N

N
N

HAL

open science

From natural language to graph queries

Gaetan Hains, Youry Khmelevsky, Thibaut Tachon

» To cite this version:

Gaetan Hains, Youry Khmelevsky, Thibaut Tachon. From natural language to graph queries. 2019
IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), May 2019, Edmonton,

Canada. pp.1-4, 10.1109/CCECE.2019.8861892 . hal-04047470

HAL Id: hal-04047470
https://hal.science/hal-04047470
Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04047470
https://hal.archives-ouvertes.fr

2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)

From natural language to graph queries

Gaétan J. D. R. Hains*, Youry Khmelevsky?, Thibaut Tachon*
*CSI, Paris Research Lab, Huawei Technologies
Boulogne Billancourt, France
Email: {thibaut.tachon,gaetan.hains} @huawei.com
TUniv. Orléans, INSA Centre, Val de Loire, LIFO EA 4022, Orléans, France
fComputer Science Department
Okanagan College, Kelowna (BC) Canada
Email: ykhmelevsky @okanagan.bc.ca

Abstract—Automatic code generation can drastically im-
prove software (SW) engineering and SW development
projects. In the last decade we have been conducting
research which has been advancing the field of code gen-
erators for small and mid-size Web-based DBMS systems
[4], [5], [7]. We developed a number of tool prototypes for
automatic source code debugging by the source-to-source
code transformation for real C and C++ applications [8].
Additionally we investigated Natural Language Processing
(NLP) for software code generation and application of it to
Graph databases. Graph databases are becoming more and
more popular for their applications in Artificial Intelligence
(AI) systems, social analytics and many other fields. Query
languages like Cypher allow users to search them without
direct programming. But even queries of modest complexity
like “relatives in a family & friends graph” require some
skill to write. In this paper we describe the use of natural
language as a more intuitive interface for untrained users
and demonstrate 3 use-cases, where translation of typical
English phrases to OpenCypher and/or specialized graph
engines like Huawei EYWA.

Keywords — graph databases, natural-language in-
put, queries, Cypher query language, Neo4j, grammar.

I. INTRODUCTION

In the last decade our research team created a new
approach for Model Driven Software Engineering and
code generation. This approach was translated into the
development of a prototype to demonstrate a proof of
concept [8]. We with the University Paris-Est (France)
achieved performance optimization by adaptive code gen-
eration from customized UML models. The novelty of
the prototype was that it can be modified by end-users
on the UML model level and then used with automatic
Java code generation [3]-[7]. Furthermore, an advanced
coding environment was developed that provides a visual
and declarative approach to trading algorithms develop-
ment. This may directly generate a portable bitcode on
the Low-Level Virtual Machine (LLVM) from financial
specifications of trading strategies.

In 1995 I. Androutsopoulos (Dept.of Artificial In-
telligence, Univ.of Edinburgh) et al. in [1] suggested
natural language interfaces to databases (NLIDBs). They
discussed advantages and disadvantages of NLIDBs, com-
paring NLIDBs to formal query languages, form-based
interfaces, and graphical interfaces. They described some
of the linguistic problems NLIDBs have to confront
and suggested NLIDB architectures, discussed portability
issues, restricted natural language input systems (includ-
ing menu-based NLIDBs), and NLIDBs with reasoning
capabilities.

In 2013 P.A. Dhomne et al. in [2] proposed an ap-
proach for accessing the database easily without knowing
English. Their system was capable of handling simple
queries with standard join conditions. Because not all
forms of SQL queries are supported, further development
would be required before the system can be used within
NLIDB. Alternatives for integrating a database NLP com-
ponent into the NLIDB were considered and assessed.
The system translates English language to SQL.

In [10] authors discuss how to formulate a query in
such way that the computer will understand and produce
the desired output from relational databases to retrieve
information from a database, one needs. They believe that
few people who have knowledge of database structure and
formal database language (such as Structured Query Lan-
guage (SQL) can retrieve the desired information from
database. In their paper they suggested to improve human
computer interface to allow people interacting with the
database in their natural language using Natural Language
Processing (NLP). They used Intermediate Representation
Technique which is a combination of syntactic based
system and semantic based system.

Authors in [9] in 2008 already tried to use NLP
for none professional users transfers their questions and
requirements to computer in natural language and derives
his desired data by natural language processing. They
suggested a method for building a “natural languages
interfaces to data bases” (NLIDB) system. In their work
it first parses the input sentences, and then the natural
language expressions are transformed to SQL language.

II. PROJECT GOALS AND SYSTEM DESIGN

In 2017 and 2018 three student teams in SW Engineer-
ing capstone project courses at Okanagan College (OC)
and at University of British Columbia (UBCO, Okanagan
Campus) in Canada investigated how to employ NLP
technic to generate queries to Neo4J database systems.

The goals of the projects were the following:

e Train Computer Science students by real interna-
tional research projects by collaborating with the
Huawei Research Centre in Paris

e Solve a real problem: NLP-to-SQL was done
before but not NLP-to-Cypher.

e Produce a prototype with clean design and some
limited but realistic NLP i.e. many input sen-
tences that look natural for the same Cypher
query. Processing steps of the prototype produced
are detailed in the activity diagram Fig 1.

Input Query

Initialize
Dictionaries

Print
. Cypher
Tokenize Query(ies)
String Query

Reject Query

Return Errors

Assign
Language
Tags

[Unknown Query]

Build
Cypher
Query(ies)

Separate
Key Words
&

Singularize
Words [Known Query]

Accept Query

Activity Diagram. Shows program processing steps.

Translator

Fig. 1.

A. Sampling

In order to match words of the input natural language
sentence to properties, node labels and edge types of
the graph, sampling the graph is unavoidable. Thus, as
preprocessing, the graph is sampled with the following
four cypher commands.

1) Find nodes labels :

MATCH (n)
UNWIND labels(n) AS lab
RETURN DISTINCT lab

2) Find nodes properties :

MATCH (n)
UNWIND keys (n) AS key
RETURN DISTINCT key

3) Find edges types :

MATCH ()-I[r]l-()
RETURN DISTINCT type(r)

4) Find edges properties :

MATCH ()-[r]-()
UNWIND keys(n) AS key
RETURN DISTINCT key

B. Natural language queries

Number of queries were tested with variation in both
semantic and form. A few are written in this section
to highlight some of the difficulties encountered. The
translation of those queries is provided in section II-C.

a) Case oblivious: one of the property which
comes first. Thus, the following queries ought to result
in the same output (cypher query number II-C.1).

1) what are the names of all the people?

2) What are the names of all the people?

3) WHAT ARE THE NAMES OF ALL THE PEO-
PLE?

b) Stop words: the words whose meaning is not
relevant for NLP as ”of”, ’the” and ”a” in the second
natural language query below.

1) How many names start with J ?
2) How many of the names start with a J

Both above queries outputs the cypher query II-C.5.

c) Synonyms and paraphrase: to be treated as
such. The following natural language queries should all
output the cypher query II-C.2.

1) List the names of the outlaws.

2) List each outlaws.

3) Give me a list of every outlaws.

4) Return a list of the outlaw’s names.
5) Who are all the outlaws ?

6) What’s the name of all the outlaws ?

The query may be interrogative or imperative.

C. Cypher queries

This section shows a number of cypher features
through queries. Students were asked to include as many
features as possible in their translation output. This al-
lowed them to progress iteratively. Features 1 to 3 were
successfully outputted by all groups. Features 4 to 7 were
successfully outputted by at least one group. Features 8
and above were not outputted by any group.

1) Node matching filtered on a label

MATCH (n :Person)
RETURN n.name

2) Node matching filtered on several labels.

MATCH (n :Person
RETURN n.name

:Outlaw)

When several node labels are mentioned in
pattern matching, it’s a conjunction : the node
matched must possess all labels. Thus the result
is a strict subset of query 1.

3) Node matching filtered on properties

MATCH (n {species
RETURN n

\dogl })

An equivalent query could be
MATCH

4) Filtering by quantification on properties

MATCH (n)
WHERE n.bounty > 3000
RETURN COUNT (n.name)

Operators include (<, >, <>, =, >=, <=).

5) String matching filtering

MATCH (n)
WHERE n.name STARTS WITH "J"
RETURN COUNT (n.name)

(n) WHERE n.species =‘dog’RETURN n

For constraining strings,
STARTS WITH,ENDS WITH and CONTAINS
are possible.

6) Filtering by property existence checking and
aggregation of results

MATCH (n)
WHERE n.species IS NOT NULL
RETURN COUNT (n.name)

To know whether a node has a property,
IS NULL,IS NOT NULL may be used.

7) Relationship matching with edge types filtering

MATCH () - [:PARENTS] —->
RETURN n.name ORDER BY

(n)

(n.size)

8) Path matching on successive identical edge types

MATCH ({name ‘Joe’ })
—[:BROTHER *]—-> (m)
RETURN DISTINCT m.name

The star means an undefined number of hop
with relationships matched (here, all of them
must have type BROTHER).

9) Sub query

MATCH ({name ‘Ma Dalton’})-—

[:PARENTS]-> (child)

WITH child // the tallest

ORDER BY child.size DESC LIMIT 1
MATCH (child) —-[:LIKES]—-> (res)
RETURN res

In natural language, the translation of this query
could be "What does the tallest child of Ma
Dalton likes ?” WITH is used when the graph
exploration depends on an aggregation result.

III. SYSTEM DEVELOPMENT

Student teams developed the following:

e split input to a sequence of words.

e matched it with patterns of their own design,
several patterns for each type of query.

e extracted the labels, variables from that then
generate Cypher.

e run the query with Neo4j. The whole things was
embedded in a client-server system.

All steps are shown in the activity diagram, Fig. 1.

Additionally a data generator was developed. This is
a small Java application used to generate data to test the
web API and to populate our database. It generates all of
the fields that the WTFast’s client would supply in the
real system, but is configurable so we can test with large
or small volumes of data from many virtual users.

In COSC 470/471 SW Engineering project course at
OC students used Python and Flask framework, Neo4]J

database, Javascript, HTML, and CSS for the frontend.
In the project SW development cycle Jira, Slack for
team communication, GIT SCM managed by GitLab
server (integrated with Jira), and Docker were used. The
prototyping and code refactoring were used to prove
the concept. For the custom query building they used
Query object dictionary, fail-early edge creating and
filter predicates on objects.

The following NLP solutions were achieved:

e Extracting information that is useful for generat-
ing database query language.

e The cypher query API was developed.
o Token to Cypher glue code was developed.

e More advanced systems can tag words with lin-
guistic data (e.g. is this word a noun, verb, or
adjective?).

e Using data directly in the database being queried.

e Implemented Auto complete functionality for En-
glish query.

In the two research project prototypes at UBCO
English Queries in NL2CQ prototype English sentences
in section II-B parsed successfully and the following
features were implemented:

e NL2CQ accurately translated simple English lan-
guage queries, into complicated Cyper graph
database queries. The resulting query can be
entered into a Neo4j database, and the logical
results for the query will be returned.

e Over 50 unit tests were implemented to test
accuracy of the resulting cyper queries.

e The ability to compare the similarities between
words was implemented. It helped avoiding su-
perfluous words interfering with the input, and
increasing the accuracy of the queries.

e Since the students were not using a parser gener-
ator like yacc, they applied ad hoc text analysis
to approximate a context free grammar. For ex-
ample the words “has”, “have”, and “with” were
resulting in different language tags depending on
the input sentence. Another parsing issue was
solved by scanning the input list for definitive
key words that only that kind of query would
have, and creating a Boolean table for them.

In the another UBCO project prototype (From NLP to
Graph Queries team — “NLP2GQ”) the Python NLTK,
Neo4J and Cypher querying language were used (Fig. ??
and Section II-C). The team developed 56 unit test for
just queries, but not all possible queries can be tested.
The team implemented all queries given by the client,
using a template system (see the Section II-C).

IV. FUTURE WORK

Our future research will be related to utilizing the
developed three prototypes into the industrial applications
and further NLP to DBMS queries code generation (NLP
to SQL, NLP to Cypher Queries/Neof4]J, NLP to
SPARQL, etc.).

The following issues still should be resolved in the
developed NL2CQ prototype:

e All possible ways to state the query may have not

been accounted for. So someone might present a
query in a way we haven’t thought of yet, and
our methods may not handle it.
A possible workaround: Users should enter
queries in the most straight forward logical way,
to get the best results. It’s necessary to continue
to work with the methods to handle more casual,
loos english queries.

e Certain punctuation, especially apostrophes cause

the language tagger to incorrectly tag words, and
this results in an incorrect result, or error.
A possible workaround: At the moment certain
queries that should have punctuation, do not. This
is a relatively easy fix, but due to time constraints
it was not fixed in the project.

The NLP2GQ team found the following issues, which
should addressed in the next project developments:

e Every possible query cannot be implemented
without investigation and clever programming.

e Where the current implementation might work
on a certain graph database, it might not be
applicable to another.

e Implementation on higher complexity graphs
may not adapt well.

e There comes a point where complex queries
cannot be written in English, in a structure that
is grammatically correct — is it really natural
language at that point?

The prototype should also be tested with untrained
users. Their results would provide an insightful evaluation
of the system.

V. CONCLUSION

We have designed, implemented and tested a sys-
tem for transforming written English-language to Cypher
graph queries. The general method is simple but system-
atic pattern-matching to allow for multiple NL forms for
each possible type of query. Many practical issues were
considered and can be implemented in the future e.g.
automatic pre-processing of the graph database schema.
The project shows that a useful interface can be built
without deep NLP or ML techniques, taking advantage
of the expressive power of a query language like Cypher.
Future work in this direction will include the automatic
generation of parallel graph queries and automatic recog-
nition of more complex query patterns.

Through this project the Okanagan College students
leaned how to work with industrial clients and produced
a useful tool for NLP processing and automatic code
generation. They also leaned about database systems, new
APIs and programming languages. Moreover they could
apply a serious software engineering methodology, and
systematic team work organization.

ACKNOWLEDGMENTS

The described research projects were done under
supervision from the CSI, Paris Research Lab, Huawei

Technologies, Boulogne Billancourt, France by the under-
graduate students at the Okanagan College and at UBC
Okanagan campus.

We would like to thank the NODGE team for the R&D
project “English to Cypher” conducted by the Computer
Science undergraduate students in COSC 470 SW Engi-
neering (2017) and in COSC 471 SW Engineering Project
courses (2018) at Okanagan College. And we would like
to thank the 3rd year of study undergraduate students at
UBC Okanagan campus in COSC 310 Software Engi-
neering, who participated in two prototypes development:
“From NLP to Graph Queries” by team “Won” and “Nat-
ural Language to Cypher Query (NL2CQ)” by another
team of five the students.

REFERENCES

[1] Ton Androutsopoulos, Graeme D Ritchie, and Peter Thanisch.
Natural language interfaces to databases—an introduction. Natural
language engineering, 1(1):29-81, 1995.

[2] Pooja A Dhomne, Sheetal R Gajbhiye, Tejaswini S Warambhe,
and Vaishali B Bhagat. Accessing database using nlp. IJRET Int.
J. Res. Eng. Technol. eISSN, pages 2319-1163, 2013.

[3] R. Grmek, Y. Khmelevsky, and D. Syrotovsky. Automated
inventory tracking system prototype in cloud. In High Perfor-
mance Computing and Simulation (HPCS), 2011 International
Conference on High Performance Computing & Simulation, pages
435-441, Istanbul, Turkey, July 4-8 2011. In Cooperation with the
ACM, IEEE, IFIP, Co-Sponsored by IEEE Turkey, ASIM, EU-
ROSIM, CASS, JSST, LSS, PTSK, TSS, Bahcesehir University.

[4] G. Hains, Chong Li, D. Atkinson, J. Redly, N. Wilkinson, and
Y. Khmelevsky. Code generation and parallel code execution from
business uml models: A case study for an algorithmic trading
system. In Science and Information Conference (SAI), 2015,
pages 84-93, July 2015.

[5S] G. Hains, Chong Li, N. Wilkinson, J. Redly, and Y. Khmelevsky.
Performance analysis of the parallel code execution for an al-
gorithmic trading system, generated from uml models by end
users. In Parallel Computing Technologies (PARCOMPTECH),
2015 National Conference on, pages 1-10, Feb 2015.

[6] Gaétan Hains, Chong Li, Youry Khmelevsky, Brandon Potter,
Jesse Gaston, Andrew Jankovic, Sam Boateng, and William Lee.
Generating a real-time algorithmic trading system prototype from
customized uml models (a case study). 2012.

[71 Youry Khmelevsky, Gaétan Hains, and Chong Li. Automatic
code generation within student’s software engineering projects.
In Proceedings of the Seventeenth Western Canadian Conference
on Computing Education, WCCCE ’12, pages 29-33, New York,
NY, USA, 2012. ACM.

[8] Youry Khmelevsky, Martin Rinard, and Stelios Sidiroglou-
Douskos. A source-to-source transformation tool for error fixing.
In Proceedings of the 2013 Conference of the Center for Ad-
vanced Studies on Collaborative Research, CASCON 13, pages
147-160, Riverton, NJ, USA, 2013. IBM Corp.

[9] M Norouzifard, SH Davarpanah, MH Shenassa, et al. Using
natural language processing in order to create sql queries. In
Computer and Communication Engineering, 2008. ICCCE 2008.
International Conference on, pages 600-604. IEEE, 2008.

[10] Shaikh Sharmeen Momin Ummiya Tabrez Khan, Shaikh Sh-
agufta. NLP to Create sql Query. International Journal for
Scientific Research and Development, 3(9):95-98, 01/12/2015
2015.

