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Abstract—Deep Learning (DL) techniques are now widespread
and being integrated into many important systems. Their clas-
sification and recognition abilities ensure their relevance for
multiple application domains. As machine-learning that relies
on training instead of algorithm programming, they offer a high
degree of productivity. But they can be vulnerable to attacks
and the verification of their correctness is only just emerging
as a scientific and engineering possibility. This paper is a major
update of a previously-published survey, attempting to cover all
recent publications in this area. It also covers an even more
recent trend, namely the design of domain-specific languages for
producing and training neural nets.

I. INTRODUCTION

As research unit of a leading vendor of information and

communication systems, Huawei’s Central Software Institute

(CSI) is developing high-performance deep learning (DL)

systems for image classification [1] and other image recog-

nition functions. In application domains like self-driving cars

[2], correct operation (safety) and attack resistance (secu-

rity) of DL systems has become critical. The engineering

of neural networks (NN) is less well understood than for

general software: despite a relatively static and clean structure,

their functionality depends on numerical parameters that are

extracted from ad-hoc datasets and complex hand-made layer

topologies built from signal-processing operators and treshold

or ”activation” nodes. As a result, a neural network’s behavior

depends mostly on its numerical values, and its use in embed-

ded systems is not amenable to verification by control-flow.

A ray of hope in this bleak outlook, recent research has

found a partial substitute to full NN specification and ver-

ification in the form of novel stability analysis techniques.

Such techniques ensure that a small change in input (image,

sound or pattern) produces a negligible change in output e.g.

no change in the embedded system’s behavior. Several groups

have shown how to adapt model checking for this purpose,

others have designed special-purpose linear solvers for it,

and the computational feasibility of this analysis has been

improving. It remains to see whether trust in NN inference

will reach the level required of safety-critical applications. But

a clear trend has been set to improve the understanding and

engineering of this very popular type of machine learning.

This paper is a major update of a previously-published

survey [3], attempting to cover all recent publications in this

area. Research on safety of DL had produced two papers per

year in the period 2003-2014. We then found three directly-

relevant publications in 2015, seven in 2016, sixteen in 2017

and a relative slowdown with 9 publications in 2018. This peek

corresponds with the arrival and proof-of-concept for feasi-

ble static verification of NN stability, hence their protection

against so-called adversarial attacks. Our survey also covers a

few papers on an even more recent trend, namely the design

of programming languages for producing and training neural

nets. The work covered constitutes in our opinion the first

generation of tools for neural network software engineering.

The next sections survey existing work on

• Attacks against DL systems

• Testing, training and monitoring DL systems for safety

• The verification of DL systems

Then we survey recent work and propose new work in the

design of programming tools for DL.

II. SECURITY: ATTACKS AND THEIR PREVENTION

An adversarial example for a NN classifier is a slightly

perturbed input that generates a different, hence wrong, classi-

fication from the desired one. In recent years many have been

identified and specific solutions designed for each one. But the

general problem remains of formally guaranteeing in advance

the absence of adversarial example.

Carlini et al.’s paper [4] is motivated in this manner by

safety-security (absence of accidental or intentional adversarial

examples) and the need to verify it. They introduce the notion

of a ground truth, or adversarial example with minimal change

in input value. This is useful for two things: judging the

quality of an attack by comparing it to the ground truth, and

judging the quality of a defence by the amount it increases

the distortion in the new ground truth.

The authors of [5] present and articulate technical arguments

that appear to show that intentional adversarial examples can

be countered, in the area of image processing, by a kind

of “multi-sensor” approach. Like attacks on face recognition

can be countered by 3D or multiple-angle 2D images, ad-

versarial examples would become ineffective in the presence

of multiple-angle or time-sequenced images of the same

object(s).

http://arxiv.org/abs/1901.11334v1


III. TESTING, TRAINING AND MONITORING FOR

SAFETY

Concrete progress has been made by authors who propose

to adapt training and testing with specific safety-conscious

properties and techniques.

The survey paper by B. Taylor et al. [6] takes a very general

human-level definition of AI safety. It defines eight very

challenging wanted properties of machine learning systems

like NN but most of them relate to the human application

of DL systems so, in our opinion, they are premature to

consider before the science and engineering of DL becomes

more mature. One of their eight properties is more amenable

to purely technical developments “ inductive ambiguity identi-

fication” with special case “active learning”. An active learner

can interact with humans during its learning phase so as to

ask them for additional data (e.g. images) that would break

some automatically detected ambiguity in classification. Active

learning can thus be considered a design goal for improving

the safety of DL systems.

The authors of [7] consider the application of an (unrelated)

automatic testing tool called DeepTest to self-driving cars.

It can be considered an elementary but meaningful tool for

structured testing. As such it has the advantages and limitations

of testing methods: easy to design and implement, incomplete

by design.

Leofante, Pulina and Tacchella [8] present recent work

in the definition and verification of machine-learning safety,

namely the guarantee that the input-output function defined

by a trained system will behave “ according to specifica-

tion”. They also quote model-checking results for verifying

this property, its computational costs but do not detail the

methodology for doing this. Their notion of global correctness

is based on stability: limited input sample variations lead to

limited output variations. This is a well-defined and apparently

verifiable type of specification, but it does open two related

and deep questions: how can designers be certain that their

reference datasets are in some sense correct and complete?

How to choose the metric that measures the input or output

variations? The notion of active learning, presented in [6]

could lead to a practical solution to the first question. But the

general problem of global correctness certainly needs more

powerful mathematical tools than stability theory: NNs must

interact with general algorithms, if only for such operations as

sorting results, and the whole system’s correct and complete

specification is thus a classical pre-condition, post-condition

pair of local expressions on the system state. In the (very

common) application area of image processing NN-specific

predicates could specify that image recognition is, for example

rotation invariant. To the best of our knowledge this problem

of mixing signal-processing with software specification is

unexplored. Stability predicates would then be an important

but incomplete tool to ensure system correctness.

Wicker, Huang and Kwiatkowska [9] present a sophisticated

approach that allows black-box testing of NNs i.e. with con-

sideration of features being detected but ignorance of the NN’s

structure. They search a game space where an agent adversary

attempts to use normally/fool/randomly use the detection of

features. The method is considered competitive with white-

box methods.

Yerramalla, Mladenovski and Fuller [10] applies continuous

control theory to design a monitor for ensuring that “unstable”

learning can be detected. Their notion of stability is specific

to an application where a fixed dataset of images is replaced

by an airplane’s onboard NN that is trained dynamically

through in-flight cameras. This work can be considered as

mathematical support for dynamically generated datasets, or

abstractly: dynamically generated specifications for the DL

system.

Wu et al. [11] proposed a two-player turn-based game

framework for the verification of deep neural networks with

provable guarantees, and to evaluate pointwise robustness

of neural networks in safety-critical applications such as

traffic sign recognition in self-driving cars. They developed a

software tool DeepGame, and demonstrated its applicability

on networks and dataset benchmarks.

Gehr et al. [12] present AI2 a scalable analyzer for deep

neural networks, a system able to certify convolutional and

large fully connected networks. Based on over approximation,

AI2 can automatically prove safety properties (e.g., robustness)

of realistic neural networks (e.g., convolutional neural

networks) with an extensive evaluation on 20 neural networks.

Black and Ribeiro [13] developed the Ockham Sound

Analysis Criteria to recognize static analyzers whose findings

are always correct. In Static Analysis Tool Exposition (SATE)

V, only one tool was reviewed.

Georgakis et al. [14] investigated the ability of using

synthetically generated composite images for training state-

of-the-art object detectors, especially for object instance

detection. They superimpose 2D images of textured object

models into images of real environments at variety of

locations and scales. They demonstrate the effectiveness

of these object detector training strategies on two publicly

available datasets, the GMUKitchens [15] and the Washington

RGB-D Scenes v2 [16].

Hinterstoisser, Lepetit and Wohlhart [17] demonstrated how

to train effectively modern object detectors with synthetic

images only. They “freeze” the layers responsible for feature

extraction to generic layers pre-trained on real images, and

train only the remaining layers with plain OpenGL rendering.

They have shown that by freezing a pre-trained feature

extractor they are able to train state-of-the-art object detectors

on synthetic data only, and freezing the feature extractor

gives a huge performance boost.

Jang, Wu and Jha [18] focused on attacks by adversarial

perturbation. They present a simple gradient-descent based al-

gorithm for finding adversarial perturbations, which performs



well in comparison to existing algorithms. They present a

novel metric based on computer-vision algorithms for quanti-

fying the difference between an image and its perturbation.

Leofante et al. [19] propose an automated reasoning tech-

nique and a comprehensive categorization of existing ap-

proaches for the automated verification of neural networks. In

their opinion the automated verification of NNs could be the

new driving force for theoretical and practical advancements in

Automated Reasoning and, at the same time, ML could benefit

from powerful verification techniques to generate proofs of

correctness for NNs.

But again, testing is by design an incomplete approach and

the “specification” of a DL system relies on the experimental

definition of its training dataset.

IV. VERIFICATION AND SIMULATION

Other authors have investigated formal and even automatic

methods for safety verification. This line of research has been

accelerating in recent years.

Broderick [20] uses simulation in the area of flight on-board

online-learning NNs. It does not take a formal approach to ver-

ification but applies statistical techniques. The white paper [21]

defines high-level requirements for “formal” (mathematically-

based) verification of similar systems from the point of view

of control theory.

Fuller, Yerramalla and Cukic [22] model the learning of

a NN as a dynamical system where training adjustments are

discrete differential equations on the states that are neurons

and weights. Lyapunov stability analysis is then applicable to

detect stable states in the dynamical system. Stability in this

theory thus amounts to the absence of adversarial examples. It

is shown how to apply this concept to (shallow) NNs of fixed

topology and also to dynamic ones.

Survey paper [23] compares methods for verifying NNs

with piecewise linear structures. It compares methods based

on SMT solvers, mixed integer programming and a new

branch-and-bound method. The tools are able to verify 100-

500 properties for networks for 2-6 layers. Correctness is

defined as a form of stability and verification, in theory

exhaustive testing, is accelerated by assuming piecewise-linear

state spaces.

Katz et al. [24], [25] treat Rectified Linear Units-based

(ReLU) NN systems. The NN system and a domain specific

safety specification is modelled as an SMT formula. The

system is verified using a version of the simplex algorithm

modified to handle the non-linearities introduced by the ReLU-

functions. However, their use-case has a well-defined safety

specification, which is not the case in other domains such as

image recognition. Furthermore, scalability is a concern for

this technique.

Cheng, Nührenberg and Ruess [26] verify DNNs by trans-

lating non-linear (input-output) constraints generated by ReLU

activation functions using big-M encoding. Then standard

techniques for linear optimization are applied to verification.

In [27], an optimization technique is proposed to accelerate

verification problems that are difficult for SMT and ILP

solvers. It assumes so-called feed-forward NNs that allow

the addition of a global linear approximation of the overall

network behavior.

Blog entry [28] is a general discussion of the importance

of safety for DL systems, with arguments in favour of formal

verification as opposed to testing.

Huang et al. [29] present SMT-based work on verifying

the absence of adversarial inputs in Feed- forward multi-

layer neural networks. The paper contains many convincing

examples of such perturbed images. The verification method

finds adversarial inputs, if they exist, for a given region and a

family of manipulations.

Katz et al. published in [30] their efforts to prove adversarial

robustness of NNs. They propose a new notion of ”global

robustness” quantifying the robustness of a DNN. Intuitively,

a network is globally robust if any two neighbours in the input

are also neighbors in the output. Robustness is thus a non-limit

form of continuity as in:

d1(x, y) ≤ δ −→ d2(NN(x), NN(y)) ≤ ε

where NN is the neural net’s inference function, d1 is a

standard metric in the input domain, d2 a suitable metric in the

output domain and δ, ε are experimentally chosen error bounds

where ε could be zero, e.g. if the output is a discrete space

of features. They then show how to encode this property and

verify it using Reluplex. However, it is challenging to verify,

and the result only extends to DNN with a few dozen nodes.

Narodytask et al. [31] present the first exact Boolean

representation of a deep NN so that a binarized network is

faithfully represented as a Boolean formula. They are then

able to leverage the high efficiency of modern SAT solvers

for the formal and automatic verification of the NNs behavior,

in particular resistance to adversarial perturbations.

Pulina and Tacchella [32] present CETAR: a Counter-

Example Triggered Abstract Refinement verification approach

for DNNs. Performance is not demonstrated on large NNs

(only 20 nodes are used).

Paper [33] by the same authors describes and evaluates the

tool NeVeR that verifies the safety of ANNs by encoding them

as SMT-formula with linear inequalities. Furthermore, to im-

prove scalability, the authors apply the abstraction refinement

scheme presented in their earlier work.

Xiang, Tran and Johnson [34] present a verification method

for multi-layer NNs and apply it to robotics. Their simulation-

based method for the estimation of the output set of a NN

is applicable to networks with monotone activation functions.

The verification problem is formulated and solved as a chain

of optimization problems for estimating the output-range.

Dutta et al. [35] also study the automatic estimation of the

output-range for deep NNs. A key concept of theirs is that

sets of possible inputs are compactly represented by convex

polyhedral. They compute the guaranteed output range for

DNNs by successive optimizations.

Baufreton et al. in 2010 [36] presented an analysis of safety

standards and their implementation in certification strategies

from different domains such as aeronautics, automation,



automotive, nuclear, railway and space (performed in the

context of the CG2E — ”Club des Grandes Entreprises

de l’Embarqué”). All the covered domains agree upon the

articulation of a deterministic view of software and the

system safety goals, including the probabilistic ones. The

regulation regime and certification scheme is similar for

aviation, nuclear and, to some extent, railway and space, but

significantly different for automation and automotive.

Blanquart et al. in 2012 [37] presented a comparative

analysis across several industrial domains, of the fundamental

notion of safety categories or levels (Safety Integrity Levels,

Development Assurance Levels, etc.) underlying the safety

framework enforced by safety standards, gathering experts

from 6 industrial domains (automotive, aviation, industrial

automation, nuclear, railway and space). They have shown

that the various schemes are not fundamentally different,

and could be seen as various instances of a single consistent

scheme.

In the same 2012 Machrouh et al. presented an analysis

of the impact of the Development Assurance Level (DAL)

or Safety Integrity Level (SIL) on the system activities in

various application domains represented in the CG2E and

specially on the dependability, safety norms and standards

working group. They analyzed the impact in each application

domain, and identified and discussed the similarities and the

dissimilarities in order to find the cross domain synergies.

Ledinot et al. in [38] compares the influence of

Development Assurance Levels (DALs) of six different

software development assurance standards for civil aviation,

automotive, space, process automation, nuclear and railway.

They observed significant cross-domain differences to

minimize the risk of residual software development or

verification errors. They found, that the discrepancies

between the six standards in planning, in rules and standards,

in structural coverage or verification independency etc. are

not a matter of degree. Some major discrepancies are a matter

of principles: definition of requirements vs. requirement of

definitions, modulation of activities vs. modulation of means.

Seshia, Sadigh and Sastry [39] analyzed the challenge

of formally verifying systems that use artificial intelligence

or machine learning. They identified five main challenges:

environment modeling, formal specification, system modeling,

computational engines, and correct-by-construction design.

They are applying the developed theory to the design of human

cyber-physical systems [40] and learning-based cyberphysical

systems, with a special focus on autonomous and semi-

autonomous vehicles.

In 2014, Ledinot et al. [41] discussed different approaches

to combining formal methods (FM) and testing in the

safety standards of the automotive, aeronautic, nuclear,

process, railway and space industries. They concluded that

Railway, Aeronautics, and to some extent Nuclear, are

the three industrial domains where using formal methods,

alone or jointly with testing, is effective in production

software development. In case of joint use, three modes

of combination may be considered, depending on whether

one partitions, substitutes or intertwines the two verification

means. Alternative and more direct means to address detection

of unintended functions have been proposed formal methos

(FM) verification of the specification, double independent

specification, and enhanced exploratory testing in this paper.

Then in 2016 [42] the authors propose a global rationale

combining probabilistic evidence on hardware random failures

and deterministic evidence on systematic causes of failures

including software. They reject, for ultrahigh reliability

software, a move towards more statistical assessment against

less development assurance.

In the Best Paper of the ERTS2 2018 [43] the authors

proposed a description of classical software safety analysis

techniques, and discussed why software complexity increase

has progressively made completeness of system functional

safety requirements an important issue. They stress that

extrapolating system or hardware analysis techniques such

as Failure Modes and Effects Analysis (FMEA) to software

is unlikely to provide meaningful results, considering that

the underlying assumptions such as the fault model do

not apply to software. However, techniques such as SEEA

(Software Error Effect Analysis) may provide some support

to robustness analysis. The proper development of pieces

of software needs the generalization of techniques such

as contract-based design with compositional verification,

consistent safety invariants at all design levels, and a more

control-oriented approach to safety.

Ruan, Huang and Kwiatkowska [44] show how to obtain

the safety verification problem, the output range analysis

problem and a robustness measure by instantiating the

reachability problem. They present a novel algorithm based

on adaptive nested optimisation to solve the reachability

problem. The technique has been implemented and evaluated

on a range of deep neural networks (DNNs), demonstrating

its efficiency, scalability and ability to handle a broader class

of networks than state-of-the-art verification approaches.

V. SPECIFICATION AND FUTURE SOFTWARE

TOOLS

The above set of research results indicate a strong con-

vergence towards automatic and formally-based methods for

verifying the input-output behavior of DL systems. But a

serious problem appears to remain in balancing the guarantees

of exhaustive search as in model checking with reasonable

compute times. This situation is familiar to users of linear

solvers and indeed several authors use linear equations and

solvers to tackle DL safety problems.

J. Taylor et al.’s paper [45] discusses in a very high-level

way the problem of specifying the behavior of a machine-



learning system for example through the objective function

of its training phase. It covers an interesting set of research

targets one of whom has specific meaning for specification

of DL system behavior. Inductive ambiguity identification is

defined as the goal of creating systems that can detect inputs

for which their inference or classification would be highly

under-determined by training data. Future safety-verification

methods should address this problem that is akin to the need

for attaching confidence levels to DL-system outputs.

Foerster et al. [46] present a very innovative approach

where the NNs come from a specific sub-family: without

nonlinearities or input-dependent recurrent weights. For this

family the linear representation of input-output behavior is

not an approximation but an exact encoding. As a result

verification can benefit from fast linear-algebra operations.

The balance between this restricted family of NNs and their

expressive power is illustrated on a very large NLP example.

This approach could either become a breakthrough or a less

significant approach for niche applications. But the general

idea of a compact and efficiently-processed specification has

been demonstrated.

The white paper by Russel, Dewey and Tegmark [47]

reasserts, among many other things, that formal verification

and security and absolute necessities for all AI systems.

They propose that AI systems (among them DL systems)

should allow the verification of their behavior, of their designs

(in particular their specification) , allow how to distinguish

their software-hardware components, and also the modular

verification of their parts.

Cheng et al. [48] presents the open-source toolbox nn-

dependability-kit to support data- driven engineering of neural

networks for safety-critical domains. They provide evidence

of uncertainty reduction in key phases of the product life

cycle, ranging from data collection, training & validation,

testing & generalization, to operation. The application of

Gaussian noise changed the result of classification, where the

confidence of being ”end of no overtaking zone” has dropped

from the originally identified 100% to 16.6%.

Kulkarni et al. [49] present Picture, a probabilistic

programming language for scene understanding that allows

researchers to express complex generative vision models,

while automatically solving them using fast general-purpose

inference machinery. Picture provides a stochastic scene

language that can express generative models for arbitrary

2D/3D scenes, as well as a hierarchy of representation layers

for comparing scene hypotheses with observed images by

matching not simply pixels, but also more abstract features

(e.g., contours, deep neural network activations). Such a

language certainly improves programming productivity but

its improvement of safety or verification remains to be seen.

A last recent line of research is the design of domain-

specific programming languages (DSLs) that provide a white-

box view of predefined NN libraries and frameworks. They

allow users to write explicit and portable code for neural-net

layers, their topology (data-dependencies) and allow the com-

piler writers to concentrate on optimizations and architecture

models. The publications we cite here are only a few early

examples of this research and we cannot be exhaustive about

it at the time of writing this survey (2019Q1).

A team from NVIDIA has presented its Diesel DSL [50]

specifically designed for producing efficient neural net im-

plementations. The input Diesel program specifies a single-

assignment set of arrays and data dependencies. It is compiled

to a polyhedral intermediate representation allowing static

data-size inference, layer (loop) fusions and tiling among other

optimizations.

In the context of the TVM software framework, another

team has developed the Relay DSL [51] with even more

ambitious language features to facilitate NN programming. It

features a Python front-end for developers using that popular

language, but more importantly: dependent types for tensor

shapes, a TVM-integrated compiler, runtime optimizations and

a module for automatic differentiation of programs. This last

features is a the core of NN training procedures where a

neural net’s inference (execution) needs to be differentiated

with respect to its error function. Training has previously

been a mostly black-box operation from the point of view

of source code. Training can now become explicit and source-

code driven, thus lifting the effect of training to a province of

programming language semantics.

It should be hoped that program verification techniques will

also evolve to make use of the precise semantics that can be

attached to DSL operations.

Among other research sub-directions that are completely

open one can list:

• A DSL sub-language defining the distance function that

is the basis for defining perturbations.

• Tools that translate those DSLs into low-level specifi-

cations for given datasets, including tools to compare

datasets, analyze them for their distance-function statis-

tics etc.

• UML class diagrams for representing datasets, others for

replacing the DSLs in industrial applications.

• Theorem-proving techniques are still far in the future

because they require a clear logical specification of what

a neural network’s inference computes.

VI. CONCLUSION

Safety of DL systems is a serious requirement for real-

life systems and the research community is addressing this

need with mathematically-sound but low-level methods that

guarantee inference stability. But even when satisfactory and

feasible, such a verification only guarantees that the original

behavior of the given NN is unchanged from its training. Yet

there are no verifiable guarantees that this is in itself correct

and complete for lack of a specification.

To turn DL system design into a broad industry, methods

inspired by software engineering must be applied to comple-

ment current techniques.



Our survey of the area has shown the acceleration of the

line of work, the general agreement for its mathematical and

low-level methods and their relative success as a first step in

this direction.
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domain comparison of safety standards,” in Proceedings of the 5th

international conference on embedded real time software and systems

(ERTS2), Toulouse, France, 2010.

[37] J.-P. Blanquart, J.-M. Astruc, P. Baufreton, J.-L. Boulanger, H. Delseny,
J. Gassino, G. Ladier, E. Ledinot, M. Leeman, J. Machrouh et al.,
“Criticality categories across safety standards in different domains,”
ERTS-2012, Toulouse, pp. 1–3, 2012.

[38] E. Ledinot, J.-M. Astruc, J.-P. Blanquart, P. Baufreton, J.-L. Boulanger,
H. Delseny, J. Gassino, G. Ladier, M. Leeman, J. Machrouh et al., “A
cross-domain comparison of software development assurance standards,”
Proc. of ERTS2, 2012.

[39] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards verified artificial
intelligence,” arXiv preprint arXiv:1606.08514, 2016.

[40] ——, “Formal methods for semi-autonomous driving,” in Proceedings

of the 52nd Annual Design Automation Conference. ACM, 2015, p.
148.

[41] E. Ledinot, J.-P. Blanquart, J.-M. Astruc, P. Baufreton, J.-L. Boulanger,
C. Comar, H. Delseny, J. Gassino, M. Leeman, P. Quéré et al., “Joint
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