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Formal methods and software engineering for DL Security, safety and productivity for DL systems development

Deep Learning (DL) techniques are now widespread and being integrated into many important systems. Their classification and recognition abilities ensure their relevance for multiple application domains. As machine-learning that relies on training instead of algorithm programming, they offer a high degree of productivity. But they can be vulnerable to attacks and the verification of their correctness is only just emerging as a scientific and engineering possibility. This paper is a major update of a previously-published survey, attempting to cover all recent publications in this area. It also covers an even more recent trend, namely the design of domain-specific languages for producing and training neural nets.

I. INTRODUCTION

As research unit of a leading vendor of information and communication systems, Huawei's Central Software Institute (CSI) is developing high-performance deep learning (DL) systems for image classification [START_REF] Park | Content-based image classification using a neural network[END_REF] and other image recognition functions. In application domains like self-driving cars [START_REF] Kisačanin | Deep learning for autonomous vehicles[END_REF], correct operation (safety) and attack resistance (security) of DL systems has become critical. The engineering of neural networks (NN) is less well understood than for general software: despite a relatively static and clean structure, their functionality depends on numerical parameters that are extracted from ad-hoc datasets and complex hand-made layer topologies built from signal-processing operators and treshold or "activation" nodes. As a result, a neural network's behavior depends mostly on its numerical values, and its use in embedded systems is not amenable to verification by control-flow.

A ray of hope in this bleak outlook, recent research has found a partial substitute to full NN specification and verification in the form of novel stability analysis techniques. Such techniques ensure that a small change in input (image, sound or pattern) produces a negligible change in output e.g. no change in the embedded system's behavior. Several groups have shown how to adapt model checking for this purpose, others have designed special-purpose linear solvers for it, and the computational feasibility of this analysis has been improving. It remains to see whether trust in NN inference will reach the level required of safety-critical applications. But a clear trend has been set to improve the understanding and engineering of this very popular type of machine learning. This paper is a major update of a previously-published survey [START_REF] Hains | Towards formal methods and software engineering for deep learning: Security, safety and productivity for DL systems development[END_REF], attempting to cover all recent publications in this area. Research on safety of DL had produced two papers per year in the period 2003-2014. We then found three directlyrelevant publications in 2015, seven in 2016, sixteen in 2017 and a relative slowdown with 9 publications in 2018. This peek corresponds with the arrival and proof-of-concept for feasible static verification of NN stability, hence their protection against so-called adversarial attacks. Our survey also covers a few papers on an even more recent trend, namely the design of programming languages for producing and training neural nets. The work covered constitutes in our opinion the first generation of tools for neural network software engineering.

The next sections survey existing work on 

II. SECURITY: ATTACKS AND THEIR PREVENTION

An adversarial example for a NN classifier is a slightly perturbed input that generates a different, hence wrong, classification from the desired one. In recent years many have been identified and specific solutions designed for each one. But the general problem remains of formally guaranteeing in advance the absence of adversarial example.

Carlini et al.'s paper [START_REF] Carlini | Ground-truth adversarial examples[END_REF] is motivated in this manner by safety-security (absence of accidental or intentional adversarial examples) and the need to verify it. They introduce the notion of a ground truth, or adversarial example with minimal change in input value. This is useful for two things: judging the quality of an attack by comparing it to the ground truth, and judging the quality of a defence by the amount it increases the distortion in the new ground truth.

The authors of [START_REF] Lu | No need to worry about adversarial examples in object detection in autonomous vehicles[END_REF] present and articulate technical arguments that appear to show that intentional adversarial examples can be countered, in the area of image processing, by a kind of "multi-sensor" approach. Like attacks on face recognition can be countered by 3D or multiple-angle 2D images, adversarial examples would become ineffective in the presence of multiple-angle or time-sequenced images of the same object(s).

III. TESTING, TRAINING AND MONITORING FOR SAFETY

Concrete progress has been made by authors who propose to adapt training and testing with specific safety-conscious properties and techniques.

The survey paper by B. Taylor et al. [START_REF] Taylor | Verification and validation of neural networks: a sampling of research in progress[END_REF] takes a very general human-level definition of AI safety. It defines eight very challenging wanted properties of machine learning systems like NN but most of them relate to the human application of DL systems so, in our opinion, they are premature to consider before the science and engineering of DL becomes more mature. One of their eight properties is more amenable to purely technical developments " inductive ambiguity identification" with special case "active learning". An active learner can interact with humans during its learning phase so as to ask them for additional data (e.g. images) that would break some automatically detected ambiguity in classification. Active learning can thus be considered a design goal for improving the safety of DL systems.

The authors of [START_REF] Tian | DeepTest: Automated testing of deep-neural-network-driven autonomous cars[END_REF] consider the application of an (unrelated) automatic testing tool called DeepTest to self-driving cars. It can be considered an elementary but meaningful tool for structured testing. As such it has the advantages and limitations of testing methods: easy to design and implement, incomplete by design.

Leofante, Pulina and Tacchella [START_REF] Leofante | Learning with safety requirements: State of the art and open questions[END_REF] present recent work in the definition and verification of machine-learning safety, namely the guarantee that the input-output function defined by a trained system will behave " according to specification". They also quote model-checking results for verifying this property, its computational costs but do not detail the methodology for doing this. Their notion of global correctness is based on stability: limited input sample variations lead to limited output variations. This is a well-defined and apparently verifiable type of specification, but it does open two related and deep questions: how can designers be certain that their reference datasets are in some sense correct and complete? How to choose the metric that measures the input or output variations? The notion of active learning, presented in [START_REF] Taylor | Verification and validation of neural networks: a sampling of research in progress[END_REF] could lead to a practical solution to the first question. But the general problem of global correctness certainly needs more powerful mathematical tools than stability theory: NNs must interact with general algorithms, if only for such operations as sorting results, and the whole system's correct and complete specification is thus a classical pre-condition, post-condition pair of local expressions on the system state. In the (very common) application area of image processing NN-specific predicates could specify that image recognition is, for example rotation invariant. To the best of our knowledge this problem of mixing signal-processing with software specification is unexplored. Stability predicates would then be an important but incomplete tool to ensure system correctness.

Wicker, Huang and Kwiatkowska [START_REF] Wicker | Feature-guided black-box safety testing of deep neural networks[END_REF] present a sophisticated approach that allows black-box testing of NNs i.e. with consideration of features being detected but ignorance of the NN's structure. They search a game space where an agent adversary attempts to use normally/fool/randomly use the detection of features. The method is considered competitive with whitebox methods.

Yerramalla, Mladenovski and Fuller [START_REF] Yerramalla | Stability monitoring and analysis of online learning neural networks[END_REF] applies continuous control theory to design a monitor for ensuring that "unstable" learning can be detected. Their notion of stability is specific to an application where a fixed dataset of images is replaced by an airplane's onboard NN that is trained dynamically through in-flight cameras. This work can be considered as mathematical support for dynamically generated datasets, or abstractly: dynamically generated specifications for the DL system.

Wu et al. [START_REF] Wu | A gamebased approximate verification of deep neural networks with provable guarantees[END_REF] proposed a two-player turn-based game framework for the verification of deep neural networks with provable guarantees, and to evaluate pointwise robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars. They developed a software tool DeepGame, and demonstrated its applicability on networks and dataset benchmarks.

Gehr et al. [START_REF] Gehr | Ai2: Safety and robustness certification of neural networks with abstract interpretation[END_REF] present AI 2 a scalable analyzer for deep neural networks, a system able to certify convolutional and large fully connected networks. Based on over approximation, AI 2 can automatically prove safety properties (e.g., robustness) of realistic neural networks (e.g., convolutional neural networks) with an extensive evaluation on 20 neural networks.

Black and Ribeiro [START_REF] Black | SATE V Ockham sound analysis criteria[END_REF] developed the Ockham Sound Analysis Criteria to recognize static analyzers whose findings are always correct. In Static Analysis Tool Exposition (SATE) V, only one tool was reviewed.

Georgakis et al. [START_REF] Georgakis | Synthesizing training data for object detection in indoor scenes[END_REF] investigated the ability of using synthetically generated composite images for training stateof-the-art object detectors, especially for object instance detection. They superimpose 2D images of textured object models into images of real environments at variety of locations and scales. They demonstrate the effectiveness of these object detector training strategies on two publicly available datasets, the GMUKitchens [START_REF] Georgakis | Multiview RGB-D dataset for object instance detection[END_REF] and the Washington RGB-D Scenes v2 [START_REF] Lai | Unsupervised feature learning for 3D scene labeling[END_REF].

Hinterstoisser, Lepetit and Wohlhart [START_REF] Hinterstoisser | On pretrained image features and synthetic images for deep learning[END_REF] demonstrated how to train effectively modern object detectors with synthetic images only. They "freeze" the layers responsible for feature extraction to generic layers pre-trained on real images, and train only the remaining layers with plain OpenGL rendering. They have shown that by freezing a pre-trained feature extractor they are able to train state-of-the-art object detectors on synthetic data only, and freezing the feature extractor gives a huge performance boost.

Jang, Wu and Jha [START_REF] Jang | Objective metrics and gradient descent algorithms for adversarial examples in machine learning[END_REF] focused on attacks by adversarial perturbation. They present a simple gradient-descent based algorithm for finding adversarial perturbations, which performs well in comparison to existing algorithms. They present a novel metric based on computer-vision algorithms for quantifying the difference between an image and its perturbation.

Leofante et al. [START_REF] Leofante | Automated verification of neural networks: Advances, challenges and perspectives[END_REF] propose an automated reasoning technique and a comprehensive categorization of existing approaches for the automated verification of neural networks. In their opinion the automated verification of NNs could be the new driving force for theoretical and practical advancements in Automated Reasoning and, at the same time, ML could benefit from powerful verification techniques to generate proofs of correctness for NNs.

But again, testing is by design an incomplete approach and the "specification" of a DL system relies on the experimental definition of its training dataset.

IV. VERIFICATION AND SIMULATION

Other authors have investigated formal and even automatic methods for safety verification. This line of research has been accelerating in recent years.

Broderick [START_REF] Broderick | Adaptive verification for an on-line learning neural-based flight control system[END_REF] uses simulation in the area of flight on-board online-learning NNs. It does not take a formal approach to verification but applies statistical techniques. The white paper [START_REF] Van Wesel | Challenges in the Verification of Reinforcement Learning Algorithms[END_REF] defines high-level requirements for "formal" (mathematicallybased) verification of similar systems from the point of view of control theory.

Fuller, Yerramalla and Cukic [START_REF] Fuller | Stability properties of neural networks[END_REF] model the learning of a NN as a dynamical system where training adjustments are discrete differential equations on the states that are neurons and weights. Lyapunov stability analysis is then applicable to detect stable states in the dynamical system. Stability in this theory thus amounts to the absence of adversarial examples. It is shown how to apply this concept to (shallow) NNs of fixed topology and also to dynamic ones.

Survey paper [START_REF] Bunel | Piecewise linear neural network verification: a comparative study[END_REF] compares methods for verifying NNs with piecewise linear structures. It compares methods based on SMT solvers, mixed integer programming and a new branch-and-bound method. The tools are able to verify 100-500 properties for networks for 2-6 layers. Correctness is defined as a form of stability and verification, in theory exhaustive testing, is accelerated by assuming piecewise-linear state spaces.

Katz et al. [START_REF] Gopinath | DeepSafe: A data-driven approach for checking adversarial robustness in neural networks[END_REF], [START_REF] Katz | Reluplex: An efficient SMT solver for verifying deep neural networks[END_REF] treat Rectified Linear Units-based (ReLU) NN systems. The NN system and a domain specific safety specification is modelled as an SMT formula. The system is verified using a version of the simplex algorithm modified to handle the non-linearities introduced by the ReLUfunctions. However, their use-case has a well-defined safety specification, which is not the case in other domains such as image recognition. Furthermore, scalability is a concern for this technique.

Cheng, Nührenberg and Ruess [START_REF] Cheng | Verification of binarized neural networks[END_REF] verify DNNs by translating non-linear (input-output) constraints generated by ReLU activation functions using big-M encoding. Then standard techniques for linear optimization are applied to verification.

In [START_REF] Ehlers | Formal verification of piece-wise linear feed-forward neural networks[END_REF], an optimization technique is proposed to accelerate verification problems that are difficult for SMT and ILP solvers. It assumes so-called feed-forward NNs that allow the addition of a global linear approximation of the overall network behavior.

Blog entry [START_REF] Goodfellow | The challenge of verification and testing of machine learning[END_REF] is a general discussion of the importance of safety for DL systems, with arguments in favour of formal verification as opposed to testing.

Huang et al. [START_REF] Huang | Safety verification of deep neural networks[END_REF] present SMT-based work on verifying the absence of adversarial inputs in Feed-forward multilayer neural networks. The paper contains many convincing examples of such perturbed images. The verification method finds adversarial inputs, if they exist, for a given region and a family of manipulations.

Katz et al. published in [START_REF] Katz | Towards proving the adversarial robustness of deep neural networks[END_REF] their efforts to prove adversarial robustness of NNs. They propose a new notion of "global robustness" quantifying the robustness of a DNN. Intuitively, a network is globally robust if any two neighbours in the input are also neighbors in the output. Robustness is thus a non-limit form of continuity as in:

d 1 (x, y) ≤ δ -→ d 2 (N N (x), N N (y)) ≤ ε
where N N is the neural net's inference function, d 1 is a standard metric in the input domain, d 2 a suitable metric in the output domain and δ, ε are experimentally chosen error bounds where ε could be zero, e.g. if the output is a discrete space of features. They then show how to encode this property and verify it using Reluplex. However, it is challenging to verify, and the result only extends to DNN with a few dozen nodes.

Narodytask et al. [START_REF] Narodytska | Verifying properties of binarized deep neural networks[END_REF] present the first exact Boolean representation of a deep NN so that a binarized network is faithfully represented as a Boolean formula. They are then able to leverage the high efficiency of modern SAT solvers for the formal and automatic verification of the NNs behavior, in particular resistance to adversarial perturbations.

Pulina and Tacchella [START_REF] Pulina | An abstraction-refinement approach to verification of artificial neural networks[END_REF] present CETAR: a Counter-Example Triggered Abstract Refinement verification approach for DNNs. Performance is not demonstrated on large NNs (only 20 nodes are used).

Paper [START_REF]NeVer: a tool for artificial neural networks verification[END_REF] by the same authors describes and evaluates the tool NeVeR that verifies the safety of ANNs by encoding them as SMT-formula with linear inequalities. Furthermore, to improve scalability, the authors apply the abstraction refinement scheme presented in their earlier work.

Xiang, Tran and Johnson [START_REF] Xiang | Output reachable set estimation and verification for multilayer neural networks[END_REF] present a verification method for multi-layer NNs and apply it to robotics. Their simulationbased method for the estimation of the output set of a NN is applicable to networks with monotone activation functions. The verification problem is formulated and solved as a chain of optimization problems for estimating the output-range.

Dutta et al. [START_REF] Dutta | Output range analysis for deep neural networks[END_REF] also study the automatic estimation of the output-range for deep NNs. A key concept of theirs is that sets of possible inputs are compactly represented by convex polyhedral. They compute the guaranteed output range for DNNs by successive optimizations.

Baufreton et al. in 2010 [START_REF] Baufreton | Multidomain comparison of safety standards[END_REF] presented an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space (performed in the context of the CG2E -"Club des Grandes Entreprises de l'Embarqué"). All the covered domains agree upon the articulation of a deterministic view of software and the system safety goals, including the probabilistic ones. The regulation regime and certification scheme is similar for aviation, nuclear and, to some extent, railway and space, but significantly different for automation and automotive. Blanquart et al. in 2012 [37] presented a comparative analysis across several industrial domains, of the fundamental notion of safety categories or levels (Safety Integrity Levels, Development Assurance Levels, etc.) underlying the safety framework enforced by safety standards, gathering experts from 6 industrial domains (automotive, aviation, industrial automation, nuclear, railway and space). They have shown that the various schemes are not fundamentally different, and could be seen as various instances of a single consistent scheme.

In the same 2012 Machrouh et al. presented an analysis of the impact of the Development Assurance Level (DAL) or Safety Integrity Level (SIL) on the system activities in various application domains represented in the CG2E and specially on the dependability, safety norms and standards working group. They analyzed the impact in each application domain, and identified and discussed the similarities and the dissimilarities in order to find the cross domain synergies. [START_REF] Ledinot | A cross-domain comparison of software development assurance standards[END_REF] compares the influence of Development Assurance Levels (DALs) of six different software development assurance standards for civil aviation, automotive, space, process automation, nuclear and railway. They observed significant cross-domain differences to minimize the risk of residual software development or verification errors. They found, that the discrepancies between the six standards in planning, in rules and standards, in structural coverage or verification independency etc. are not a matter of degree. Some major discrepancies are a matter of principles: definition of requirements vs. requirement of definitions, modulation of activities vs. modulation of means.

Ledinot et al. in

Seshia, Sadigh and Sastry [START_REF] Seshia | Towards verified artificial intelligence[END_REF] analyzed the challenge of formally verifying systems that use artificial intelligence or machine learning. They identified five main challenges: environment modeling, formal specification, system modeling, computational engines, and correct-by-construction design. They are applying the developed theory to the design of human cyber-physical systems [START_REF]Formal methods for semi-autonomous driving[END_REF] and learning-based cyberphysical systems, with a special focus on autonomous and semiautonomous vehicles.

In 2014, Ledinot et al. [START_REF] Ledinot | Joint use of static and dynamic software verification techniques: a crossdomain view in safety critical system industries[END_REF] discussed different approaches to combining formal methods (FM) and testing in the safety standards of the automotive, aeronautic, nuclear, process, railway and space industries. They concluded that Railway, Aeronautics, and to some extent Nuclear, are the three industrial domains where using formal methods, alone or jointly with testing, is effective in production software development. In case of joint use, three modes of combination may be considered, depending on whether one partitions, substitutes or intertwines the two verification means. Alternative and more direct means to address detection of unintended functions have been proposed formal methos (FM) verification of the specification, double independent specification, and enhanced exploratory testing in this paper. Then in 2016 [START_REF] Ledinot | Perspectives on probabilistic assessment of systems and software[END_REF] the authors propose a global rationale combining probabilistic evidence on hardware random failures and deterministic evidence on systematic causes of failures including software. They reject, for ultrahigh reliability software, a move towards more statistical assessment against less development assurance.

In the Best Paper of the ERTS 2 2018 [START_REF] Blanquart | Software safety-a journey across domains and safety standards[END_REF] the authors proposed a description of classical software safety analysis techniques, and discussed why software complexity increase has progressively made completeness of system functional safety requirements an important issue. They stress that extrapolating system or hardware analysis techniques such as Failure Modes and Effects Analysis (FMEA) to software is unlikely to provide meaningful results, considering that the underlying assumptions such as the fault model do not apply to software. However, techniques such as SEEA (Software Error Effect Analysis) may provide some support to robustness analysis. The proper development of pieces of software needs the generalization of techniques such as contract-based design with compositional verification, consistent safety invariants at all design levels, and a more control-oriented approach to safety. Ruan, Huang and Kwiatkowska [START_REF] Ruan | Reachability analysis of deep neural networks with provable guarantees[END_REF] show how to obtain the safety verification problem, the output range analysis problem and a robustness measure by instantiating the reachability problem. They present a novel algorithm based on adaptive nested optimisation to solve the reachability problem. The technique has been implemented and evaluated on a range of deep neural networks (DNNs), demonstrating its efficiency, scalability and ability to handle a broader class of networks than state-of-the-art verification approaches.

V. SPECIFICATION AND FUTURE SOFTWARE TOOLS

The above set of research results indicate a strong convergence towards automatic and formally-based methods for verifying the input-output behavior of DL systems. But a serious problem appears to remain in balancing the guarantees of exhaustive search as in model checking with reasonable compute times. This situation is familiar to users of linear solvers and indeed several authors use linear equations and solvers to tackle DL safety problems.

J. Taylor et al.'s paper [START_REF] Taylor | Alignment for advanced machine learning systems[END_REF] discusses in a very high-level way the problem of specifying the behavior of a machine-learning system for example through the objective function of its training phase. It covers an interesting set of research targets one of whom has specific meaning for specification of DL system behavior. Inductive ambiguity identification is defined as the goal of creating systems that can detect inputs for which their inference or classification would be highly under-determined by training data. Future safety-verification methods should address this problem that is akin to the need for attaching confidence levels to DL-system outputs.

Foerster et al. [START_REF] Foerster | Input switched affine networks: An RNN architecture designed for interpretability[END_REF] present a very innovative approach where the NNs come from a specific sub-family: without nonlinearities or input-dependent recurrent weights. For this family the linear representation of input-output behavior is not an approximation but an exact encoding. As a result verification can benefit from fast linear-algebra operations. The balance between this restricted family of NNs and their expressive power is illustrated on a very large NLP example. This approach could either become a breakthrough or a less significant approach for niche applications. But the general idea of a compact and efficiently-processed specification has been demonstrated.

The white paper by Russel, Dewey and Tegmark [START_REF] Russell | Research priorities for robust and beneficial artificial intelligence[END_REF] reasserts, among many other things, that formal verification and security and absolute necessities for all AI systems. They propose that AI systems (among them DL systems) should allow the verification of their behavior, of their designs (in particular their specification) , allow how to distinguish their software-hardware components, and also the modular verification of their parts.

Cheng et al. [START_REF] Cheng | nn-dependability-kit: Engineering neural networks for safety-critical systems[END_REF] presents the open-source toolbox nndependability-kit to support data-driven engineering of neural networks for safety-critical domains. They provide evidence of uncertainty reduction in key phases of the product life cycle, ranging from data collection, training & validation, testing & generalization, to operation. The application of Gaussian noise changed the result of classification, where the confidence of being "end of no overtaking zone" has dropped from the originally identified 100% to 16.6%. Kulkarni et al. [START_REF] Kulkarni | Picture: A probabilistic programming language for scene perception[END_REF] present Picture, a probabilistic programming language for scene understanding that allows researchers to express complex generative vision models, while automatically solving them using fast general-purpose inference machinery. Picture provides a stochastic scene language that can express generative models for arbitrary 2D/3D scenes, as well as a hierarchy of representation layers for comparing scene hypotheses with observed images by matching not simply pixels, but also more abstract features (e.g., contours, deep neural network activations). Such a language certainly improves programming productivity but its improvement of safety or verification remains to be seen.

A last recent line of research is the design of domainspecific programming languages (DSLs) that provide a whitebox view of predefined NN libraries and frameworks. They allow users to write explicit and portable code for neural-net layers, their topology (data-dependencies) and allow the compiler writers to concentrate on optimizations and architecture models. The publications we cite here are only a few early examples of this research and we cannot be exhaustive about it at the time of writing this survey (2019Q1).

A team from NVIDIA has presented its Diesel DSL [START_REF] Elango | Diesel: DSL for linear algebra and neural net computations on GPUs[END_REF] specifically designed for producing efficient neural net implementations. The input Diesel program specifies a singleassignment set of arrays and data dependencies. It is compiled to a polyhedral intermediate representation allowing static data-size inference, layer (loop) fusions and tiling among other optimizations.

In the context of the TVM software framework, another team has developed the Relay DSL [START_REF] Roesch | Relay: A new IR for machine learning frameworks[END_REF] with even more ambitious language features to facilitate NN programming. It features a Python front-end for developers using that popular language, but more importantly: dependent types for tensor shapes, a TVM-integrated compiler, runtime optimizations and a module for automatic differentiation of programs. This last features is a the core of NN training procedures where a neural net's inference (execution) needs to be differentiated with respect to its error function. Training has previously been a mostly black-box operation from the point of view of source code. Training can now become explicit and sourcecode driven, thus lifting the effect of training to a province of programming language semantics.

It should be hoped that program verification techniques will also evolve to make use of the precise semantics that can be attached to DSL operations.

Among other research sub-directions that are completely open one can list:

• A DSL sub-language defining the distance function that is the basis for defining perturbations.

• Tools that translate those DSLs into low-level specifications for given datasets, including tools to compare datasets, analyze them for their distance-function statistics etc.

• UML class diagrams for representing datasets, others for replacing the DSLs in industrial applications.

• Theorem-proving techniques are still far in the future because they require a clear logical specification of what a neural network's inference computes.

VI. CONCLUSION

Safety of DL systems is a serious requirement for reallife systems and the research community is addressing this need with mathematically-sound but low-level methods that guarantee inference stability. But even when satisfactory and feasible, such a verification only guarantees that the original behavior of the given NN is unchanged from its training. Yet there are no verifiable guarantees that this is in itself correct and complete for lack of a specification.

To turn DL system design into a broad industry, methods inspired by software engineering must be applied to complement current techniques.

Our survey of the area has shown the acceleration of the line of work, the general agreement for its mathematical and low-level methods and their relative success as a first step in this direction.

ACKNOWLEDGMENT

Arvid Jakobsson is supported by a CIFRE industrial PhD contract between Huawei Technologies France and LIFO, Université d'Orléans, funded in part by A.N.R.T.