚}𝑚∈ [1, ... , 𝑁𝑚 ] Vector of parameters 𝜷 = {𝛽𝑚}𝑚∈ [1, ... , 𝑁𝑚 ] Estimated parameters

A
cq

.v
ec

to
rs 𝝈 = {𝜎𝑖 }𝑖∈ [1, ... , 𝑁𝑎 ] Central wavenumbers 𝑇𝜷 (𝜎𝑖 ) = {𝑡𝑖 }𝑖∈ [1, ... , 𝑁𝑎 ] Transmittance response

y = {𝑦𝑖 }𝑖∈ [1, ... , 𝑁𝑎 ] Single pixel acquisition w = {𝑤𝑖 }𝑖∈ [1, ... , 𝑁𝑎 ] Flat field pixel statistic

u = {𝑢𝑖 }𝑖∈ [1, ... , 𝑁𝑎 ] Neighborhood mean v = {𝑣𝑖 }𝑖∈ [1, ... , 𝑁𝑎 ] Scaled neighborhood mean

A
m

ou
nt 𝑁𝑎 Acquisitions 𝑁𝑖 Interferometers

𝑁𝑝 Pixels per interferometer 𝑊 Waves

𝑁𝑑 Degree 𝑁𝑚 Parameters

1. The formalization of the image formation principle of multi-aperture Fabry-Perot imaging
spectrometers (interferometers, lenslet, etc.). We define within a single framework the
dependency on its characteristic parameters (OPD, gain, reflectivity, phase shift) and the
regimes of finesse associated to different amounts of transmitted waves;

2. The development of the IRCA, a procedure for the estimation of parameters for transmittance
responses of devices operating as FP interferometers;

3. The definition of an experimental procedure for the characterization of multi-aperture
interferometric imaging spectrometers, using monochromatic sources. We test the
effectiveness of the proposed method on real acquisitions from four ImSPOC prototypes
with different characteristics.

The article is organized as follows: in Section 2 we describe the image formation model
of the multi-aperture interferometric imaging spectrometers, in Section 3 we describe the
proposed spectral characterization setup and estimation algorithm, and in Section 4 we evaluate
its performances and discuss its results in relation to the physics of the devices.

2. Image formation for multi-aperture interferometric imaging spectrometers

In this section, we describe the image formation model of a multi-aperture interferometric
imaging spectrometer. We begin by deriving the expression of the transmittance response for a
single FP interferometer/microlens unit in Section 2.1. We then specify it within our framework
for different regimes of finesse in Section 2.2. Finally, we identify the parameters of interest for
their characterization with their respective model in Section 2.3.

Following the literature of Fourier transform spectrometers, in this work the spectra and
transmittance responses are expressed in terms of wavenumbers 𝜎, that is as the reciprocal of the
wavelengths (e.g., a wavelength of 500 nm corresponds to 𝜎 = 2 × 104 cm−1), but the relevant
plots include both wavenumber and wavelength scales. Furthermore, the vertical ordinates are
appropriately labeled as normalized intensity when the intensity is scaled by its maximum value,
and as mean scaled intensity when scaled by its mean value. In situations involving multiple plots,
all plots are consistently scaled using the mean of the reference. For the reader’s convenience,
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Fig. 4. Light ray propagation within a multi-aperture FP imaging spectrometer. (a)
Zoomed-in visualization of a single interferometer/microlens unit, showcasing the
focusing effect of the light rays to the focal plane. (b) Detailed view of the Fabry-Perot
cavity. The light propagation gives rise to an OPD, which corresponds to the difference
between the optical paths highlighted in red and green.

the variables used in this paper are shown in Table 1, separated into variables for the continuous
image formation model, for its parameters, for the acquisition vectors and the vector sizes. These
variables will be formerly introduced when relevant to the discussion.

2.1. Optical transfer model

We want to define here the expression of the sensors’ readout in terms of the incident radiance.
To this purpose, we analyze the light ray propagation within a single interferometer/lens unit of
the optical system, as shown in Fig. 4a.

By considering a scene at the optical infinity, there is a bĳective correspondence between the
direction of incidence 𝝎 of the incident light and the position s on the focal plane. Consequently,
we can express the spectral radiance L of the incident light either as L(𝜎, 𝝎) or L(𝜎, s). In
this scenario, the 𝑘-th interferometer acts as a spectral filter and introduces an attenuation T𝑘 of
the radiant flux which varies only with the angle of incidence 𝝎 and the wavenumber 𝜎. As in
the previous case, this can also be expressed interchangeably as T𝑘 (𝜎, 𝝎) or T𝑘 (𝜎, s).

Assuming no crosstalk in the formation of each subimage, the spectral flux Φ 𝑗𝑘 (𝜎) received
by the 𝑗-th sensor (i.e., a photodetector) is only due to incident light within a given 𝑘-th
interferometer. Its expression at the focal plane is given by:

Φ 𝑗𝑘 (𝜎) =
∫

T𝑘 (𝜎, s) L (𝜎, s) 𝑑G , (1)

where G denotes the geometric etendue subtended by the surface of the 𝑗-th photodetector and
the exit pupil associated to the 𝑘-th microlens.

Considering that the etendue is conserved across the object and the image space, we can



rewrite eq. (1) at the input plane as:

Φ 𝑗𝑘 (𝜎) = 𝑆𝑘

∬
Ω 𝑗

T𝑘 (𝜎, 𝝎) L (𝜎, 𝝎) 𝑛0 cos \ [i] 𝑑𝝎 , (2)

where Ω 𝑗 is the solid angle of incident rays that focus over the 𝑗-th sensor, 𝑆𝑘 is the surface of the
entrance pupil associated to the 𝑘-th interferometer, while \ [i] is the polar angle of the direction
of incidence 𝝎.

Finally, we model the intensity level 𝑥 𝑗𝑘 captured by the photodetector as:

𝑥 𝑗𝑘 = Δ𝑡

𝜎𝑚𝑎𝑥∫
𝜎𝑚𝑖𝑛

Φ 𝑗𝑘 (𝜎) b (𝜎) [ 𝑗 (𝜎) 𝑑𝜎 , (3)

where [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥] is the bandwidth of the instrument, [ 𝑗 (𝜎) denotes the quantum efficiency
of the 𝑗-th sensor, b (𝜎) denotes the spectral response of the accessory elements of the optical
system (entry filter, leading optics, etc.), and Δ𝑡 denotes the integration time.

2.2. Fabry-Perot regimes of finesse

We now focus our attention on expanding the term T𝑘 (𝜎, 𝝎) from eq. (2). Let us consider a
monochromatic plane wave with complex amplitude E[i] (𝜎) incident to the FP interferometer,
forming an angle \ [i] with the normal to the incident plane. The complex amplitude E[o] of the
transmitted light can be seen as a sum of𝑊 → ∞ successive emerging waves {E𝑚}𝑚∈[0, ... , 𝑊−1] .

Each emerging wave introduces a fixed round trip phase difference:

𝜑 = 2𝜋𝛿𝜎 − 𝜑0 , (4)

where 𝜑0 defines a constant phase shift and 𝛿 defines the OPD between two consecutive emerging
waves. By referring to the geometry shown in Fig. 4b, the OPD is determined as the difference
between the optical paths for a round trip inner reflection and a direct transmission. By making
use of Snell’s law, simple geometrical manipulations yield:

𝛿 = 𝑛
2𝑑𝑘
cos \

− 𝑛0 (2𝑑𝑘 tan \ sin \ [i]) = 𝑛

(
2𝑑𝑘
cos \

− 2𝑑𝑘 tan \ sin \
)
= 2𝑛𝑑𝑘 cos \ , (5)

where 𝑑𝑘 denotes the thickness of the 𝑘-th FP cavity, while 𝑛 and \ are the refractive index and
the reflection angle within the cavity, respectively.

In the following, we denote as T [𝑊 ]
𝑘

(𝜎,𝝎) the expression of T𝑘 (𝜎,𝝎) specific to the a generic
integer amount 𝑊 of emerging waves. Its expression is defined by the ratio between the output
and input irradiance and evaluates as follows:

T [𝑊 ]
𝑘

(𝜎,𝝎) :=
����E[o] (𝜎)
E[i] (𝜎)

����2 = (1 − R)2

�����𝑊−1∑︁
𝑚=0

R𝑚 exp(− 𝑗𝑚𝜑)
�����2 (6a)

= (1 − R)2
����1 − R𝑊 exp(− 𝑗𝑊𝜑)

1 − R exp(− 𝑗𝜑)

����2 , (6b)

where R is the surface reflectivity, and the resulting term (1−R)2 is due to the direct transmission
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Fig. 5. Regimes of reflectivity. (a) The figure illustrates the mean scaled theoretical
transmittance response for various values of the surface reflectivity R. (b) Depending
on the desired level of accuracy, the user can establish a root mean square error threshold
to identify the maximum reflectivity value (dashed line) in which the 𝑊-wave model of
eq. (7b) exhibits behavior indistinguishable from the Airy distribution of eq. (7c).

through the cavity. Specifically, for 2, 𝑊 ≥ 0 and 𝑊 → ∞ waves, we obtain:

T [2]
𝑘

(𝜎, 𝝎) =
(
1 + R2 + 2R cos 𝜑

)
(1 − R)2 , 2 waves , (7a)

T [𝑊 ]
𝑘

(𝜎, 𝝎) = 1 + R2𝑊 − 2R𝑊 cos(𝑊𝜑)
1 + R2 − 2R cos 𝜑

(1 − R)2 , W waves , (7b)

T [∞]
𝑘

(𝜎, 𝝎) = (1 − R)2

(1 − R)2 + 4R sin2 (𝜑/2)
, ∞ waves . (7c)

T [∞]
𝑘

(𝜎,𝝎) is often known in the literature as the Airy distribution [23].
For our purposes, it is also convenient to derive the mean scaled expression T [𝑊 ]

𝑘 of T [𝑊 ]
𝑘

as:

T [𝑊 ]
𝑘 (𝜎,𝝎) = 1 + R

(1 − R2𝑊 ) (1 − R)
T [𝑊 ]
𝑘

(𝜎, 𝝎) . (8)

Fig. 5a presents the plot of the expression of T [∞]
𝑘 for different values of reflectivity. This

visualization assumes that R and 𝑛 remain constant regardless of the wavenumbers 𝜎. However,
this assumption is rarely verified in more realistic scenarios, where variations with respect to
𝜎 are often observed. The spacing between the peaks of the Airy distribution decreases as the
thickness 𝑑𝑘 of the interferometer increases. This principle is exploited by multi-aperture devices
to create different transmittance responses for different subimages as previously shown in Fig. 2.

In the literature, transmittance responses are commonly classified based on the finesse
parameter, whose value 4R/(1 − R)2 increases with the reflectivity. For low finesse devices, the
response closely resembles a pure sinusoid. This characteristic allows for increased throughput,
resulting in higher signal to noise ratio (SNR) captured by the sensors. In the case of high finesse,
the spectral response exhibits sharper peaks, resulting in an enhanced periodic bandpass filtering
effect. Different finesse regimes can be determined for each wave model, by establishing the
maximum reflectivity value such that a given error measure between the transmittance response of
the 𝑊-wave model and the Airy distribution remains below a certain threshold. Fig. 5b illustrates
this concept, employing the root mean square error (RMSE) as the chosen error measure.

2.3. Proposed formulation of the image formation model

In order to characterize the overall spectral response of the instrument at a given pixel, the
physical acquisition model employed from eq. (2) may be simplified, assuming that the optical



transmittance response is roughly constant within the targeted solid angle Ω 𝑗 and cos \ ≈ 1:

𝑥 𝑗𝑘 =

𝜎𝑚𝑎𝑥∫
𝜎𝑚𝑖𝑛

𝑇𝜷 (𝜎)
©«
∬
Ω 𝑗

L(𝜎, 𝝎) 𝑑𝝎
ª®®¬ 𝑑𝜎 . (9)

Here, 𝑇𝜷 (𝜎) models the transmittance response of the entire instrument associated to a given
pixel on the focal plane array (FPA). For convenience, it is useful to describe it in terms of the
expression of eq. (8):

𝑇𝜷 (𝜎) = A(𝜎)T 𝑘,𝑊 (𝜎, \ 𝑗 ) (10)

where we defined a gain variable:

A(𝜎) := b (𝜎)[ 𝑗 (𝜎)𝑆𝑘Ω 𝑗

1 + R(𝜎)
(1 − R2𝑊 (𝜎)) (1 − R(𝜎))

, (11)

which incorporates all the multiplicative terms from eq.s (2) and (3), while \ 𝑗 is the inner reflection
angle associated to the incident light waves within the solid angle Ω 𝑗 . The transmittance response
is written in its scalar form so that the mean value with respect to 𝜎 of 𝑇𝛽 (𝜎) is equal to that of
A(𝜎).

The terms A(𝜎) and R(𝜎) exhibit strong coupling in eq. (11). To estimate their contributions
separately, we impose them to be slowly varying functions with respect to 𝜎. To achieve this, we
restrict their models to polynomials of limited degree 𝑁𝑑:

A(𝜎) =
𝑁𝑑∑︁
𝑚=0

𝑎𝑚𝜎
𝑚 , R(𝜎) =

𝑁𝑑∑︁
𝑚=0

𝑟𝑚𝜎
𝑚 . (12)

The OPD value 𝛿 is assumed to be constant with the wavelength 𝜎 as the rays interfer within
the air in the prototypes under test (Fig. 1a). This assumption is extended to the phase shift 𝜑0 in
order to simplify the computation. These last hypotheses may be too limiting for interferometric
cavities made of dispersive materials. For such cases, one may suppose a prior knowledge of
this dispersion as function of 𝜎 to reduce the problem to the estimation of the interferometer
thickness, which is independent on 𝜎.

Our goal then summarizes to find an estimation �̂� of the 2𝑁𝑑 + 4 elements of 𝜷 =[
𝑎0 , ..., 𝑎𝑁𝑑

, 𝑟0 , ..., 𝑟𝑁𝑑
, 𝛿, 𝜑0

]
which allows to approximate the transmittance response 𝑇𝜷 as

accurately as possible.

3. Proposed characterization procedure

In this section, we present the proposed procedure for the spectral characterization of FP
interferometers. Specifically, we describe the measurement setup for the characterization in
Section 3.1 and we provide an overview of IRCA in Section 3.2, detailing each of its composing
steps in the subsequent sections.

3.1. Measurement setup for the characterization of the device

To accurately characterize a given device under test and allow the inference of its parameters, it
is necessary to capture a specific set of observations from reference sources under controlled
conditions. Perhaps the most straightforward approach involves illuminating the device with
a flat field illumination using a set of monochromatic incident spectra with predefined central
wavenumbers. In fact, based on eq. (9), the corresponding 𝑁𝑎 acquisitions y ∈ R𝑁𝑎 are samples
of the expected value of 𝑇𝜷 (𝜎) evaluated at the specific wavenumbers 𝝈 ∈ R𝑁𝑎 .
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Fig. 6. Measurement setup for the characterization of multi-aperture interferometric
imaging spectrometers.

In order to achieve this result, we propose the measurement setup shown in Fig. 6. It involves
the utilization of a wideband lamp as the light source, whose emitted light is filtered by a
monochromator (i.e., equipped with a diffraction grating). The bandwidth of the monochromator
is deliberately narrower than the spectral resolution of the device, ensuring a sharply impulsive
filtered spectrum. Subsequently, this spectrum is uniformly scattered over the device under test by
means of an integrating sphere. By tuning the monochromator, a series of central wavenumbers
is selected, and the device under test captures an image for each illumination in sequence.

An external spectrometer or probe is used to measure the incident power of the instrument. The
measured value is used to equalize the energy of all the acquired images at different wavenumbers,
with background level set to zero. Finally, the vector y is obtained by extracting the specific
spatial position from the acquired datacube, corresponding to the pixel being characterized.

Therefore, we formalize the problem at hand as finding the estimation �̂� of the parameter
vector such that:

�̂� = arg min
𝜷

𝑁𝑎∑︁
𝑖=1

(
𝑇𝜷 (𝜎𝑖) − 𝑦𝑖

)2
. (13)

3.2. Overview of the interferometer response characterization algorithm (IRCA)

Solving eq. (13) is a particularly challenging problem, due to the nonlinear dependency of
𝑇𝜷 from the parameters 𝜷. The available tools for solving nonlinear regression methods are
particularly sensitive to converging to non-local maxima [24], so that a proper initialization is
critical to produce an accurate parametrization of the optical system.
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Fig. 7. Overview of the proposed IRCA algorithm for the characterization of the
transmittance response of a single Fabry-Perot interferometer.

The proposed interferometer response characterization algorithm (IRCA), depicted in Fig. 7,
consists of three steps, each dedicated to processing one of the three different sufficient statistics
extracted from the 𝑁𝑎 images captured during the measurement session. This approach is
designed to enhance the overall robustness of the final result by leveraging multiple aspects of
the available information. We describe each of these steps below:

• The gain estimation step processes the vector w ∈ R𝑁𝑎 , which represents the flat field
statistic. This vector is used to obtain an initial assessment of the gain coefficients
{�̂�𝑖}𝑖∈[0, ... , 𝑁𝑑 ] of A(𝜎). The flat field statistic captures the response of the pixel under
test without the presence of the interferometric fringes. In cases where the vector w
is not directly available, it can be approximated by evaluating the percentile from the
raw acquisition across the entire focal plane. This approach takes advantage of the
global response of the image, which naturally dampens the oscillations caused by the
interferometric fringes.

• The maximum likelihood (ML) initialization involves processing the vector u ∈ R𝑁𝑎 ,
which represents the mean over neighbors. This step returns an initial estimation

[
𝛿, 𝑟0, �̂�0

]
of the remaining parameters, namely the OPD, reflectivity, and phase shift, respectively.
The vector u is obtained by calculating the spatial average of the raw acquisition within a
square window centered around the pixel under test. This averaging helps reduce the noise
associated with the acquisition and could be performed even in the temporal domain, if
such information is available. At this stage of the estimation process, the parameters are
assumed to be constant with the wavenumbers.

• In the trust region refinement (TRR) step, we process the raw acquisition y ∈ R𝑁𝑎 to
obtain the final estimation �̂� of the complete set of parameters. To achieve this, we initialize
a LM algorithm [21] with the parameter vector 𝜷[0] whose elements were inferred in the
previous steps. Subsequently, we iterate through the algorithm to solve eq. (13).

The following sections describe each of these steps in further detail. It is important to note
that in certain scenarios, such as non-imaging systems where a one-dimensional acquisition is



obtained using a single pixel sensor, the mean over neighbors and flat field statistic may not be
available. Nonetheless, in these cases, the algorithm can still be applied by setting u equal to y
and the elements of w equal to the average value of y.

3.3. Step 1: Gain estimation

We formalize the problem associated to the gain estimation as follows:

â = arg min
a

𝑁𝑎∑︁
𝑖=1

(A(𝜎𝑖) − 𝑤𝑖)2 , (14)

where â = {�̂�𝑚}𝑚∈[0, ... , 𝑁𝑑 ] describes our estimation the coefficients of the polynomial repre-
sentation Â(𝜎) = ∑𝑁𝑑

𝑚=0 �̂�𝑚𝜎
𝑚 of the gain A(𝜎). The vector w = {𝑤𝑖}𝑖∈[1, ... , 𝑁𝑎 ] contains the

samples of the flat field statistic.
We propose to solve the problem above with a nonlinear regression approach using the LM

algorithm with the implementation of [21], as described in Appendix A. We initialize the gain
coefficients vector a by setting the first element to the average value of w and the rest to zero.

3.4. Step 2: Maximum likelihood initialization

The maximum likelihood (ML) initialization step defines a procedure that is as an extension of
the simplistic OPD estimation algorithm proposed in [17]. In the step, we assume to operate in a
low finesse regime, so that the transmittance response 𝑇𝜷 (𝜎) behaves like the 2 waves model of
eq. (7a):

𝑇𝜷 (𝜎) =
(
1 +

2𝑟0

1 + 𝑟2
0

cos(2𝜋𝛿𝜎 − 𝜑0)
)
A(𝜎) . (15)

In the above equation, we implicitly impose that the reflectivity R is uniform and equal to 𝑟0
over the whole wavenumber range. By normalizing both terms of the minimization problem of
eq. (13) and applying it to the mean over neighborhood vector u, the problem can be rewritten as:

�̂� ≈ arg min
𝜷

𝑁𝑎∑︁
𝑖=1

(
𝑇𝜷 (𝜎𝑖)
A(𝜎𝑖)

− 𝑢𝑖

Â(𝜎𝑖)

)2
≈ arg min

𝜷

𝑁𝑎∑︁
𝑖=1

(
𝛼 cos

(
2𝜋𝛿𝜎𝑖 − 𝜑0

)
− 𝑣𝑖

)2
, (16)

where we defined 𝛼 := 2𝑟0/(1 + 𝑟2
0) and 𝑣𝑖 :=

(
𝑢𝑖 − Â(𝜎𝑖)

)
/Â(𝜎𝑖), assuming A(𝜎𝑖) ≈ Â(𝜎).

Eq. (16) is in the form of the classical problem of the inference of the parameters in a sinusoid
affected by Gaussian noise, which is a well known problem in the literature [25, Example 7.16].
Specifically, it is a well known result that the maximum likelihood estimator 𝛿 is equal to the
OPD value which maximizes the periodogram:

𝛿 = arg max
𝛿∈ [0, 1

2Δ𝜎 ]

����� 𝑁𝑎∑︁
𝑖=1

𝑣𝑖 exp(− 𝑗2𝜋𝛿𝜎𝑖)
����� . (17)

In other terms, the estimator is the value that maximizes the generalized discrete Fourier transform
(DFT) of v. The above result is valid for values of 𝛿 reasonably far from the extremes of the
interval [0, 1/(2Δ𝜎)], where Δ𝜎 = (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)/𝑁𝑎 is the average central wavenumber step.

Eq. (17) can be solved numerically over a sampled version of the interval of interest, yet
the accuracy is limited to a resolution of 1/(2𝑁𝑎Δ𝜎). If the OPD is approximately known, it
is computationally efficient to evaluate eq. (17) within a reduced interval centered around its
nominal value.



Table 2: Characteristics of the available ImSPOC prototypes used in this work and of their spectral characterization
experimental acquisitions.

Device specifications

Prototype label Interf.s
𝑁𝑖

Δ𝑑

[nm]
Focal plane

size [px]
Subimage
size [px]

Wavenumber
range [mm−1]

Acq.s
𝑁𝑎

Δ𝜎

[cm−1 ]
Prototype 1 216 100 1096 × 2808 100 × 100 1000 − 2000 101 100

Prototype 2 319 87.5 1096 × 2808 96 × 96 1000 − 2850 721 25

Prototype 3 672 87.5 1096 × 2808 66 × 66 1230 − 2880 551 30

Prototype 4 79 (+1)* 200 512 × 640 64 × 64 625 − 1000 343 11 ± 12**

* In this prototype, two interferometers are both at the optical contact for testing purposes.
**This cell gives the mean and standard deviation of the step size, as the wavenumber space is irregularly spaced for

this experiment.

The estimation 𝑟0 of the reflectivity 𝑟0 is then obtained in terms of the the estimation �̂� of the
amplitude 𝛼 of the sinusoid:

𝑟0 = 1 −
√︁

1 − �̂�2 , where �̂� =
2
𝑁𝑎

����� 𝑁𝑎∑︁
𝑖=1

𝑣𝑖 exp(− 𝑗2𝜋𝛿𝜎𝑖)
����� , (18)

and the estimation �̂�0 of 𝜑0 is:

�̂�0 = arctan
∑𝑁𝑎

𝑖=1 𝑣𝑖 sin(2𝜋𝛿𝜎𝑖)∑𝑁𝑎

𝑖=1 𝑣𝑖 cos(2𝜋𝛿𝜎𝑖)
. (19)

In the above equation, arctan denotes the four-quadrant arctangent version that allows for �̂�0 to
assume any value in the range [−𝜋, 𝜋). The ML method requires very low computational power,
but its applicability is limited by the validity of its assumptions. Some other possible initialization
strategies, such as the exhaustive search (ES) developed in [26] which is based on a grid search
in the sample space of the parameters, have the advantage to work with a wider variety of models.
They are however vastly slower and may not necessarily produce more accurate results, as the
estimations for 𝑟0 and 𝜑0 are limited to the finite amount of values of the discrete sample space.

3.5. Step 3: Trust region refinement (TRR)

The final parameter estimation �̂� follows a similar procedure as described in Section 3.3.
Specifically, the LM algorithm is employed once again, but this time to solve eq. (13). The
parameter vector 𝜷 is initialized with values from 𝜷[0] = [�̂�0, ..., �̂�𝑁𝑑

, 𝑟0, 0, ..., 0, 𝛿, �̂�0], where
the non-zero elements correspond to the coefficients estimated at the step 1 and 2 of the algorithm.

4. Experimental results

This section presents the experimental results obtained from the characterization of a series of
ImSPOC prototypes with various characteristics. In Section 4.1 we describe the experimental
setup, in Section 4.2 we test various configurations for the proposed algorithm and compare its
performances with previous works. Finally, in Section 4.3 we discuss the physical interpretation
of the parameters. A Python implementation of the proposed algorithms, together with a simulator
of the image formation for multi-aperture Fabry-Perot imaging spectrometers, is available at the
first author’s repository [27].

4.1. Experimental setup

For this work, the characterization datacubes were captured with the setup shown in Fig. 6, using
a tunable monochromatic light source from Zolix Instruments Co., Ltd, with a 500 W Xenon



Table 3. Model characterization RMSE comparison. Best results are in bold.

Method 𝑊 Prototype 1 Prototype 2 Prototype 3 Prototype 4

Fi
xe

d
A

ML [17] 2 0.3022 ± 0.0605 0.1948 ± 0.0720 0.4363 ± 0.2338 0.2291 ± 0.0756

ES [26]

2 0.3052 ± 0.0638 0.2319 ± 0.0792 0.4654 ± 0.2393 0.2472 ± 0.0795

3 0.2941 ± 0.0638 0.2153 ± 0.0991 0.4672 ± 0.2403 0.2472 ± 0.0800

∞ 0.2934 ± 0.0640 0.2204 ± 0.1247 0.4673 ± 0.2404 0.2472 ± 0.0800

ML+TRR
2 0.2721 ± 0.0637 0.2698 ± 0.2166 0.4153 ± 0.2338 0.1856 ± 0.0852

∞ 0.2544 ± 0.0631 0.2445 ± 02217 0.4126 ± 0.2342 0.1836 ± 0.0873

Fr
ee

A ML+TRR
2 0.2169 ± 0.0392 0.1691 ± 0.0366 0.2186 ± 0.0528 0.0724 ± 0.0210

∞ 0.1937 ± 0.0432 0.1336 ± 0.0343 0.2170 ± 0.0519 0.0669 ± 0.0222

ES+TRR ∞ 0.1937 ± 0.0432 0.1335 ± 0.0343 0.2130 ± 0.0520 0.0676 ± 0.0233

light source model Gloria-X500A and a monochromator model Omni-300_i. We also utilized
a 5.3-inch diameter integrating sphere coated with Spectralon (model 4P-GPS-053-SF from
Labsphere, Inc.). The incident optical power was measured either with the fiber optic gated
spectrometers model USB2000+ from Ocean Optics, Inc. or with the photodiode power sensor
model S120VC from Thorlabs. The product specifications can be found on the websites of the
respective manufacturers.

The devices under test are four different ImSPOC prototypes, whose characteristics are
described in Table 2. Each prototype features an array of interferometers disposed over a
bidimensional matrix in a staircase pattern, whose thicknesses linearly increase with a nominally
constant step size Δ𝑑. While sharing the same underlying concept, each prototype is specifically
designed for different applications. Prototype 1 and 2 are specifically tailored for the measure of
atmospheric pollution, prototype 3 functions as an imaging system for capturing the phenomenon
of northern lights, and prototype 4 is intended for greenhouse gas detection. In terms of spectral
sensitivity, prototypes 1 to 3 operate within the visible/ultraviolet wavelength range, whereas
prototype 4 covers the near-infrared spectrum. For each device, a characterization datacube
was captured using the procedure described in Section 3.1. The central wavenumbers of the
monochromator are chosen to be regularly spaced with a step size Δ𝜎. The wavenumber step
size Δ𝜎 is selected to satisfy the Nyquist condition Δ𝜎 < 1/(2𝛿𝑚𝑎𝑥). This selection ensures that
aliasing effects are avoided in the sampling of the transmittance response of the interferometer
with the largest OPD 𝛿𝑚𝑎𝑥 = 2(𝑁𝑖 − 1)Δ𝑑. The condition is satisfied in all experimental setups,
although only by a small margin for prototype 1 and to a lesser extent for prototype 3, due to time
constraints. The specifications for these measurements are reported in Table 2.

Given a characterization datacube and a specific subimage within it, the central pixel of
the chosen subimage is extracted to construct the raw acquisition vector y. The mean over
neighbors is computed using a 11 × 11 kernel window centered around the extracted pixel,
while the 90-percentile metric is instead employed as the flat field statistic. Next, we apply the
characterization method described in Section 3 to obtain the characterization vector �̂�, with
𝑁𝑑 = 5 as the degree of the polynomial for the reflectivity and gain. To verify the quality of the
estimation, we use the RMSE metric, defined as follows:

𝑅𝑀𝑆𝐸 =


1
𝑁𝑎

𝑁𝑎∑︁
𝑖=1

(
𝑇𝜷 (𝜎𝑖) − 𝑦𝑖

𝑦

)2
1/2

. (20)

where 𝑦 = (∑𝑁𝑎

𝑖=1 𝑦𝑖)/𝑁𝑎 denotes the mean value of y and 𝑇𝜷 (𝜎𝑖) is eq. (10) evaluated with the
estimated vector of parameters �̂�. This metric serves as benchmark for comparing with the other
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(a) Prototype 4: transmittance response of interferometer
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(b) Prototype 1: transmittance response of interferometer
#50.
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(c) Prototype 2: gain estimation comparison.

0.40.50.60.70.80.91.0
Wavelenghts [nm] ×103

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Wavenumbers [cm 1] ×104

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
fle

ct
iv

ity

(d) Prototype 2: estimated reflectivity.

Fig. 8. Spectral responses of the characterization results with the IRCA. (a), (b) Two
examples of fitting the acquisition with the transmittance response using estimated
parameters. The acquisition (in orange) is compared to the estimation with the proposed
IRCA method (in green) and with the ML method (in blue). (c) Estimated gain. In
the orange curve, we allow the LM algorithm to freely update the parameters of the
gain polynomial, while in the blue curve we only allow to change the scaling factor
of the initialized gain. (d) Estimated reflectivity. The shaded area around the curves
represents one standard deviation interval across different interferometers.

characterization methods being tested. We then repeat this procedure in order to characterize the
transmittance response of the central pixels for all 𝑁𝑖 interferometers of the device.

4.2. Algorithm and model comparisons

The IRCA is tested here with different configurations, and we assume that the gain estimation is
always carried as a pre-processing step. We compare its results with previous works [17, 26]
which we can conveniently frame within our proposed framework.

We employ different wave models for the optical transmittance response 𝑇𝜷 (𝜎), according to
the definitions of eq.s (7) and (10), specifically for the case of 𝑊 = 2, 3, or ∞ emerging light rays.

The RMSE results, given in Table 3, shows that, when all the three steps are performed, the
proposed method is consistently the best performing, regardless of the different characteristics of
the prototypes. It also highlights how the ∞-wave model, which is a better representation of the
generalized Airy distribution, provides a more accurate fit for the spectral response. Both tested
initializations reach comparable results, suggesting that the ML method should be preferred, as it
is faster by a factor of 10-20 times over the ES methodology.

The proposed procedure was tested both with and without the trust region refinement step, in
order to showcase the advantage of the iterative curve fitting procedure. The TRR step has a
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(b) Calibration date: 2021-10-20.
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(c) Calibration date: 2021-12-13.

Fig. 9. Characterization of prototype 2 from measurements taken at different times. (a)
Visualization of the estimated OPDs for all the interferometers, arranged in ascending
order of nominal thicknesses. The yellow halo indicates the region that was not
explored for the ML initialization, as that strays too far from the nominal values
known from the design of the instrument. (b), (c) Comparison between the estimated
transmittance responses (blue) and raw acquired data (orange) for interferometer #150.
There are significant differences in the intensity values and appearance of the orange
curves between the two figures. This stems from the fact that the raw acquisitions
on 2021-12-23 were divided by the spectral response of the light source, while the
acquisitions on 2021-10-20 are unaltered as we lack this information for that particular
session.

considerable impact on the accuracy of the results. This is due to the LM algorithm exploring
a continuous space of parameters, resulting in better performance with respect to the ML by
itself where the OPD space is explored in discrete steps. A visual comparison between their
reconstructed spectral responses is shown in Fig. 8. While the ML algorithm by itself already
infers the OPD with a remarkable accuracy, the curve does not follow accurately the trend of the
data, as the other parameters vary significantly with the wavenumbers.

The results for the prototype 2 for the estimation of the gain and reflectivity are given in Fig. 8.
The figures showcase the advantage of the TRR step in assessing the gain for each detector
separately. The analysis of the reflectivity reveals a reduced sensitivity of the instrument at the
extreme values of the wavenumber range, which aligns with the expected spectral response of the
reflective coating.

4.3. Physical interpretation of the results

For the prototype 2, the measurements for the characterization was repeated at three different
dates, using progressively refined setups. The proposed method was applied to each of those
datasets in order both to analyze the robustness of the algorithm and to detect eventual drifting in
the parameters. Fig. 9 provides a visual comparison of the results. For the normal incidence of the
light illumination, the OPDs are roughly expected to be double the thickness of interferometers,
as a consequence of substituting \ = 0 in eq. (5). The estimation of the OPDs in Fig. 9a stays
vastly consistent across all sessions, with only very sparse examples where the results do not
align.

The figure shows a pattern of alternating slopes. To make sense of this effect, we also present
the estimation of the OPDs for the prototype 1. Prototype 1 is designed with a distinctive staircase
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Fig. 10. Estimated OPDs for the prototype 1. (a) The heatmap presents the variation
in the increase of the OPD between successive interferometers. The indexes of the
interferometers are arranged in ascending order of their nominal thickness. (b), (c)
Effect of tilting the optical plate on with respect to an aligned one. The tilt can result
in either a compression (indicated by red shades) or an expansion (indicated by blue
shades) of the air gap in the cavity with respect to the nominal value. The indices inside
the cavities denote the positions of the interferometers within the row.

pattern, characterized by cavity thicknesses that increase in constant steps on both sides of a
central vertical axis. This pattern is reflected in the deviation of the estimated OPD increase with
respect to the expected value. As depicted in Fig. 10, the observed discrepancy can likely be
attributed to a tilt of the optical plates relative to the desired parallel installation.

We also employed the proposed algorithm for the spectral characterization of prototype 2 at
different angles of incidence, following the common practice in the literature [28–30]. Specifically,
we conducted a comprehensive characterization of the transmittance response for every pixel
on the focal plane using the ML+TRR variant of the proposed IRCA method. The resulting
estimation for the OPD is displayed in Fig. 11, where the subimage area of the instrument
corresponds to a field of view of around ±5 degrees. Our measurements indicate that the relative
variation of the OPD with respect to its value in the central pixel is experimentally found to be
more or less identical across different interferometers. The analysis shows a decreasing trend for
the OPD which emanates radially from a central position. This is an expected result from eq. (5),
as the OPD decreases when the angle of incidence increases. The true optical axis is however
shifted to the left with respect to the geometrical center that we have arbitrarily chosen as center
of the subimage, as shown in Fig. 11b. On the contrary, the estimated values of the reflectivity
preserve a certain flatness within their own subimage (Fig. 11c). The spatial analysis also allows
for the detection of certain instrument defects, such as those of two of the subimages in bottom
left area of Fig. 11a. In a significant portion of these subimages, the device exhibits behavior that
significantly deviates from the expected one, suggesting the presence of defects in the reflective
coating.

5. Conclusion

In this paper, we presented a characterization procedure for multi-aperture imaging spectrometers
based on Fabry-Perot interferometers. We described the image formation model and we expressed
its transmittance response in terms of a limited amount of parameters, following the formulation
of Airy distribution and describing different regimes of finesse under the same framework. The
proposed characterization algorithm exploits the two emerging wave model to cast the problem
in the Fourier domain, where the ML estimator for the OPDs is equivalent to a maximization of
the periodogram. This result is then refined through nonlinear regression. Using the proposed
multiple-step procedure in the algorithm allows for both robustness and precision in the final
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(a) OPD increase. Visualization of the entire focal plane array.
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(b) OPD increase. Zoomed-in visualization.
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(c) Reflectivity values in the zoomed area.

Fig. 11. Characterization of the prototype 2 over the entire field of view of the device
using the IRCA method. (a) Illustration of the relative increase of the estimated OPD
compared to its value at the center of the corresponding subimage, indicated by a cross.
Red and blue shades indicate values larger and smaller than the reference, respectively.
Black pixels correspond to areas where the acquisition data was unavailable or where
the LM algorithm did not converge within 100 iterations. (b) Zoomed-in visualization
of the yellow framed area. (c) Estimated reflectivity per pixel over the same zoomed
area, averaged over the wavenumber range of the device.

results. The estimated parameters can highlight manufacturing issues in an easily interpretable
format. A proper characterization is extremely important for a proper recovery of the spectrum,
which in the future could be optimized jointly with the spectral response of the devices in
architectures where such parameters can be learned dynamically [31, 32].

A. Levenberg-Marqardt algorithm

We aim to provide here an approachable explanation of the LM algorithm, to build an intuition
of what are the operations involved in the process. The algorithm can be seen as a trust region
based approach for nonlinear regression. The aim is to find an estimation �̂� of the parameters
𝜷 = {𝛽𝑚}𝑖∈[1, ... , 𝑁𝑚 ] , in order for the samples {𝑡𝑖 (𝜷)}𝑖∈[1, ... , 𝑁𝑎 ] of an analytical function to fit
a set of observation {𝑦𝑖}𝑖∈[1, ... , 𝑁𝑎 ] .

The algorithm addresses the problem by finding a sequence of iteratively more accurate
solutions {𝜷[𝑞 ]}𝑞≥0 from a given initialization 𝜷[0] , using the following update rule:

𝜷[𝑞 ] = arg min
𝜷

𝑁𝑎∑︁
𝑖=1

(
𝑡𝑖 (𝜷[𝑞−1]) +

𝑁𝑚∑︁
𝑚=1

𝑗𝑖𝑚

(
𝛽𝑚 − 𝛽

[𝑞−1]
𝑚

)
− 𝑤𝑖

)2

+ _

𝑁𝑚∑︁
𝑚=1

𝛽2
𝑚 . (21)



where _ ≥ 0 denotes an user defined dampening parameter. In the above function, 𝑡𝑖 (𝜷) ≈
𝑡𝑖 (𝜷[𝑞−1]) +∑𝑁𝑚−1

𝑚=0 𝑗
[𝑞−1]
𝑖𝑚

(
𝛽𝑚 − 𝛽

[𝑞−1]
𝑚

)
represents a truncated Taylor expansion of 𝑡 (𝜷) around

the current estimation 𝜷[𝑞−1] . In this representation, the terms 𝑗𝑖𝑚 denote the coefficients of the
Jacobian matrix J ∈ R𝑁𝑝×𝑁𝑚 , which are defined as:

𝑗𝑖𝑚 =
𝜕𝑡𝑖 (𝜷)
𝜕𝛽𝑚

����
𝜷=𝜷

[𝑞−1]
, ∀𝑖 ∈ [1, ... , 𝑁𝑎] , ∀𝑚 ∈ [1, ... , 𝑁𝑚] . (22)

Eq. 21 admits as analytical solution:

𝜷[𝑞 ] = 𝜷[𝑞−1] +
(
JTJ + _I

)−1
JTe , (23)

where I denotes an identity matrix and the vector e, whose 𝑖-th coefficient is defined as
𝑒𝑖 := 𝑡𝑖 (𝜷[𝑞−1]) − 𝑤𝑖 , denotes the current estimation residual. When a certain convergence
condition is verified (e.g. after a given number of iterations), the result of the last update is
chosen as the desired estimation �̂�. Additional implementation details, e.g. to define a criterion
to assign the value of _, to simplify the evaluation of J, and to evaluate the stopping conditions
on the iterations are given in the related paper [21].
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