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KERNEL ESTIMATION OF THE TRANSITION DENSITY IN BIFURCATING

MARKOV CHAINS.

S. VALÈRE BITSEKI PENDA

Abstract. We study the kernel estimator of the transition density of bifurcating Markov chains.

Under some ergodic and regularity properties, we prove that this estimator is consistent and

asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to
choose the bandwidth parameters. These methods are based on the so-called two bandwidths

approach.

Keywords: Kernel estimator, cross validation method, rule of thumb type method, bifurcating
Markov chains, binary trees, asymptotic normality.
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1. Introduction

This article is devoted to the study of the kernel estimators of the transition probability of
bifurcating Markov chains. Before defining these estimators, let us first introduce useful definitions,
notations and assumptions.

1.1. Bifurcating Markov chains. Let d ≥ 1 be a natural integer. In order to simplify the
notations in the sequel, we set S = Rd and we equip S with its Borel σ-algebra that we denote by
S . We denote by B(S) (resp. Bb(S), resp. B+(S)) the set of (resp. bounded, resp. non-negative)
R-valued measurable functions defined on S. For f ∈ B(S), we set ‖f ‖∞ = sup{|f(x)|, x ∈ S}.
For a finite measure λ on (S,S ) and f ∈ B(S) we shall write 〈λ, f〉 for

∫
f(x) dλ(x) whenever

this integral is well defined. We denote by Cb(S) (resp. C+(S)) the set of bounded (resp. non-
negative) R-valued continuous functions defined on S. For all natural integer q ≥ 1, we equip Sq

with S ⊗q = S ⊗ . . .⊗S , the usual product σ-field on Sq.
Let Q be a probability kernel on S×S , that is: Q(·, A) is measurable for all A ∈ S , and Q(x, ·)

is a probability measure on (S,S ) for all x ∈ S. For any f ∈ Bb(S), we set for x ∈ S:

(1) (Qf)(x) =

∫

S

f(y) Q(x, dy).

We define (Qf), or simply Qf , for f ∈ B(S) as soon as the integral (1) is well defined, and we have
Qf ∈ B(S). For n ∈ N, we denote by Qn the n-th iterate of Q defined by Q0 = Id, the identity
map on B(S), and Qn+1f = Qn(Qf) for f ∈ Bb(S).

Let P be a probability kernel on S ×S ⊗2, that is: P (·, A) is measurable for all A ∈ S ⊗2, and
P (x, ·) is a probability measure on (S2,S ⊗2) for all x ∈ S. For any g ∈ Bb(S

3) and h ∈ Bb(S
2),

we set for x ∈ S:

(2) (Pg)(x) =

∫

S2

g(x, y, z) P (x, dy,dz) and (Ph)(x) =

∫

S2

h(y, z) P (x, dy,dz).

1
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We define (Pg) (resp. (Ph)), or simply Pg for g ∈ B(S3)(resp. Ph for h ∈ B(S2)), as soon as the
corresponding integral (2) is well defined, and we have that Pg and Ph belong to B(S).

We now introduce some notations related to the regular binary tree. Recall that N is the set of
non-negative integers and N∗ = N\{0}. We set T0 = G0 = {∅}, Gk = {0, 1}k and Tk =

⋃
0≤r≤k Gr

for k ∈ N∗, and T =
⋃
r∈N Gr. The set Gk corresponds to the k-th generation, Tk to the tree up

the k-th generation, and T the complete binary tree. For i ∈ T, we denote by |i| the generation of
i (|i| = k if and only if i ∈ Gk) and iA = {ij; j ∈ A} for A ⊂ T, where ij is the concatenation of
the two sequences i, j ∈ T, with the convention that ∅i = i∅ = i.

We recall the definition of bifurcating Markov chain (BMC) from Guyon [8].

Definition 1.1. We say a stochastic process indexed by T, X = (Xi, i ∈ T), is a bifurcating
Markov chain on a measurable space (S,S ) with initial probability distribution ν on (S,S ) and
probability kernel P on S ×S ⊗2, a BMC in short, if:

- (Initial distribution.) The random variable X∅ is distributed as ν.
- (Branching Markov property.) For a sequence (gi, i ∈ T) of functions belonging to Bb(S

3),
we have for all k ≥ 0,

E
[ ∏

i∈Gk

gi(Xi, Xi0, Xi1)|σ(Xj ; j ∈ Tk)
]

=
∏

i∈Gk

Pgi(Xi).

We define three probability kernels P0, P1 and Q on S ×S by:

P0(x,A) = P(x,A× S), P1(x,A) = P(x, S ×A) for (x,A) ∈ S ×S , and Q =
1

2
(P0 + P1).

Notice that P0 (resp. P1) is the restriction of the first (resp. second) marginal of P to S. Following
Guyon [8], we introduce an auxiliary Markov chain Y = (Yn, n ∈ N) on (S,S ) with Y0 distributed
as X∅ and transition kernel Q. The distribution of Yn corresponds to the distribution of XI , where
I is chosen independently from X and uniformly at random in generation Gn. We shall write Ex
when X∅ = x (i.e. the initial distribution ν is the Dirac mass at x ∈ S).

Let i, j ∈ T. We write i 4 j if j ∈ iT. We denote by i ∧ j the most recent common ancestor of
i and j, which is defined as the only u ∈ T such that if v ∈ T and v 4 i, v 4 j then v 4 u. We
also define the lexicographic order i ≤ j if either i 4 j or v0 4 i and v1 4 j for v = i ∧ j. Let
X = (Xi, i ∈ T) be a BMC with kernel P and initial measure ν. For i ∈ T, we define the σ-field:

Fi = σ(Xu;u ∈ T such that u ≤ i).
By construction, the σ-fields (Fi; i ∈ T) are nested as Fi ⊂ Fj for i ≤ j.

For i ∈ T and k ∈ N, we also define the σ-field:

Hi,k = σ(Xu, u ∈ iTk)

We end this section with a useful notations. By convention, for f, g ∈ B(S), we define the
function f ⊗ g by (f ⊗ g)(x, y) = f(x)g(y) for x, y ∈ S and

f ⊗sym g =
1

2
(f ⊗ g + g ⊗ f) and f⊗2 = f ⊗ f.

Notice that P(g ⊗sym 1) = Q(g) for g ∈ B+(S).
For all u ∈ T, we denote by XM

u = (Xu, Xu0, Xu1) the mother-daughters triangle. For a finite
subset A ⊂ T, we define:

MA(f) =
∑

u∈A
f(Xu) if f ∈ B(S) and MA(f) =

∑

u∈A
f(XM

u ) if f ∈ B(S3).
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In the sequel we will also use the following notation: let g and h be two functions which depend
on one variable, x say; we denote by g⊕ h the function of three variables, xx0x1 := (x, x0, x1) say,
defined by

(g ⊕ h)(xx0x1) = g(x0) + h(x1).

1.2. Assumptions on the law of the bifurcating Markov chains (Xi, i ∈ T). For a set
F ⊂ B(S) of R-valued functions, we write F 2 = {f2; f ∈ F}, F ⊗ F = {f0 ⊗ f1; f0, f1 ∈ F},
and P (F ) = {Pf ; f ∈ F} whenever a kernel P act on F . Following [8], we state a structural
assumption on the set of functions we shall consider.

Assumption 1.2. Let F ⊂ B(S) be a set of R-valued functions such that:

(i) F is a vector subspace which contains the constants;
(ii) F 2 ⊂ F ;

(iii) F ⊂ L1(ν);
(iv) F ⊗ F ⊂ L1(P(x, ·)) for all x ∈ S, and P(F ⊗ F ) ⊂ F .

The condition (iv) implies that P0(F ) ⊂ F ,P1(F ) ⊂ F as well as Q(F ) ⊂ F . Notice that if f ∈ F ,
then even if |f | does not belong to F , using conditions (i) and (ii), we get, with g = (1+f2)/2, that
|f | ≤ g and g ∈ F . Typically, the set F can be the set Cb(S) of bounded real-valued functions, or
the set of smooth real-valued functions such that all derivatives have at most polynomials growth.

Following [8], we also consider the following ergodic properties for Q.

Assumption 1.3. There exists a probability measure µ on (S,S ) such that F ⊂ L1(µ) and for
all f ∈ F , we have the point-wise convergence limn→∞ Qnf = 〈µ, f〉 and there exists g ∈ F with:

(3) |Qn(f)| ≤ g for all n ∈ N.

Moreover, there exists a function V : [1,+∞) 7→ (0,∞) such that V ∈ F and constants α ∈ (0, 1)
and M <∞ such that:

(4) sup
|f |≤V

|Qnf − 〈µ, f〉| ≤MαnV for all n ∈ N.

Remark 1.4. In particular, (4) implies that for all f ∈ Bb(S), we have

(5) |Qnf − 〈µ, f〉| ≤M‖f‖∞ αn V for all n ∈ N.

Next, we have the following assumption on the existence of the density of P.

Assumption 1.5. The transition kernel P has a density, still denoted by P, with respect to the
Lebesgue measure.

Remark 1.6. Assumption 1.5 implies that the transition kernel Q has a density, still denoted by
Q, with respect to the Lebesgue measure. More precisely, we have Q(x, y) = 2−1

∫
S

(P(x, y, z) +
P(x, z, y))dz. This implies in particular that the invariant probability µ has a density, still denoted
by µ, with respect to the Lebesgue measure (for more details, we refer for e.g. to [7], chap 6).

Remark 1.7. Under Assumption 1.5, the probability measure µM defined on S3 by

µM(dxx0x1) = µ(dx)P (x, dx0, dx1),

has density with respect to the Lebesgue measure, that we also denote by µM, given by µM(xx0x1) =
µ(x)P(x, x0, x1), for all xx0x1 ∈ S3.
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Assumption 1.8. We assume that the following constant is finite:

C0 = sup
x,x0,x1∈S

(µ(x) + Q(x, x0) + P(x, x0, x1)).

Remark 1.9. We recall from [8, Theorem 11 and Corollary 15] that under Assumptions 1.2 and
1.3, we have for f ∈ F the following convergence in L2 (resp. a.s.):

(6) lim
n→∞

|Gn|−1MGn
(f) = 〈µ, f〉 and lim

n→∞
|Tn|−1MTn

(f) = 〈µ, f〉.

Now, the rest of the paper is organized follows. In Section 2, we define the estimators of the
transition density P based on the observation of a subpopulation. We will see that these are
quotient estimators. In Section 3, we study the consistency and the asymptotic normality of the
numerators of the estimators of P. Section 4 is dedicated to the study of consistency and asymptotic
normality of the estimators of P. In Section 5, we will illustrate the consistency of our estimators in a
bifurcating Markov model called bifurcating autoregressive process (BAR, for short). In particular,
we will develop two data-driven bandwidth selection methods: the least squares Cross-Validation
in Section 5.1 and the rule of thumb type method in Section 5.2. Sections 6-8 are dedicated to
the proofs of the main Theorems. In Section 9, we prove a useful inequality and in Section 10, we
recall some useful results.

2. Kernel estimators of the transition density P

Recall that S = Rd. Our aim is to estimate the transition density P from the observation of
the subpopulation An ∈ {Gn,Tn}. For that purpose, assume we observe XMn = (XM

u )u∈An
i.e. we

have 2n+2− 1 (or 3× 2n) random variables with value in S. Let K0 : S → R and K : S3 → R be a
functions such that

∫
S
K0(x)dx = 1 and K = K0⊗K0⊗K0. We also have

∫
S3 K(xx0x1)dxx0x1 = 1.

Let (hn, n ∈ N) be a sequence of positive numbers which converges to 0 as n goes to infinity. When
there is no ambiguity, we write h for hn. Let An ∈ {Tn,Gn}. We define, for all x ∈ S:

(7) µ̂An
(x) =

1

|An|hd/2
∑

u∈An

K0hn
(x−Xu),

where K0hn(x− y) = h
−d/2
n K0(h−1

n (x− y)) and for all xx0x1 ∈ S3:

(8) µ̂M
An

(xx0x1) =
1

|An|h3d/2

∑

u∈An

Khn(xx0x1 −XM
u ) and P̂An(xx0x1) =

µ̂M
An

(xx0x1)

µ̂An(x)
,

where

Khn
(xx0x1 − yy0y1) = h−3d/2

n K
(
h−1
n (x− y), h−1

n (x0 − y0), h−1
n (x1 − y1)

)
,

with the convention that P̂An(xx0x1) = 0 if µ̂An(x) = 0. However, we stress that if we assume that
K0 is strictly positive, then µ̂An

(x) > 0 for all x ∈ S.
From now on, we fix xx0x1 ∈ S3, that is, we are interested in the estimation at the point xx0x1.

We assume that µ(x) 6= 0. We consider the function fn defined by:

(9) fn(yy0y1) = Kh(xx0x1 − yy0y1).

If we want to be more rigorous, we must write fn,xx0x1
instead of fn. But, we choose to write

without the index xx0x1 in order to simplify the writing.

Remark 2.1. Note that asymptotic behavior (consistence and asymptotic normality) of µ̂An
have

been studied in [1].
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Remark 2.2. We stress that the results of this paper can be straightforward extended the case
where the bandwidth hhh is a vector of R3d, with possibly different coordinates. More precisely, one
can take the bandwidth hhh = (hi, 1 ≤ i ≤ 3d), where the hi’s may take different values. For our
convenience, we choose to work with the case where all the coordinates are the same, that is hi = h
for all 1 ≤ i ≤ 3d.

3. Consistency and Asymptotic normality for µ̂M
An

(xx0x1)

First, we will study the consistency and the asymptotic normality of µ̂M
An

(xx0x1). We set f̃n =

fn − 〈µ,Pfn〉. We begin with the study asymptotic normality of Nn,∅(fn) = |Gn|−1/2MAn
(f̃n).

This is motivated by the following decomposition:

(10) µ̂M
An

(xx0x1)−µM(xx0x1) = (|An| |Gn|−1/2 h3d/2)−1Nn,∅(fn) + (h−3d/2〈µM, fn〉−µM(xx0x1)).

We will need the following assumption on the bandwidth and on the kernel.

Assumption 3.1.
We assume that:

(i) hn = 2−nγ and 2α2 < 23dγ for some γ ∈ (0, 1/3d).
(ii) The kernel K0 (resp. K2

0 ) is integrable and square integrable.

Remark 3.2. Assumption 3.1, (i) implies in particular that

(11) lim
n→∞

|Gn|h3d
n =∞ and lim

n→∞
(2α2)n h3d

n = 0.

Note that Assumption 3.1, (i) is automatically satisfied if 2α2 ≤ 1, regardless of the value of α. For
2α2 > 1, this Assumption implies that the choice of the bandwidth is function of the ergodicity
rate of the auxiliary Markov chain Y .

We have the following result.

Theorem 3.3. Let X be a BMC with kernel P and initial distribution ν such that Assumptions
1.2, 1.3, 1.5, 1.8 and 3.1 hold. Then, we have the following convergence in distribution:

Nn,∅(fn)
(d)−−−−→
n→∞

G,

where G is a centered Gaussian random variable with finite variance σ2 = 2 ‖K0‖62 µM(x, x0, x1) if
An = Tn and σ2 = ‖K0‖62 µM(x, x0, x1) if An = Gn.

Proof. The proof of Theorem 3.3 is postponed to Section 6. �

Next, in order to study the asymptotic normality of µ̂M
An

(xx0x1), we do the following additional
hypothesis.

Assumption 3.4. We assume that Assumption 3.1 holds and there exists s > 0 such that the
following holds.

(iv) The density µM (resp. µ) belongs to the (isotropic) Hölder class of order
(s, . . . , s) ∈ R3d (resp. (s, . . . , s) ∈ Rd): The density µM admits partial derivatives with
respect to xj, for all j ∈ {1, . . . 3d}, up to the order bsc and there exists a finite constant
L > 0 such that for all x = (x1, . . . , x3d),∈ R3d, t ∈ R and j ∈ {1, . . . , 3d}:

∣∣∣∣∣
∂bscµM

∂x
bsc
j

(x−j , t)−
∂bscµM

∂x
bsc
j

(x)

∣∣∣∣∣ ≤ L|xj − t|
{s},
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where (x−j , t) denotes the vector x where we have replaced the jth coordinate xj by t, with
the convention ∂0µM/∂x0

j = µM. The same thing for the density µ.

(v) The kernel K0 is of order (bsc, . . . , bsc) ∈ Nd: We have
∫
Rd |x|sK0(x) dx < ∞ and∫

R x
k
j K0(x) dxj = 0 for all k ∈ {1, . . . , bsc} and j ∈ {1, . . . , d}.

(vi) Bandwith control: We have γ > 1/(2s+ 3d), that is limn→∞ |Gn|h2s+3d
n = 0.

Notice that Assumption 3.4-(iv) implies that µM (resp. µ) is at least Hölder continuous as s > 0.
We have the following result.

Theorem 3.5. Let X be a BMC with kernel P and initial distribution ν. Under Assumptions of
Theorem 3.3, we have for all (x, x0, x1) and An ∈ {Gn,Tn}

(12) µ̂M
An

(xx0x1)
P−−−−→

n→∞
µM(xx0x1) in probability.

Moreover, under the additional Assumption 3.4, we have the following convergence in distribution:

|An|1/2 h3d/2
n (µ̂M

An
(xx0x1)− µM(xx0x1))

(d)−−−−→
n→∞

G in distribution,

where G is a centered Gaussian random variable with finite variance σ2 = ‖K0‖62 µM(x, x0, x1).

Proof. The proof is postponed to Section 7. �

4. Consistency and Asymptotic normality for P̂M
An

(xx0x1)

We are now in position to state consistency and asymptotic normality of kernel estimator of the
transition density P. First, as a consequence of (8), (12) and (43) below, we have the following
result.

Lemma 4.1. Under the Assumptions of Theorem 3.3, we have for all (x, x0, x1) and An ∈
{Gn,Tn} :

P̂An(x, x0, x1)
P−−−−→

n→∞
P(x, x0, x1) in probability.

Next, we have the following result.

Theorem 4.2. Let X be a BMC with kernel P and initial distribution ν. Under the assumptions
of Theorem 3.3 and the additional Assumption 3.4, we have,

√
|An|h3d

n (P̂An(x, x0, x1)− P(x, x0, x1))
(d)

−−−−→
n→∞

G,

where G is a centered Gaussian real-valued random variable with mean 0 and variance

σ2 = ‖K0‖62 P(x, x0, x1)/µ(x).

Proof. The proof is postponed to Section 8. �

5. Numerical studies

We consider the real-valued Gaussian bifurcating autoregressive process (BAR) X = (Xu, u ∈ T)
where X∅ is arbitrary and for all u ∈ T:

(13)

{
Xu0 = a0Xu + b0 + εu0

Xu1 = a1Xu + b1 + εu1,
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with a0, a1 ∈ [−1, 1], b0, b1 ∈ R and ((εu0, εu1), u ∈ T) an independent sequence of bivariate
Gaussian N(0,Γ) random vectors independent of X∅ with covariance matrix, with σ > 0 and ρ ∈ R
such that |ρ| < σ2:

Γ =

(
σ2 ρ
ρ σ2

)
.

Then the process X = (Xu, u ∈ T) is a BMC with transition probability P given by:

P(x, dy, dz) =
1

2π
√
σ4 − ρ2

exp

(
− σ2

2(σ4 − ρ2)
g(x, y, z)

)
dydz,

with

g(x, y, z) = (y − a0x− b0)2 − 2ρσ−2(y − a0x− b0)(z − a1x− b1) + (z − a1x− b1)2.

The transition kernel Q of the auxiliary Markov chain is defined by:

Q(x, dy) =
1

2
√

2πσ2

(
e−(y−a0x−b0)2/2σ2

+ e−(y−a1x−b1)2/2σ2
)
dy.

We will estimate the transition density P in a compact set D ⊂ R3. For that purpose, we use the

estimator P̂Gn
(xx0x1), for all xx0x1 ∈ D, given in (8), with the Gaussian kernel K0 defined by

(14) K0(x) =
1√
2π

e−x
2/2 .

Since the bandwidth is a function of the ergodicity rate which is unknown, we have to develop a

method based on data in order to select it. To select the optimal bandwidth for P̂Gn
defined in (8),

we will use the so-called “two bandwidths approach” (see for e.g. [6]). More precisely, since P̂Gn

is a quotient estimator, we select separately the bandwidths for the numerator (hN , say) and the
denominator (hD, say). For that purpose, we propose two methods: the cross validation and the
rule of thumb type method. The objective here is not to study nor to compare theoretically these
two methods. This will be done in the future works. Our objective is only the see the numerical
performances of each method. Our conclusion is that even if the rule of thumb developed in
this paper give a crude approximation, it as more computational benefit with respect to the least
squared cross validation.

5.1. Bandwidth selection by least squares Cross-Validation method. We choose the band-
widths which minimises the mean integrated squared errors (MISEs)

E
[∫

R3

(µ̂M
Gn
− µM)2(xx0x1)dxdx0dx1

]
and E

[∫

R
(µ̂Gn

− µ)2(x)dx

]
,

where µ̂M
Gn

and µ̂Gn
are defined in (7) and (8). This is equivalent to minimise the functions JM

and J defined by

JM(h) = E
[∫

R3

(µ̂M
Gn

)2(xx0x1)dxdx0dx1

]
− 2E

[∫

R3

(µ̂M
Gn
µM)(x, x0, x1)dxdx0dx1

]

and

J(h) = E
[∫

R
(µ̂Gn

)2(x)dx

]
− 2E

[∫

R
(µ̂Gn

µ)(x)dx

]
.

The method to select the bandwidths is the following.

(1) We divide the sample (XM
u )u∈Gn

into K disjoints subsamples {(XM
u )
u∈G(k)

n
, k ∈ {1, . . . ,K}},

with (G(k)
n , k ∈ {1, . . . ,K}) a partition of Gn.

(2) For each subsample (Xu)
u∈G(k)

n
:
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(a) We set µ̂M
Gn[−k] and µ̂Gn[−k] the estimators of µM and µ obtaining using the subsample

(XM
u )u∈Gn K (XM

u )
u∈G(k)

n
, where for two sets A and B, B KA denotes the set of elements

in B but not in A. More precisely,

µ̂M
Gn[−k](xx0x1) =

1

|Gn[−k]|h3

∑

u∈Gn[−k]

K0

(
x−Xu

h

)
K0

(
x0 −Xu0

h

)
K0

(
x1 −Xu1

h

)

and

µ̂Gn[−k](x) =
1

|Gn[−k]|h
∑

u∈Gn[−k]

K0

(
x−Xu

h

)
,

where we set Gn[−k] = Gn KG(k)
n .

(b) We approximate J and JM by

Ĵ (k)(h) =

∫

R
(µ̂Gn[−k])

2(x)dx− 2

|G(k)
n |

∑

u∈G(k)
n

µ̂Gn[−k](Xu) and

ĴM(k)(h) =

∫

R3

(µ̂M
Gn[−k])

2(xx0x1)dxdx0dx1 −
2

|G(k)
n |

∑

u∈G(k)
n

µ̂M
Gn[−k](Xu, Xu0, Xu1).

(3) Let H = {h1, . . . , hm} ⊂ (0, 1] be a bandwidth grid. Then, the selected bandwidths ĥN
and ĥD for the numerator and the denominator of P̂Gn

are given by:

ĥN := arg min
h∈H

1

K

K∑

k=1

ĴM(k)(h) and ĥD := arg min
h∈H

1

K

K∑

k=1

Ĵ (k)(h).

Finally, the estimator used for numerical studies is P̃Gn
defined by:

P̃Gn
(xx0x1) =

µ̃M
An

(xx0x1)

µ̃An(x)
,

with

µ̃Gn
(x) =

1

|Gn|ĥD

∑

u∈Gn

K0

(
x−Xu

ĥD

)
and

µ̃M
Gn

(xx0x1) =
1

|Gn|ĥ3
N

∑

u∈Gn

K0

(
x−Xu

ĥN

)
K0

(
x0 −Xu0

ĥN

)
K0

(
x1 −Xu1

ĥN

)
.

This method is known as the K-fold cross validation. One advantage of this method in the context
of bifurcating Markov chains is that it is not requires the knowledge of the ergodicity rate. The
main drawback being that it requires a lot of time for calculations.

5.2. Gaussian symmetric BAR reference bandwidth selection. In order to define a selec-
tion rule, we consider the special case of Gaussian BAR defined by (13) where a0 = a1 := a and
ρ = 0 as a reference model. It is well known (see [3]) that the densities of the transition kernel Q
of the auxiliary Markov chain and the invariant probability µ associated to Q are given by:

Q(x, y) =
1√

2πσ2
exp

(
− (y − ax)2

2σ2

)
and µ(x) =

1√
2πσa

exp

(
− x2

2σ2
a

)
,

where σa = σ/
√

1− a2. The density of the transition probability P associated to this bifurcating
Markov chain is defined by P(x, y, z) = Q(x, y)Q(x, z) and then, µM(x, y, z) = µ(x)Q(x, y)Q(x, z).
We then have that the invariant densities µ and µM are square integrable and twice differentiable,
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with the second order derivative of µ and all the second order partial derivatives of µM bounded,
continuous and square integrable. It is also well that the Markov chain with transition Q is
geometrically ergodic and that the geometric ergodic rate of convergence is a (for more details,
see for e.g Example 2.8 in [3]). In particular, following the proof of Proposition 28 in [8], one can
prove that for all derivable function f such f and f ′ are bounded, we have

(15) |Qnf(x)− 〈µ, f〉| ≤ ‖f ′‖∞(σ(1− a)−1 + |x|)an.
We assume that L(X∅) = µ, that is X∅ is distributed as µ, which implies that the process is
stationary. We are now going to behave as if we did not know the invariant measures µ and µM

and the transition probability P. Recall the kernel density estimator of µ defined in (7) and the
kernel K0 defined in (14). Recall also the kernel estimator of the transition density P defined in
(8). To ease notation, we write µ̂ and µ̂M instead of µ̂Gn and µ̂M

Gn
respectively. We recall that

our strategy is to select bandwidth for the numerator and the denominator in the estimation of P.
First, we treat the denominator µ̂. The selection rule is based on the following asymptotic upper
bound, known as asymptotic mean squared error:

(16) E
[
(µ̂(x)− µ(x))

2
]
≤ h4

2
κ2

2µ
′′(x)2 +

4‖K0‖22
|Gn|h

µ(x) +
2Ca,σ
a2|Gn|

n−1∑

k=1

(2a2)k + O(1).

where

(17) Ca,σ =
1

πσ2(1 + a)(1− a)2
and κ2 =

∫

R
y2K0(y)dy = 1.

We postponed the proof of (16) in Section 9. Now, let p be a non negative probability density
defined in R such that ‖p‖∞ ≤ 1. Then, (16) implies that

(18)

∫

R
E
[
(µ̂(x)− µ(x))

2
]
p(x)dx ≤ h4

2
κ2

2

∫

R
µ′′(x)2dx +

4‖K0‖22
|Gn|h

+
2Ca,σ
a2|Gn|

n−1∑

k=1

(2a2)k + O(1).

The term in the left hand side of (18) is a modification of asymptotic mean integrated squared
error that we call p-AMISE. We have introduced it because the last term in (16) does not depend
on x. Finally, (18) suggests us to choose the bandwidth which minimises the function G defined
by

G(h) =
h4

2
κ2

2

∫

R
µ′′(x)2dx +

4‖K0‖22
|Gn|h

+Ma,σ a
2n 1{2a2>1},

where Ma,σ = 2/(πσ2a2(1+a)(1−a)2(2a2−1)). Optimizing in h, we get that the optimal bandwidth

hD (for the denominator of P̂Gn
defined in (8)) is given by

hD = (c1/4c2)1/5|Gn|−1/5 1{2a2≤2−1/5} + (c1/Ma,σ) (2a2)−n 1{2a2>2−1/5},

where

c1 = 4‖K0‖22 =
2√
π

and c2 = (1/2)κ2
2

∫

R
µ′′(x)2dx =

3

16
√
π
σ−5
a .

Next, we treat the numerator µ̂M of P̂Gn
. Recalling Remark 2.2, we consider the general case where

for all xx0x1 ∈ S3:

µ̂M
Gn

(xx0x1) =
1

|Gn|hh0h1

∑

u∈Gn

K0(h−1(x−Xu))K0(h−1
0 (x0 −Xu0))K0(h−1

1 (x1 −Xu1)).
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Recall that for a vector vvv, vvvt denotes its transpose. As in (16), we have the following asymptotic
upper bound:

(19) E
[(
µ̂M(xx0x1)− µM(xx0x1)

)2] ≤ 1

2
κ2

2

(
hhhtHHH(xx0x1)hhh

)2
+

6 ‖K0‖62
|Gn|hh0h1

µM(xx0x1)

+
CM
a,σ P(xx0x1)2

|Gn|
n−1∑

k=1

(2 a2)k + O(1),

where κ2 is defined in (17), hhh = (h, h0, h1)t, and

HHH(xx0x1) =




∂2µM

∂x2 (x, x0, x1) 0 0

0 ∂2µM

∂x2
0

(x, x0, x1) 0

0 0 ∂2µM

∂x2
1

(x, x0, x1)


 ,

CM
a,σ =

4

e πσ2a2(1− a)2(1 + a)
.

We let the proof of (19) to the reader since it follows the same lines that of (16). Let p be a non
negative probability density defined in R such that ‖p‖∞ ≤ 1. Integrating (19) with respect to
p(x)dxdx0dx1, we get

∫∫∫

R3

E
[(
µ̂M(xx0x1)− µM(xx0x1)

)2]
p(x)dxdx0dx1 ≤

1

2
κ2

2

∫∫∫

R3

(
hhhtHHH(xx0x1)hhh

)2
dxdx0dx1

+
6 ‖K0‖62
|Gn|hh0h1

+
CM
a,σ

4πσ2|Gn|
n−1∑

k=1

(2 a2)k + O(1).

Now, the latter equation suggests us to choose the vector bandwidth hhh which minimises the function
GM defined by

GM(h, h0, h1) =
1

2
κ2

2

∫∫∫

R3

(
hhhtHHH(xx0x1)hhh

)2
dxdx0dx1 +

6 ‖K0‖62
|Gn|hh0h1

+ MM
a,σ a

2n1{2a2>1}.

where MM
a,σ = (1/(4π σ2(2a2−1)))CM

a,σ. Optimizing the function GM in hhh, we get that the optimal
bandwidth hhhN = (hN , h0N , h1N ) is given by

hN =
(
cM2 /(4c

M)
)1/7 |Gn|−1/7 1{2a2≤2−3/7} + (cM2 /M

M
a,σ)1/3 (2a2)−n/3 1{2a2>2−3/7},

h0N =
(
cM2 /(4c

M
0 )
)1/7 |Gn|−1/7 1{2a2≤2−3/7} + (cM2 /M

M
a,σ)1/3 (2a2)−n/3 1{2a2>2−3/7},

h1N =
(
cM2 /(4c

M
1 )
)1/7 |Gn|−1/7 1{2a2≤2−3/7} + (cM2 /M

M
a,σ)1/3 (2a2)−n/3 1{2a2>2−3/7},

where κ2 is defined in (17), cM2 = 6 ‖K0‖62 = 6/(8π
√
π) and

cM =
1

2
κ2

2

∫∫∫

R3

(
∂2µM

∂x2
(x, x0, x1)

)2

dxdx0dx1 =
3(1 + a2)2

64π
√
π(1− a2)3

σ−7
a ,

cM0 =
1

2
κ2

2

∫∫∫

R3

(
∂2µM

∂x2
0

(x, x0, x1)

)2

dxdx0dx1 =
3

64π
√
π(1− a2)3

σ−7
a ,

cM1 =
1

2
κ2

2

∫∫∫

R3

(
∂2µM

∂x2
1

(x, x0, x1)

)2

dxdx0dx1 =
3

64π
√
π(1− a2)3

σ−7
a .
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We have

c1
4c2

= b1 σ
5
a,

c1
Ma,σ

= b2 σ
2
a,

cM2
4 cM

= b3 σ
7
a,

cM2
4 cM0

=
cM2

4 cM1
= b4 σ

7
a,

cM2
MM
a,σ

= b5 σ
4
a,

where

b1 =
32

3
, b2 =

√
πa2(1− a2)(1 + a)(1− a)2(2a2 − 1), b3 =

48(1− a2)3

12(1 + a2)2
,

b4 = 4(1− a2)3, b5 =
3a2(1− a2)3(1 + a)(2a2 − 1)

4
√
π

.

Since for a ∈ (0, 1) the constants bi, i ∈ {1, . . . , 5}, are bounded, we can approximate hD, hN , h0N ,
h1N by:

ĥD = |Gn|−1/5 σ̂a 1{2 â2≤2−1/5} + (2 â2)−n σ̂a 1{2â2>2−1/5},

ĥN = ĥ0N = ĥ1N = |Gn|−1/7 σ̂a 1{2 â2≤2−3/7} + (2 â2)−n/3 σ̂a 1{2â2>2−3/7},

where σ̂a is the estimator of the standard deviation of the measure µ and â is the estimator of

the geometric ergodic rate. Note that in practice, the estimators ĥN , ĥ0N and ĥ1N differ slightly.

Indeed, for ĥD and ĥN , σ̂a is computed using the sample (Xu, u ∈ Gn), for ĥ0N , σ̂a is computed

using the sample (Xu0, u ∈ Gn) and for ĥ1N , σ̂a is computed using the sample (Xu1, u ∈ Gn).
Recall that for i ∈ T and A ⊂ T, iA = {ij, j ∈ A}, where ij is the concatenation of the two
sequences i, j ∈ T. For the geometric ergodic rate, we propose the following estimator, which is
inspired from [9]:

â =

(∑
u∈Gn−m+1

∑
v∈uGm−1

(Xu −X)(Xv −X)
∑
u∈Gn

(Xu −X)2

)1/m

with X =
1

|Gn|
∑

u∈Gn

Xu,

where m is a large enough natural integer such that m = O(n). The choice m = bn/2c+ 1 seems

to be relevant. Finally, the estimator used for numerical studies is P̃Gn
defined by:

P̃Gn
(xx0x1) =

µ̃M
An

(xx0x1)

µ̃An(x)
,

with

µ̃Gn(x) =
1

|Gn|ĥD

∑

u∈Gn

K0

(
x−Xu

ĥD

)
and

µ̃M
Gn

(xx0x1) =
1

|Gn|ĥ3
N

∑

u∈Gn

K0

(
x−Xu

ĥN

)
K0

(
x0 −Xu0

ĥ0N

)
K0

(
x1 −Xu1

ĥ1N

)
.

This method is an adaptation of the rule of thumb developed by Silverman in [12]. The novelty
here is that the ergodic rate of convergence is taken into account in the estimation procedure.
In the context of BMC, The main advantage of this method is that it not requires a lot of time
for calculations. However, this method is a crude approximation which works for approximately
“Gaussian” bifurcating Markov chains.
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5.3. Numerical illustrations. In order to validate our method, we consider two cases:

case 1: (a0, a1, b0,1 , σ, ρ) = (0.7, 0.5, 0, 0, 1, 0);
case 2: (a0, a1, b0,1 , σ, ρ) = (1.2, 0.7, 0, 0, 1, 0);

In case 2, we allow the dynamic of the new pole to be unstable, even if the entire dynamic of the
system is stable. Following the terminology of Bitseki and Delmas in [2, 3], the case 2 corresponds
to supercritical case.

As we can see, Figure 1-8, the two methods allow to recover the true function when the size of
the data increases. Consequently, we conclude that our method is valid.

x0x1

P̂

estimation of P using
the rule of thumb type method
with n = 13; a0 = 0.7; a1 = 0.5;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.

x0x1
P̂

estimation of P using
the rule of thumb type method
with n = 15; a0 = 0.7; a1 = 0.5;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.

Figure 1

x0x1

P̂

estimation of P using
the cross validation method

with n = 13; a0 = 0.7; a1 = 0.5;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.

x0x1

P̂

estimation of P using
the cross validation method

with n = 15; a0 = 0.7; a1 = 0.5;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.

Figure 2

6. Proof of Theorem 3.3

We begin the proof with An = Tn. Let (pn, n ∈ N) be a non-decreasing sequence of elements of
N∗ such that, for all λ > 0:

pn < n, lim
n→∞

pn/n = 1 and lim
n→∞

n− pn − λ log(n) = +∞.

When there is no ambiguity, we write p for pn. Recall the function fn defined in (9). We have the
following decomposition:

(20) Nn,∅(fn) = R0(n) + R1(n) + ∆n(fn),
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x0x1

P̂
estimation of P using

the rule of thumb type method
with n = 13; a0 = 1.2; a1 = 0.7;
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The projection of P̂Gn
(left) and P (right) on the plane x = 3.
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estimation of P using
the rule of thumb type method
with n = 15; a0 = 1.2; a1 = 0.7;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.

Figure 3
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the cross validation method

with n = 13; a0 = 1.2; a1 = 0.7;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.
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estimation of P using
the cross validation method

with n = 15; a0 = 1.2; a1 = 0.7;

x0x1

P

The projection of P̂Gn
(left) and P (right) on the plane x = 3.

Figure 4

-4 -2 0 2 4

0.
00

0.
02

0.
04

0.
06

The projection of P̂Gn
(black) and P (green) on the line x = 3; x1 = 0.

We use the rule of thumb type method and n = 13; a0 = 0.7; a1 = 0.5;

x0

P̂
(b

la
ck

)
an

d
P

(g
re

en
)

-4 -2 0 2 4

0.
00

0.
02

0.
04

The projection of P̂Gn
(black) and P (green) on the line x = 3; x1 = 0.

We use the rule of thumb type method and n = 15; a0 = 0.7; a1 = 0.5;

x0

P̂
(b

la
ck

)
an

d
P

(g
re

en
)

Figure 5

where:

R0(n) = |Gn|−1/2

n−p−1∑

k=0

MGk
(f̃n); R1(n) =

∑

i∈Gn−p

E[Nn,i(fn)|Fi]; ∆n(fn) =
∑

i∈Gn−p

∆n,i(fn),
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and for all i ∈ Gn−p,

Nn,i(fn) = |Gn|−1/2

p∑

`=0

MiGp−`
(f̃n) and ∆n,i(fn) = Nn,i(fn)− E[Nn,i(fn)|Fi].
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Note that using the branching Markov property, we have, for all i ∈ Gn−p,

(21) E[MiGp−`
(f̃n)|Fi] = EXi

[MGp−`
(Pf̃n)].

We have the following convergence.

Lemma 6.1. Under the assumptions of Theorem 3.3, we have that limn→∞ E[R0(n)2] = 0.

Proof. We have

E[R0(n)2] = |Gn|−1 E[(

n−p−1∑

k=0

∑

u∈Gk

f̃n(XM
u )2]

≤ |Gn|−1 (

n−p−1∑

k=0

E[(
∑

u∈Gk

f̃n(XM
u )2]1/2)2,(22)

where we used the Minkowski inequality for the first inequality. By developing the term in the
expectation, we get

E[(
∑

u∈Gk

f̃n(XM
u )2] = E[

∑

u6=v∈Gk

E[f̃n(XM
u )f̃n(XM

v )|Xu, Xv]] + E[
∑

u∈Gk

E[(f̃n)2(XM
u )|Xu]]

= E[
∑

u 6=v∈Gk

Pf̃n(Xu)Pf̃n(Xv)] + E[
∑

u∈Gk

P((f̃n)2)(Xu)]

= E[(
∑

u∈Gk

Pf̃n(XM
u ))2] + E[

∑

u∈Gk

(P((fn)2)− (Pfn)2)(Xu)],

where we used the branching Markov property for the second inequality and the fact that P((f̃n)2)−
(Pf̃n)2 = P((fn)2)− (Pfn)2 for the third equality. Using (22) and using the inequalities

√
a+ b ≤√

a+
√
b and (a+ b)2 ≤ 2a2 + 2b2, we get

E[R0(n)2] ≤ |Gn|−1 (

n−p−1∑

k=0

(E[(
∑

u∈Gk

Pf̃n(XM
u ))2]1/2 + E[

∑

u∈Gk

(P((fn)2)− (Pfn)2)(XM
u )]1/2))2

≤ 2|Gn|−1((

n−p−1∑

k=0

E[MGk
(P(f̃n))2]1/2)2 + (

n−p−1∑

k=0

E[MGk
(P((fn)2)− (Pfn)2)]1/2)2).

Note that from Lemma 10.1, we have ‖P(fn)‖∞ ≤ Ch
d/2
n and ‖P(f2

n)‖∞ ≤ C. Recall P(f̃n) =
P(fn)− 〈µ,P(fn)〉. Then, using (53), (5) and Lemma 10.1, we get

E[MGk
(Pf̃n)2] ≤ C hdn if k ∈ {0, 1}

and for all k ≥ 2,

E[MGk
(Pf̃n)2] ≤

{
C h2d

n 2k if 2α2 ≤ 1

C 2k (h2d
n + (2α2)k h3d

n ) if 2α2 > 1.

It follows for the two last inequalities that

|Gn|−1 (

n−p−1∑

k=0

E[MGk
(P(f̃n))2]1/2)2 ≤ C 2−n h3d

n + C 2−p h2d
n + 2−p (2α2)n−p h3d

n 1{2α2>1}.
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Using (11), Assumption 3.1 and since limn→∞ pn =∞, it follows that

lim
n→∞

|Gn|−1(

n−p−1∑

k=0

E[MGk
(P(f̃n))2]1/2)2 = 0.

Next, using Lemma 10.1, we get E[MGk
(P((fn)2)− (Pfn)2)] ≤ C 2k. This implies that

lim
n→∞

|Gn|−1(

n−p−1∑

k=0

E[MGk
(P((fn)2)− (Pfn)2)]1/2)2 ≤ C lim

n→∞
2−p = 0

and this ends the proof. �

Next, we have the following convergence.

Lemma 6.2. Under the assumptions of Theorem 3.3, we have that limn→∞ E[R1(n)2] = 0.

Proof. Using (21), we get

R1(n) =

p∑

k=0

R1(k, n),

with

R1(k, n) = |Gn|−1/2 |Gp−k|MGn−p(Qp−kPf̃n).

It follows that

(23) E
[
R1(n)2

]1/2 ≤
p∑

k=0

(
E
[
R1(k, n)2

])1/2
.

Following the proof of Lemma 4.2 in [3] and using (5) and Lemma 10.1, we find that

E
[
R1(k, n)2

]
≤ C 2−p h2d

n 1{k=p} +





C h3d
n 2−p (2α)2(p−k) if 2α2 < 1

C (n− p)h3d
n 2−k if 2α2 = 1

C 2−p (2α2)n−p h3d
n (2α)2(p−k) if 2α2 > 1.

From (23), this implies that

E
[
R1(n)2

]1/2 ≤ C 2−p/2 hdn +





C h
3d/2
n

∑p
k=0 2−k/2 (2α2)(p−k)/2 if 2α2 < 1

C (n− p)1/2 h
3d/2
n if 2α2 = 1

C (2α2)n/2 h
3d/2
n if 2α2 > 1.

From the latter inequality and using Assumption 3.1, we deduce that limn→∞ E[R1(n)2] = 0. �

We now study the bracket

V (n) =
∑

i∈Gn−p

E[∆n,i(fn)2|Fi].

Note that for i ∈ Gn−p, we have

E[∆n,i(fn)2|Fi] = |Gn|−1E[(

p∑

k=0

MiGp−k
(f̃n))2|Fi]− |Gn|−1(E[

p∑

k=0

MiGp−k
(f̃n)|Fi])2.

Using the branching Markov chain property, this implies that

(24) V (n) = V1(n) + V2(n)−R2(n),
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with

V1(n) = |Gn|−1
∑

i∈Gn−p

p∑

k=0

EXi
[MGp−k

(f̃n)2],

V2(n) = 2|Gn|−1
∑

i∈Gn−p

∑

0≤k<`≤p

EXi
[MGp−`

(f̃n)MGp−k
(f̃n)],(25)

R2(n) = |Gn|−1
∑

i∈Gn−p

(

p∑

k=0

2p−kQp−kPf̃n(Xu))2.

We have the following result.

Lemma 6.3. Under the assumptions of Theorem 3.3, we have the following convergence:

lim
n→∞

E[R2(n)] = 0.

Proof. We have using (52), (5) and Lemma 10.1:

E [R2(n)] = |Gn|−1 |Gn−p| 〈ν,Qn−p
(( p∑

k=0

|Gp−k|Qp−kPf̃n
)2
)
〉

≤ C 2−p〈ν,Qn−p((Pf̃n)2)〉+ C 2−p〈ν,Qn−p((
p−1∑

k=0

2p−kQp−k−1(QPf̃n))2)〉

≤ C 2−p h2d
n + C 2−p h3d

n an,

where the sequence (an, n ≥ 1) is defined by

an =





1 if 2α < 1

p2 if 2α = 1

(2α)2p if 2α > 1.

Using Assumption 3.1, and in particular Remark 3.2, it follows that limn→∞ E[R2(n)] = 0. �

Next, we have the following result.

Lemma 6.4. Under the assumptions of Theorem 3.3, we have the following convergence:

lim
n→∞

E[V2(n)2] = 0.

Proof. Let 0 ≤ k < ` ≤ p and i ∈ Gn−p. Conditioning two times, first by Hi,p−k and next by
Hi,p−`+1, and using the branching Markov property, we get

EXi
[MGp−`

(f̃n)MGp−k
(f̃n)] = 2`−k−1EXi

[MGp−`
(f̃n)MGp−`

(gk,`,n)],

where we set gk,`,n = Q`−k−1Pf̃n ⊕ Q`−k−1Pf̃n. Next, conditioning by Hi,p−` and using the
branching Markov property, we get

EXi
[MGp−`

(f̃n)MGp−`
(gk,`,n)] = EXi

[MGp−`
(P(f̃ngk,`,n)− Pf̃nPgk,`,n)]

+ EXi [MGp−`
(Pf̃n)MGp−`

(Pgk,`,n)].

From the foregoing and using (52), (54) and (25), it follows that:

V2(n) = V5(n) + V6(n),
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where

V5(n) = |Gn−p|−1MGn−p
(H5,n) and V6(n) = |Gn−p|−1MGn−p

(H6,n),

with

H5,n =
∑

0≤k<`

2−kQp−`(P(f̃n gk,`,n))1{`≤p} and

H6,n =
∑

0≤k<`
r≥0

2−k+rQp−`−r−1P(QrPf̃n ⊗sym QrPgk,`,n)1{r+`<p}.

First, we treat the term V6(n). Note that we have

QrPgk,`,n = 2Qr+`−kPf̃n.

We set

h
(n)
k,`,r = 2r−k+1Qp−1−(r+`)P(QrPf̃n ⊗sym Qr+`−kPf̃n) and

hk,`,r = 2r−k+1〈µ,P(QrPf̃n ⊗sym Qr+`−kPf̃n)〉.
We consider the following sums:

H
[n]
6 =

∑

0≤k<`
r≥0

hk,`,r1{r+`<p} and A6,n = H6,n −H [n]
6 =

∑

0≤k<`
r≥0

(h
(n)
k,`,r − hk,`,r)1{r+`<p}.

Using Lemma 10.1, we have for all 0 ≤ k < ` and r ≥ 0:

|P(QrPf̃n ⊗sym Qr+`−kPf̃n)| ≤ ‖Qr+`−kPf̃n)‖∞ ‖P(QrPf̃n ⊗sym 1)‖∞
≤ ‖Qr+`−kPf̃n)‖∞ ‖Qr+1Pf̃n‖∞ ≤ C h3d

n .(26)

Moreover, using (5) and Lemma 10.1, we have for all 0 ≤ k < ` and r ≥ 1:

|P(QrPf̃n ⊗sym Qr+`−kPf̃n)| ≤ C α2r+`−k ‖Q(Pfn)‖2∞ P(V ⊗sym V )

≤ C α2r+`−k h3d
n P(V ⊗sym V ).(27)

Distinguishing the cases r = 0 and r ≥ 1 and using (26), (27), (iv) of Assumption 1.2 and (3), we
get, for some g1, g ∈ F ,

|H6,n −H [n]
6 | =

∑

0≤k<`

|h(n)
k,`,0 − hk,`,0|1{`<p} +

∑

0≤k<`
r≥1

|h(n)
k,`,r − hk,`,r|1{r+`<p}

≤ C
∑

0≤k<`

2−kαp−`−1 ‖P(Pf̃n ⊗sym Q`−kPf̃n)‖∞ V

+ C h3d
n

∑

0≤k<`
r≥1

2r−k α2r+`−k Qp−`−r−1P(V ⊗sym V ) 1{r+`<p}

≤ C h3d
n (V + (

∑

0≤k<`
r≥1

2r−k α2r+`−k 1{r+`<p}) g1) ≤ C h3d
n an g,(28)

where

an =





1 if 2α2 < 1

p if 2α = 1

(2α2)p if 2α2 > 1.
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Using (28), we find that

|V6(n)−H [n]
6 | ≤ |Gn−p|−1MGn−p(|H6(n)−H [n]

6 |) ≤ C an h3d
n |Gn−p|−1MGn−p(g).

Using (6), (11) and that g ∈ L1(µ), we get

lim
n→+∞

|V6(n)−H [n]
6 | = 0 a.s. and in L2.

Next, as for (28), using (26), (27) and that F ⊂ L1(µ), we find that |H [n]
6 | ≤ C an h3d

n . Using (11),

we get limn→+∞H
[n]
6 = 0. Now, since we can write V6(n) = (V6(n) − H [n]

6 ) + H
[n]
6 , we conclude

that limn→∞ E[V6(n)2] = 0.

Next, we treat the term V5(n). We have V5(n) = (V5(n)−H [n]
5 ) +H

[n]
5 , where

H
[n]
5 =

∑

0≤k<`

2−k〈µ,P(f̃n gk,`,n)〉1{`≤p}.

Using Lemma 10.1, we get, for all 0 ≤ k < `,

|P(f̃ngk,`,n)− 〈µ,P(f̃ngk,`,n)〉| ≤ C ‖Q`−k−1Pf̃n‖∞ ‖Pf̃n‖∞ ≤ C hdn1{k=`−1} + C h2d
n 1{k≤`−2}.

Using the latter inequality and distinguishing the cases ` = p and ` ≤ p− 1, we find that

|V5(n)−H [n]
5 | ≤ C (2−phdn + h2d

n + p h2d
n ).

This implies that limn→+∞ |V5(n)−H [n]
5 | = 0 a.s. and in L2.

Next, using Lemma 10.1, we have

|H [(n)]
5 | ≤

∑

0≤k<`

2−k|〈µ,P(f̃n gk,`,n)〉|1{`≤p} ≤ C
∑

`>0

(2−`+1 h2d
n +

`−2∑

k=0

2−k α`−k h3d/2
n ) ≤ C h3d/2

n .

This implies that limn→∞H
[(n)]
5 = 0 and then that limn→∞ V5(n) = 0 a.s. and in L2.

Finally, since V2(n) = V5(n) + V6(n), it follows from the foregoing that limn→∞ E[V2(n)2] = 0
and this ends the proof. �

Now we treat the term V1(n). Recall

V1(n) = |Gn|−1
∑

i∈Gn−p

p∑

k=0

EXi
[MGp−k

(f̃n)2].

We have the following convergence.

Lemma 6.5. Under the assumptions of Theorem 3.3, we have the following convergence:

lim
n→∞

V1(n) = 2 ‖K0‖62 µM(x, x0, x1) in probability.

Proof. Let k ∈ {0, . . . , p} and i ∈ Gn−p. Conditioning by Hi,p−k and using the branching Markov
property, we get

EXi [MGp−k
(f̃n)2] = EXi [MGp−k

(P(f̃2
n)− (Pf̃n)2)] + EXi [(MGp−k

(Pf̃n))2].

Using the latter inequality and the fact that P(f̃2
n)− (Pf̃n)2 = P(f2

n)− (Pfn)2, we get

V1(n) = V3(n) + V4(n)− V7(n),
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where

V3(n) = |Gn|−1
∑

i∈Gn−p

p∑

k=0

EXi
[MGp−k

(P(f2
n))];

V7(n) = |Gn|−1
∑

i∈Gn−p

p∑

k=0

EXi
[MGp−k

((Pfn)2)];

V4(n) = |Gn|−1
∑

i∈Gn−p

p∑

k=0

EXi
[(MGp−k

(Pf̃n))2].

First we treat V7(n). We set

H7,n =

p∑

k=0

2−k Qp−k((Pfn)2).

Using (52), we have V7(n) = |Gn−p|−1MGn−p(H7,n). Using Lemma 10.1 and distinguishing the cases

k = p and k ≤ p − 1, we get |V7(n)| ≤ C (2−p hdn + h2d
n ). It then follows that limn→∞ V7(n) = 0

in probability.

Next, we treat the term V3(n). We set A3,n = H3,n −H [n]
3 , with:

(29) H3,n =

p∑

k=0

2−k Qp−k(P(f2
n)) and H

[n]
3 =

p∑

k=0

2−k 〈µ,P(f2
n)〉 = 2(1− 2−p−1)〈µ,P(f2

n)〉.

We set gn = P(f2
n)− 〈µ,P(f2

n)〉. Using (5) and Lemma 10.1, we have

|V3(n)−H [n]
3 | ≤ |Gn−p|−1MGn−p

(2−p |gn|) +MGn−p
(

p−1∑

k=0

2−k|Qp−k−1(Q(gn))|)

≤ C 2−p + C |Gn−p|−1MGn−p(

p−1∑

k=0

2−k αp−k ‖Q(P(f2
n))‖∞ V )

≤ C 2−p + C an |Gn−p|−1MGn−p(V ),(30)

where

an =





2−p if 2α < 1

p 2−p if 2α = 1

αp if 2α > 1.

Using (6) and the fact that limn→+∞ an = 0, we find that

lim
n→+∞

C 2−p + C an |Gn−p|−1MGn−p
(V ) = 0 a.s. and in L2.

From (30), this implies that

lim
n→+∞

|V3(n)−H [n]
3 | = 0 in probability.

Using Lemma 10.2, we get

lim
n→∞

H
[n]
3 = lim

n→∞
2 (1− 2−p−1) 〈µ,P(f2

n) = 2 ‖K0‖62 µM(x, x0, x1).

From the foregoing, we conclude that limn→∞ V3(n) = 2 ‖K0‖62 µM(x, x0, x1) in probability.
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Finally, we treat the term V4(n). Using (53), we have

V4(n) = V8(n) + V9(n),

where

V8(n) = |Gn−p|−1MGn−p
(H8,n) and V9(n) = |Gn−p|−1MGn−p

(H9,n),

with

H8,n =

p∑

k=0

2−kQp−k((Pf̃n)2) and H9,n =
∑

k≥0,`≥0

2−k+`Qp−k−`−1P(Q`Pf̃n ⊗ Q`Pf̃n)1{k+`<p}.

Writing

H
[n]
8 =

p∑

k=0

2−k〈µ, (Pf̃n)2〉 and H
[n]
9 =

∑

k≥0,`≥0

2−k+`〈µ,P(Q`Pf̃n ⊗ Q`Pf̃n)〉1{k+`<p},

we prove, as previously, that

lim
n→∞

|V8(n)−H [n]
8 | = lim

n→∞
|V9(n)−H [n]

9 | = 0 a.s. and in L2; lim
n→∞

H
[n]
8 = lim

n→∞
H

[n]
9 = 0.

As a result, we find that

lim
n→∞

|V8(n)| = lim
n→∞

|V9(n)| = 0 in probability.

Since V4(n) = V8(n) + V9(n), we conclude that limn→∞ V4(n) = 0 in probability. Finally, since
V1(n) = V3(n) + V4(n)− V7(n), the result of the Lemma follows from the foregoing. �

As a consequence of (24), Lemmas 6.3, 6.4 and 6.5, we have the following result.

Lemma 6.6. Under the assumptions of Theorem 3.3, we have the following convergence:

lim
n→∞

V (n) = 2 ‖K0‖62 µM(x, x0, x1) in probability.

We now check the Lindeberg condition using a fourth moment condition. We set:

R3(n) =
∑

i∈Gn−pn

E
[
∆n,i(fn)4

]
.

Lemma 6.7. Under the assumptions of Theorem 3.3, we have that limn→∞R3(n) = 0

Proof. We have

R3(n) ≤ 16 (p+ 1)3|Gn|−2
∑

i∈Gn−p

p∑

`=0

E[(MiGp−`
(f̃n))4]

≤ 128 (p+ 1)3 |Gn|−2
∑

i∈Gn−p

p∑

`=0

E[(MiGp−`
(fn − Pfn))4](31)

+ 128 (p+ 1)3 |Gn|−2
∑

i∈Gn−p

p∑

`=0

E[(MiGp−`
(Pf̃n))4],

where we used that (
∑r
k=0 ak)4 ≤ (r + 1)3

∑r
k=0 a

4
k for the two inequalities (resp. with r = 1 and

r = p), Jensen inequality for the first inequality and the decomposition fn = (fn − Pfn) + Pfn
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for the last inequality. For the second term of the right hand side of (31), we follow the proof of
Lemma 5.6 in [4] and Lemma 4.7 in [3] to find that

n3 |Gn|−2
∑

i∈Gn−p

p∑

`=0

E[(MiGp−`
(Pf̃n))4] ≤ C n5(2−n+phn1{2α2≤1} + 2−n+p (2α2)2ph6d

n 1{2α2>1}),

and using (11), this implies that

(32) lim
n→+∞

n3 |Gn|−2
∑

i∈Gn−p

p∑

`=0

E[(MiGp−`
(Pf̃n))4] = 0.

We are now going to treat the first term of (31). Since P(fn − P(fn)) = 0, we have, (see Remark
2.3 in [5] for more details),

(33) Ex[(MGp−`
(fn − Pfn))4] ≤ gn,`(x) + 6hn,`(x),

with:

gn,`(x) = Ex[MGp−`
(P((fn − Pfn)4))] and hn,`(x) = Ex[(MGp−`

(P((fn − Pfn)2)))2].

We set

R3,1(n) = (p+ 1)3 2−2n
∑

i∈Gn−p

p∑

`=0

E[(MiGp−`
(fn − Pfn))4].

Using the branching Markov property and (33) for the first inequality and (52) for equality, we get

R3,1(n) ≤ C n3 2−2n

p∑

`=0

E[MGn−p
(gn,`)] + C n3 2−2n

p∑

`=0

E[MGn−p
(hn,`)]

= C n3 2−n−p
p∑

`=0

〈ν,Qn−pgn,`〉 + C n3 2−n−p
p∑

`=0

〈ν,Qn−phn,`〉.(34)

Using Lemma 10.1, we get

〈ν,Qn−pgn,`〉 = 2p−` 〈ν,Qn−`(P((fn − Pfn)4))〉 ≤ 2p−` ‖QP((fn − Pfn)4)‖∞ ≤ C h−3d
n 2p−`.

The latter inequality implies that

(35) n3 2−n−p
p∑

`=0

〈ν,Qn−pgn,`〉 ≤ C n3 (2nh3d
n )−1.

Using (53), the fact that P((fn − Pfn)2) ≤ P(f2
n) for the first inequality and Lemma 10.1 for the

second inequality, we get

〈ν,Qn−phn,`〉 ≤ 2p−` 〈ν,Qn−`(P(f2
n))2〉+

p−`−1∑

k=0

2p−`+k〈ν,Qn−`−k−1P(QkP(f2
n⊗2)〉

≤ C 2p−` + C 22(p−`).

The latter inequality implies that

(36) n3 2−n−p
p∑

`=0

〈ν,Qn−phn,`〉 ≤ C n3(2−n + 2−n+p).

From (34), (35) and (36), we conclude that limn→∞R3,1(n) = 0. Finally, from (31) and (32), this
proves that limn→∞R3(n) = 0. �
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We can now use Theorem 3.2 and Corollary 3.1, p. 58, and the remark p. 59 from [10] to deduce
from Lemmas 6.6 and 6.7 that ∆n(fn) converges in distribution towards a Gaussian real-valued
random variable with deterministic variance σ2. Using (20) and Lemmas 6.1 and 6.2, we then
deduce Theorem 3.3 for An = Tn.

For An = Gn, we have

Nn,∅(fn) = R1(n) + ∆n(fn),

where

R1(n) =
∑

i∈Gn−p

E[Nn,i(fn)|Fi] and ∆n(fn) =
∑

i∈Gn−p

∆n,i(fn),

and for all i ∈ Gn−p,

Nn,i(fn) = MiGp
(f̃n) and ∆n,i(fn) = Nn,i(fn)− E[Nn,i(fn)|Fi].

Following exactly the proof of Lemma 6.2, 6.6 and 6.7, we get the result for this case. We note
that for An = Gn, the factor 2 is missing in the asymptotic variance. This come from the fact that

here, H
[n]
3 defined in (29) is simply equal to 〈µ,P(f2

n)〉.

7. Proof of Theorem 3.5

We begin the proof with An = Tn. From (10), we have

|Tn|1/2 h3d/2 (µM
Tn

(xx0x1)− µM(xx0x1)) = (|Gn|/|Tn|)1/2Nn,∅(fn) + Bn(xx0x1),

where the bias term Bn(xx0x1) is defined by

Bn(xx0x1) = |Tn|1/2 h3d/2
n (h−3/2 〈µM, fn〉 − µM(xx0x1)).

Since limn→∞(|Gn|/|Tn|)1/2 = 1/
√

2, from Theorem 3.3, it suffices, to obtain the result of Theorem
3.5, to prove that limn→∞Bn(xx0x1) = 0. Using the Taylor expansion and Assumption 3.4, one
can prove that (see [1] for more details)

Bn(xx0x1) ≤ C

√
|Tn|h2s+3d

n .

Since limn→∞ |Tn|h2s+3d
n = 0, we conclude that limn→∞Bn(xx0x1) = 0 and this ends the proof

for An = Tn.

For An = Gn the proof follows exactly the same lines.

8. Proof of Theorem 4.2

First of all, we have the following decomposition:
√
|An|h3d

n (P̂An(xx0x1)− P(xx0x1)) = (|An|h3d
n )1/2 (

µ̂M
An

(xx0x1)

µ̂An
(x)

− µM(xx0x1)

µ̂An
(x)

)

− µM(xx0x1)

µ(x)µ̂An(x)
(|An|h3d

n )1/2 (µ̂An(x)− µ(x)).

Then, the proof of Theorem 4.2 is a direct consequence of the previous decomposition and Lemmas
8.1 and 8.2 below.

Lemma 8.1. Under Assumptions of Theorem 4.2, we have

lim
n→∞

µM(xx0x1)

µ(x)µ̂An(x)
(|An|h3d

n )1/2 (µ̂An
(x)− µ(x)) = 0 in probability.
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Proof. We consider the function gn defined on S by: gn(y) = h
−d/2
n K0(h−1

n (x − y)) for all y ∈ S.
We begin the proof with An = Tn. We set g̃n = gn−〈µ, gn〉. We have the following decomposition:

(37) µ̂Tn
(x)− µ(x) = |Tn|−1h−d/2n (

2∑

`=0

MG`
(g̃n) +

n∑

`=3

MG`
(g̃n)) + 〈µ, h−d/2n gn〉 − µ(x).

Using the fact that K0 is bounded, integration by parts and Assumption 1.8, we have the following
upper bounds:

(38) ‖gn‖∞ ≤ ‖K0‖∞ h−d/2n ; ‖Qgn‖∞ + |〈µ, gn〉| ≤ 2C0 ‖K0‖1 hd/2n .

Using (38), we find that

(39) |Tn|−1h−d/2n |
2∑

`=0

MG`
(g̃n)| ≤ C (|Tn|hdn)−1.

Next, from Minkowski’s inequality, we have

E[(

n∑

`=3

MG`
)2] ≤ (

n∑

`=3

(E[(MG`
(g̃n))2])1/2)2.

Using (53), (5) and (38), we get:

E[(MG`
(g̃n))2] ≤ C 2` 〈ν,Q`(g̃2

n)〉 +

`−1∑

r=0

2`+r〈ν,Q`−r−1(P(|Qrg̃n|⊗2))〉

≤ C 2` + C hdn

`−1∑

r=0

2` (2α2)r ≤ C 2` 1{2α2≤1} + C 2`(1 + (2α2)` hdn)1{2α2>1}.

The latter inequality implies that

(40) E[(|Tn|−1h−d/2n

n∑

`=3

MG`
(g̃n))2] ≤ C (|Tn|h3d

n )−1 (h2d
n + (2α2)nh3d

n 1{2α2>1}).

Using (39), (40) and (11), we deduce that

(41) lim
n→+∞

E[(|Tn|−1h−d/2n

n∑

`=0

MG`
(g̃n))2] = 0.

Next, using Taylor expansion and Assumption 3.4, we get (see [1] for more details)

(42) |〈µ, h−d/2n gn〉 − µ(x)| ≤ C hsn.
From (37), (41) and (42), we deduce that

(43) lim
n→∞

µ̂Tn
(x) = µ(x) in probability.

We further deduce that

E[|Tn|h3d
n (µ̂Tn

(x)− µ(x))2] ≤ C (h2d
n + (2α2)nh3d

n 1{2α2>1} + |Tn|h3d+2s
n ).

Using (11), the latter inequality implies that

(44) lim
n→∞

(|Tn|h3d
n )1/2 (µ̂Tn(x)− µ(x)) = 0 in probability.

From (43), (44) and using Slutsky’s Lemma, we get

lim
n→∞

µM(xx0x1)

µ(x)µ̂Tn(x)
(|Tn|h3d

n )1/2 (µ̂Tn
(x)− µ(x)) = 0 in probability.
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For An = Gn, we follows exactly the same lines and this ends the proof. �

Lemma 8.2. Under Assumptions of Theorem 4.2, we have

(|An|h3d
n )1/2 (

µ̂M
An

(xx0x1)

µ̂An(x)
− µM(xx0x1)

µ̂An(x)
)

(d)

−−−−→
n→∞

G,

where G is a centered Gaussian real-valued random variable with mean 0 and variance

σ2 = ‖K0‖62 P(x, x0, x1)/µ(x).

Proof. This is a direct consequence of Theorem 3.5, (43) and Slutsky’s Lemma. �

9. Proof of (16)

We set f0h(y) = h−1K0(h−1(x− y)) and recall 〈µ, f0h〉 =
∫
R f0h(y)µ(y)dy. Using the decompo-

sition

µ̂(x)− µ(x) =
1

|Gn|
∑

u∈Gn

f̃0h(Xu) + 〈µ, f0h〉 − µ(x),

we obtain the following biais-variance type decomposition.

(45) E
[
(µ̂(x)− µ(x))2

]
≤ 2(|Gn|)2E

[
(
∑

u∈Gn

f̃0h(Xu))2
]

+ 2
(
〈µ, f0h〉 − µ(x)

)2
.

Using (53) and the fact that the process L(X∅) = µ (which implies that µQ = µ), we get

(46) |Gn|−2 E
[
(
∑

u∈Gn

f̃0h(Xu))2
]
≤ 2 〈µ, f̃2

0h〉
|Gn|

+
1

|Gn|
n−1∑

k=1

2k〈µ, (Qk−1(Qf̃0h))2〉.

We now plan to use (15) with f = Qf0h. For all y ∈ R, we get, after the change of variable
t = h−1(x− z) and the use of the first-order Taylor’s expansion,

(Qf0h)′(y) =
1

h

∫

R
K0(h−1(x− z))∂Q

∂y
(y, z)dz

=

∫

R
K0(z)

∂Q

∂y
(y, x − hz) dz

=
∂Q

∂y
(y, x)

∫

R
K0(z) dz + O(1) =

∂Q

∂y
(y, x) + O(1).

We then have that

‖(Qf0h)′‖∞ = sup
y∈R

{∂Q
∂y

(·, x)
}

+ O(1) =
1√

2πσ2
e−1/2 +O(1).

Using the latter equality and (15), we get, for all k ≥ 1,

(47) |Qk−1(Qf̃0h)|(y) ≤ 1√
2πσ2 e1/2(1− a)

(σ(1 + a)−1 + |y|)ak−1 + O(1).

Recall µ is the Gaussian law N(0, σ2(1−a2)). Using (47) and (σ(1+a)−1 + |y|)2 ≤ 2σ2(1+a)−2 +
2 y2, we get

(48) 〈µ, (Qk−1(Qf̃0h))2〉 ≤ 1

eπσ2

( 1

(1− a)2
+

1

1− a2

)
a2(k−1) + O(1) ≤ Ca,σ

a2
a2k + O(1).
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Now, (48) and (46) implies that

(|Gn|)2E
[
(
∑

u∈Gn

f̃0h(Xu))2
]
≤ 2 〈µ, f̃2

0h〉
|Gn|

+
Ma,σ

a2|Gn|
n−1∑

k=1

(2a2)k + O(1).

Putting the latter inequality into (45), we obtain

(49) E
[
(µ̂(x)− µ(x))2

]
≤ 2Ma,σ

a2|Gn|
n−1∑

k=1

(2a2)k +
4 〈µ, f̃2

0h〉
|Gn|

+ 2
(
〈µ, f0h〉 − µ(x)

)2
+ O(1).

Finally, it is very standard to get asymptotic equivalence of the second and the third term of the
right hand side of (49) (see for e.g. [12], Section 3.3.1 for more details). This ends the proof of
(16).

10. Appendix

First, we give some useful upper bounds. We recall that S = Rd. Recall fn defined in (9).

Lemma 10.1. Under Assumption (1.8), we have:

‖P|fn|‖∞ ≤ ‖K0‖21 ‖K0‖∞ ‖P‖∞ hd/2n ;

‖QP|fn|‖∞ ≤ ‖P‖∞ ‖Q‖∞ ‖K0‖31 h3d/2
n ;

|〈µ,Pfn〉| ≤ ‖P‖∞ ‖µ‖∞ ‖K0‖31 h3d/2
n

〈µ,P(f2
n)〉 ≤ ‖µ‖∞ ‖P‖∞ ‖K0‖62

‖QPf2
n‖∞ ≤ ‖K0‖62 ‖P‖∞ ‖Q‖∞;

‖P(Pfn ⊗ Pfn)‖∞ ≤ ‖P‖3∞ ‖K0‖61 h3d
n ;

‖Q((Pfn)2)‖∞ ≤ ‖K0‖22 ‖K0‖41 ‖Q‖∞ ‖P‖2∞ h2d;

‖P((Pfn)2 ⊗ (Pfn)2)‖∞ ≤ ‖K0‖42 ‖K0‖81 ‖P‖5∞ h4d;

‖Q(P(f4
n))‖∞ ≤ ‖P‖∞ ‖Q‖∞ ‖K0‖12

4 h−3d
n .

Proof. Using a change of variables, we have, for all y ∈ S:

(50) P|fn|(y) = hd/2 |K0(h−1(x− y))|
∫

S2

|K0|(y0) |K0|(y1)P(y, x0 − h y0, x1 − h y1)dy0 dy1.

This implies that
‖Pfn‖∞ ≤ ‖K0‖21 ‖K‖∞ ‖P‖∞ hd/2n .

From (50) and using again a change of variables, we have, for all t ∈ S:

QP|fn|(t) = h3/2
n

∫

S3

|K0|(y) |K0|(y0) |K0|(y1)P(x−h y, x0−h y0, x1−h y1)Q(t, x−h y)dy dy0 dy1.

This implies that

(51) ‖QP|fn|‖∞ ≤ ‖P‖∞ ‖Q‖∞ ‖K0‖31 h3d/2
n .

As for (51), we have

|〈µ,Pfn〉| ≤ ‖P‖∞ ‖µ‖∞ ‖K0‖31 h3d/2
n .

Now, following the same ideas, we easily get the others upper bounds. �

We recall the following result due to Bochner (see [11, Theorem 1A] which can be easily extended
to any dimension d ≥ 1).
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Lemma 10.2. Let (hn, n ∈ N) be a sequence of positive numbers converging to 0 as n goes to
infinity. Let g : Rd → R be a measurable function such that

∫
Rd |g(x)|dx < +∞. Let f : Rd → R

be a measurable function such that ‖f ‖∞ < +∞,
∫
Rd |f(y)| dy < +∞ and lim|x|→+∞ |x|f(x) = 0.

Define

gn(x) = h−dn

∫

Rd

f(h−1
n (x− y))g(y)dy.

Then, we have at every point x of continuity of g,

lim
n→+∞

gn(x) = g(x)

∫

R
f(y)dy.

In this section, we recall useful results on BMC from Bitseki-Delmas [1].

Lemma 10.3. Let f, g ∈ B(S), x ∈ S and n ≥ m ≥ 0. Assuming that all the quantities below are
well defined, we have:

Ex [MGn(f)] = |Gn|Qnf(x) = 2n Qnf(x),(52)

Ex
[
MGn

(f)2
]

= 2n Qn(f2)(x) +

n−1∑

k=0

2n+k Qn−k−1
(
P
(
Qkf ⊗ Qkf

))
(x),(53)

Ex [MGn(f)MGm(g)] = 2nQm
(
gQn−mf

)
(x)(54)

+

m−1∑

k=0

2n+k Qm−k−1
(
P
(
Qkg ⊗sym Qn−m+kf

))
(x).
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