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We study the kernel estimator of the transition density of bifurcating Markov chains. Under some ergodic and regularity properties, we prove that this estimator is consistent and asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods are based on the so-called two bandwidths approach.

Introduction

This article is devoted to the study of the kernel estimators of the transition probability of bifurcating Markov chains. Before defining these estimators, let us first introduce useful definitions, notations and assumptions.

1.1. Bifurcating Markov chains. Let d ≥ 1 be a natural integer. In order to simplify the notations in the sequel, we set S = R d and we equip S with its Borel σ-algebra that we denote by S . We denote by B(S) (resp. B b (S), resp. B + (S)) the set of (resp. bounded, resp. non-negative) R-valued measurable functions defined on S. For f ∈ B(S), we set f ∞ = sup{|f (x)|, x ∈ S}. For a finite measure λ on (S, S ) and f ∈ B(S) we shall write λ, f for f (x) dλ(x) whenever this integral is well defined. We denote by C b (S) (resp. C + (S)) the set of bounded (resp. nonnegative) R-valued continuous functions defined on S. For all natural integer q ≥ 1, we equip S q with S ⊗q = S ⊗ . . . ⊗ S , the usual product σ-field on S q .

Let Q be a probability kernel on S × S , that is: Q(•, A) is measurable for all A ∈ S , and Q(x, •) is a probability measure on (S, S ) for all x ∈ S. For any f ∈ B b (S), we set for x ∈ S:

(1) (Qf )(x) = S f (y) Q(x, dy).
We define (Qf ), or simply Qf , for f ∈ B(S) as soon as the integral (1) is well defined, and we have Qf ∈ B(S). For n ∈ N, we denote by Q n the n-th iterate of Q defined by Q 0 = I d , the identity map on B(S), and

Q n+1 f = Q n (Qf ) for f ∈ B b (S).
Let P be a probability kernel on S × S ⊗2 , that is: P (•, A) is measurable for all A ∈ S ⊗2 , and P (x, •) is a probability measure on (S 2 , S ⊗2 ) for all x ∈ S. For any g ∈ B b (S 3 ) and h ∈ B b (S 2 ), we set for x ∈ S:

(2) (P g)(x) = S 2 g(x, y, z) P (x, dy, dz) and (P h)(x) = S 2 h(y, z) P (x, dy, dz).
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We define (P g) (resp. (P h)), or simply P g for g ∈ B(S 3 )(resp. P h for h ∈ B(S 2 )), as soon as the corresponding integral (2) is well defined, and we have that P g and P h belong to B(S).

We now introduce some notations related to the regular binary tree. Recall that N is the set of non-negative integers and N * = N \ {0}. We set T 0 = G 0 = {∅}, G k = {0, 1} k and T k = 0≤r≤k G r for k ∈ N * , and T = r∈N G r . The set G k corresponds to the k-th generation, T k to the tree up the k-th generation, and T the complete binary tree. For i ∈ T, we denote by |i| the generation of i (|i| = k if and only if i ∈ G k ) and iA = {ij; j ∈ A} for A ⊂ T, where ij is the concatenation of the two sequences i, j ∈ T, with the convention that ∅i = i∅ = i.

We recall the definition of bifurcating Markov chain (BMC) from Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF].

Definition 1.1. We say a stochastic process indexed by T, X = (X i , i ∈ T), is a bifurcating Markov chain on a measurable space (S, S ) with initial probability distribution ν on (S, S ) and probability kernel P on S × S ⊗2 , a BMC in short, if: -(Initial distribution.) The random variable X ∅ is distributed as ν.

-(Branching Markov property.) For a sequence (g i , i ∈ T) of functions belonging to B b (S 3 ), we have for all k ≥ 0,

E i∈G k g i (X i , X i0 , X i1 )|σ(X j ; j ∈ T k ) = i∈G k Pg i (X i ).
We define three probability kernels P 0 , P 1 and Q on S × S by: P 0 (x, A) = P(x, A × S), P 1 (x, A) = P(x, S × A) for (x, A) ∈ S × S , and Q = 1 2 (P 0 + P 1 ).

Notice that P 0 (resp. P 1 ) is the restriction of the first (resp. second) marginal of P to S. Following Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], we introduce an auxiliary Markov chain Y = (Y n , n ∈ N) on (S, S ) with Y 0 distributed as X ∅ and transition kernel Q. The distribution of Y n corresponds to the distribution of X I , where I is chosen independently from X and uniformly at random in generation G n . We shall write E x when X ∅ = x (i.e. the initial distribution ν is the Dirac mass at x ∈ S).

Let i, j ∈ T. We write i j if j ∈ iT. We denote by i ∧ j the most recent common ancestor of i and j, which is defined as the only u ∈ T such that if v ∈ T and v i, v j then v u. We also define the lexicographic order i ≤ j if either i j or v0 i and v1 j for v = i ∧ j. Let X = (X i , i ∈ T) be a BM C with kernel P and initial measure ν. For i ∈ T, we define the σ-field:

F i = σ(X u ; u ∈ T such that u ≤ i).
By construction, the σ-fields (F i ; i ∈ T) are nested as F i ⊂ F j for i ≤ j.

For i ∈ T and k ∈ N, we also define the σ-field:

H i,k = σ(X u , u ∈ iT k )
We end this section with a useful notations. By convention, for f, g ∈ B(S), we define the function f ⊗ g by (f ⊗ g)(x, y) = f (x)g(y) for x, y ∈ S and

f ⊗ sym g = 1 2 (f ⊗ g + g ⊗ f ) and f ⊗ 2 = f ⊗ f. Notice that P(g ⊗ sym 1) = Q(g) for g ∈ B + (S).
For all u ∈ T, we denote by X u = (X u , X u0 , X u1 ) the mother-daughters triangle. For a finite subset A ⊂ T, we define:

M A (f ) = u∈A f (X u ) if f ∈ B(S) and M A (f ) = u∈A f (X u ) if f ∈ B(S 3 ).
In the sequel we will also use the following notation: let g and h be two functions which depend on one variable, x say; we denote by g ⊕ h the function of three variables, xx 0 x 1 := (x, x 0 , x 1 ) say, defined by (g ⊕ h)(xx 0 x 1 ) = g(x 0 ) + h(x 1 ).

1.2. Assumptions on the law of the bifurcating Markov chains (X i , i ∈ T). For a set F ⊂ B(S) of R-valued functions, we write

F 2 = {f 2 ; f ∈ F }, F ⊗ F = {f 0 ⊗ f 1 ; f 0 , f 1 ∈ F },
and P (F ) = {P f ; f ∈ F } whenever a kernel P act on F . Following [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], we state a structural assumption on the set of functions we shall consider.

Assumption 1.2. Let F ⊂ B(S) be a set of R-valued functions such that: (i) F is a vector subspace which contains the constants;

(ii) F 2 ⊂ F ; (iii) F ⊂ L 1 (ν); (iv) F ⊗ F ⊂ L 1 (P(x, •
)) for all x ∈ S, and P(F ⊗ F ) ⊂ F .

The condition (iv) implies that P 0 (F ) ⊂ F ,P 1 (F ) ⊂ F as well as Q(F ) ⊂ F . Notice that if f ∈ F , then even if |f | does not belong to F , using conditions (i) and (ii), we get, with g = (1+f 2 )/2, that |f | ≤ g and g ∈ F . Typically, the set F can be the set C b (S) of bounded real-valued functions, or the set of smooth real-valued functions such that all derivatives have at most polynomials growth.

Following [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], we also consider the following ergodic properties for Q. Assumption 1.3. There exists a probability measure µ on (S, S ) such that F ⊂ L 1 (µ) and for all f ∈ F , we have the point-wise convergence lim n→∞ Q n f = µ, f and there exists g ∈ F with:

(3)

|Q n (f )| ≤ g for all n ∈ N.

Moreover, there exists a function V : [1, +∞) → (0, ∞) such that V ∈ F and constants α ∈ (0, 1) and M < ∞ such that:

(4) sup |f |≤V |Q n f -µ, f | ≤ M α n V for all n ∈ N.
Remark 1.4. In particular, (4) implies that for all f ∈ B b (S), we have

(5) |Q n f -µ, f | ≤ M f ∞ α n V for all n ∈ N.
Next, we have the following assumption on the existence of the density of P.

Assumption 1.5. The transition kernel P has a density, still denoted by P, with respect to the Lebesgue measure.

Remark 1.6. Assumption 1.5 implies that the transition kernel Q has a density, still denoted by Q, with respect to the Lebesgue measure. More precisely, we have Q(x, y) = 2 -1 S (P(x, y, z) + P(x, z, y))dz. This implies in particular that the invariant probability µ has a density, still denoted by µ, with respect to the Lebesgue measure (for more details, we refer for e.g. to [START_REF] Duflo | Random iterative models[END_REF], chap 6).

Remark 1.7. Under Assumption 1.5, the probability measure µ defined on S 3 by µ (dxx 0 x 1 ) = µ(dx)P (x, dx 0 , dx 1 ), has density with respect to the Lebesgue measure, that we also denote by µ , given by µ (xx 0 x 1 ) = µ(x)P(x, x 0 , x 1 ), for all xx 0 x 1 ∈ S 3 . Assumption 1.8. We assume that the following constant is finite:

C 0 = sup x,x0,x1∈S (µ(x) + Q(x, x 0 ) + P(x, x 0 , x 1 )).
Remark 1.9. We recall from [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]Theorem 11 and Corollary 15] that under Assumptions 1.2 and 1.3, we have for f ∈ F the following convergence in L 2 (resp. a.s.): [START_REF] Comte | On a nadaraya-watson estimator with two bandwidths[END_REF] lim

n→∞ |G n | -1 M Gn (f ) = µ, f and lim n→∞ |T n | -1 M Tn (f ) = µ, f .
Now, the rest of the paper is organized follows. In Section 2, we define the estimators of the transition density P based on the observation of a subpopulation. We will see that these are quotient estimators. In Section 3, we study the consistency and the asymptotic normality of the numerators of the estimators of P. Section 4 is dedicated to the study of consistency and asymptotic normality of the estimators of P. In Section 5, we will illustrate the consistency of our estimators in a bifurcating Markov model called bifurcating autoregressive process (BAR, for short). In particular, we will develop two data-driven bandwidth selection methods: the least squares Cross-Validation in Section 5.1 and the rule of thumb type method in Section 5.2. Sections 6-8 are dedicated to the proofs of the main Theorems. In Section 9, we prove a useful inequality and in Section 10, we recall some useful results.

Kernel estimators of the transition density P

Recall that S = R d . Our aim is to estimate the transition density P from the observation of the subpopulation A n ∈ {G n , T n }. For that purpose, assume we observe X n = (X u ) u∈An i.e. we have 2 n+2 -1 (or 3 × 2 n ) random variables with value in S. Let K 0 : S → R and K : S 3 → R be a functions such that S K 0 (x)dx = 1 and K = K 0 ⊗K 0 ⊗K 0 . We also have S 3 K(xx 0 x 1 )dxx 0 x 1 = 1. Let (h n , n ∈ N) be a sequence of positive numbers which converges to 0 as n goes to infinity. When there is no ambiguity, we write h for h n . Let A n ∈ {T n , G n }. We define, for all x ∈ S:

(7) µ An (x) = 1 |A n |h d/2 u∈An K 0hn (x -X u ), where K 0hn (x -y) = h -d/2 n K 0 (h -1 n (x -y))
and for all xx 0 x 1 ∈ S 3 :

(8) µ An (xx 0 x 1 ) = 1 |A n |h 3d/2 u∈An K hn (xx 0 x 1 -X u ) and P An (xx 0 x 1 ) = µ An (xx 0 x 1 ) µ An (x) , where K hn (xx 0 x 1 -yy 0 y 1 ) = h -3d/2 n K h -1 n (x -y), h -1 n (x 0 -y 0 ), h -1 n (x 1 -y 1 )
, with the convention that P An (xx 0 x 1 ) = 0 if µ An (x) = 0. However, we stress that if we assume that K 0 is strictly positive, then µ An (x) > 0 for all x ∈ S.

From now on, we fix xx 0 x 1 ∈ S 3 , that is, we are interested in the estimation at the point xx 0 x 1 . We assume that µ(x) = 0. We consider the function f n defined by: [START_REF] Gyori | Hypothesis testing for markov chain monte carlo[END_REF] f n (yy 0 y 1 ) = K h (xx 0 x 1yy 0 y 1 ).

If we want to be more rigorous, we must write f n,xx0x1 instead of f n . But, we choose to write without the index xx 0 x 1 in order to simplify the writing.

Remark 2.1. Note that asymptotic behavior (consistence and asymptotic normality) of µ An have been studied in [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF].

Remark 2.2. We stress that the results of this paper can be straightforward extended the case where the bandwidth h h h is a vector of R 3d , with possibly different coordinates. More precisely, one can take the bandwidth h h h = (h i , 1 ≤ i ≤ 3d), where the h i 's may take different values. For our convenience, we choose to work with the case where all the coordinates are the same, that is h i = h for all 1 ≤ i ≤ 3d.

3. Consistency and Asymptotic normality for µ An (xx 0 x 1 )

First, we will study the consistency and the asymptotic normality of µ An (xx 0 x 1 ). We set fn = f nµ, Pf n . We begin with the study asymptotic normality of

N n,∅ (f n ) = |G n | -1/2 M An ( fn ).
This is motivated by the following decomposition: [START_REF] Hall | Martingale limit theory and its application[END_REF] 

µ An (xx 0 x 1 )-µ (xx 0 x 1 ) = (|A n | |G n | -1/2 h 3d/2 ) -1 N n,∅ (f n ) + (h -3d/2 µ , f n -µ (xx 0 x 1 )).
We will need the following assumption on the bandwidth and on the kernel. Assumption 3.1.

We assume that: (i) h n = 2 -nγ and 2α 2 < 2 3dγ for some γ ∈ (0, 1/3d).

(ii) The kernel K 0 (resp. K 2 0 ) is integrable and square integrable. Remark 3.2. Assumption 3.1, (i) implies in particular that [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] lim

n→∞ |G n |h 3d n = ∞ and lim n→∞ (2α 2 ) n h 3d n = 0.
Note that Assumption 3.1, (i) is automatically satisfied if 2α 2 ≤ 1, regardless of the value of α. For 2α 2 > 1, this Assumption implies that the choice of the bandwidth is function of the ergodicity rate of the auxiliary Markov chain Y .

We have the following result.

Theorem 3.3. Let X be a BMC with kernel P and initial distribution ν such that Assumptions 1.2, 1.3, 1.5, 1.8 and 3.1 hold. Then, we have the following convergence in distribution:

N n,∅ (f n ) (d) ----→ n→∞ G,
where G is a centered Gaussian random variable with finite variance

σ 2 = 2 K 0 6 2 µ (x, x 0 , x 1 ) if A n = T n and σ 2 = K 0 6 2 µ (x, x 0 , x 1 ) if A n = G n .
Proof. The proof of Theorem 3.3 is postponed to Section 6.

Next, in order to study the asymptotic normality of µ An (xx 0 x 1 ), we do the following additional hypothesis.

Assumption 3.4. We assume that Assumption 3.1 holds and there exists s > 0 such that the following holds.

(iv) The density µ (resp. µ) belongs to the (isotropic) Hölder class of order (s, . . . , s) ∈ R 3d (resp. (s, . . . , s) ∈ R d ): The density µ admits partial derivatives with respect to x j , for all j ∈ {1, . . . 3d}, up to the order s and there exists a finite constant L > 0 such that for all x = (x 1 , . . . , x 3d ), ∈ R 3d , t ∈ R and j ∈ {1, . . . , 3d}:

∂ s µ ∂x s j (x -j , t) - ∂ s µ ∂x s j (x) ≤ L|x j -t| {s} ,
where (x -j , t) denotes the vector x where we have replaced the j th coordinate x j by t, with the convention ∂ 0 µ /∂x 0 j = µ . The same thing for the density µ.

(v) The kernel K 0 is of order ( s , . . . , s ) ∈ N d : We have R d |x| s K 0 (x) dx < ∞ and R x k j K 0 (x) dx j = 0 for all k ∈ {1, . . . , s } and j ∈ {1, . . . , d}. (vi) Bandwith control: We have γ > 1/(2s + 3d), that is lim n→∞ |G n |h 2s+3d n = 0.
Notice that Assumption 3.4-(iv) implies that µ (resp. µ) is at least Hölder continuous as s > 0. We have the following result.

Theorem 3.5. Let X be a BMC with kernel P and initial distribution ν. Under Assumptions of Theorem 3.3, we have for all (x, x 0 , x 1 ) and

A n ∈ {G n , T n } (12) µ An (xx 0 x 1 ) P ----→ n→∞ µ (xx 0 x 1 ) in probability.
Moreover, under the additional Assumption 3.4, we have the following convergence in distribution:

|A n | 1/2 h 3d/2 n ( µ An (xx 0 x 1 ) -µ (xx 0 x 1 )) (d) ----→ n→∞ G in distribution,
where G is a centered Gaussian random variable with finite variance σ 2 = K 0 6 2 µ (x, x 0 , x 1 ). Proof. The proof is postponed to Section 7.

Consistency and Asymptotic normality for

P An (xx 0 x 1 )
We are now in position to state consistency and asymptotic normality of kernel estimator of the transition density P. First, as a consequence of ( 8), ( 12) and (43) below, we have the following result.

Lemma 4.1. Under the Assumptions of Theorem 3.3, we have for all (x, x 0 , x 1 ) and A n ∈ {G n , T n } :

P An (x, x 0 , x 1 ) P ----→ n→∞ P(x, x 0 , x 1 ) in probability.
Next, we have the following result. Theorem 4.2. Let X be a BMC with kernel P and initial distribution ν. Under the assumptions of Theorem 3.3 and the additional Assumption 3.4, we have,

|A n |h 3d n ( P An (x, x 0 , x 1 ) -P(x, x 0 , x 1 )) (d) ----→ n→∞ G,
where G is a centered Gaussian real-valued random variable with mean 0 and variance

σ 2 = K 0 6 2 P(x, x 0 , x 1 )/µ(x).
Proof. The proof is postponed to Section 8.

Numerical studies

We consider the real-valued Gaussian bifurcating autoregressive process (BAR) X = (X u , u ∈ T) where X ∅ is arbitrary and for all u ∈ T:

(13) X u0 = a 0 X u + b 0 + ε u0 X u1 = a 1 X u + b 1 + ε u1 , with a 0 , a 1 ∈ [-1, 1], b 0 , b 1 ∈ R and ((ε u0 , ε u1 ), u ∈ T)
an independent sequence of bivariate Gaussian N(0, Γ) random vectors independent of X ∅ with covariance matrix, with σ > 0 and ρ ∈ R such that |ρ| < σ 2 :

Γ = σ 2 ρ ρ σ 2 .
Then the process X = (X u , u ∈ T) is a BMC with transition probability P given by:

P(x, dy, dz) = 1 2π σ 4 -ρ 2 exp - σ 2 2(σ 4 -ρ 2 ) g(x, y, z) dydz, with g(x, y, z) = (y -a 0 x -b 0 ) 2 -2ρσ -2 (y -a 0 x -b 0 )(z -a 1 x -b 1 ) + (z -a 1 x -b 1 ) 2 .
The transition kernel Q of the auxiliary Markov chain is defined by:

Q(x, dy) = 1 2 √ 2πσ 2 e -(y-a0x-b0) 2 /2σ 2 + e -(y-a1x-b1) 2 /2σ 2 dy.
We will estimate the transition density P in a compact set D ⊂ R 3 . For that purpose, we use the estimator P Gn (xx 0 x 1 ), for all xx 0 x 1 ∈ D, given in ( 8), with the Gaussian kernel K 0 defined by

(14) K 0 (x) = 1 √ 2π e -x 2 /2 .
Since the bandwidth is a function of the ergodicity rate which is unknown, we have to develop a method based on data in order to select it. To select the optimal bandwidth for P Gn defined in ( 8), we will use the so-called "two bandwidths approach" (see for e.g. [START_REF] Comte | On a nadaraya-watson estimator with two bandwidths[END_REF]). More precisely, since P Gn is a quotient estimator, we select separately the bandwidths for the numerator (h N , say) and the denominator (h D , say). For that purpose, we propose two methods: the cross validation and the rule of thumb type method. The objective here is not to study nor to compare theoretically these two methods. This will be done in the future works. Our objective is only the see the numerical performances of each method. Our conclusion is that even if the rule of thumb developed in this paper give a crude approximation, it as more computational benefit with respect to the least squared cross validation.

5.1.

Bandwidth selection by least squares Cross-Validation method. We choose the bandwidths which minimises the mean integrated squared errors (MISEs)

E R 3 ( µ Gn -µ ) 2 (xx 0 x 1 )dxdx 0 dx 1 and E R ( µ Gn -µ) 2 (x)dx ,
where µ Gn and µ Gn are defined in ( 7) and ( 8). This is equivalent to minimise the functions J and J defined by

J (h) = E R 3 ( µ Gn ) 2 (xx 0 x 1 )dxdx 0 dx 1 -2E R 3 ( µ Gn µ )(x, x 0 , x 1 )dxdx 0 dx 1 and J(h) = E R ( µ Gn ) 2 (x)dx -2E R ( µ Gn µ)(x)dx .
The method to select the bandwidths is the following.

(1) We divide the sample (X u )

u∈Gn into K disjoints subsamples {(X u ) u∈G (k) n , k ∈ {1, . . . , K}}, with (G (k) n , k ∈ {1, . . . , K}) a partition of G n . (2) For each subsample (X u ) u∈G (k) n : (a)
We set µ Gn[-k] and µ Gn[-k] the estimators of µ and µ obtaining using the subsample

(X u ) u∈Gn K (X u ) u∈G (k) n
, where for two sets A and B, B K A denotes the set of elements in B but not in A. More precisely,

µ Gn[-k] (xx 0 x 1 ) = 1 |G n [-k]|h 3 u∈Gn[-k] K 0 x -X u h K 0 x 0 -X u0 h K 0 x 1 -X u1 h and µ Gn[-k] (x) = 1 |G n [-k]|h u∈Gn[-k] K 0 x -X u h ,
where we set

G n [-k] = G n K G (k)
n . (b) We approximate J and J by

J (k) (h) = R ( µ Gn[-k] ) 2 (x)dx - 2 |G (k) n | u∈G (k) n µ Gn[-k] (X u ) and
J (k) (h) = R 3 ( µ Gn[-k] ) 2 (xx 0 x 1 )dxdx 0 dx 1 - 2 |G (k) n | u∈G (k) n µ Gn[-k] (X u , X u0 , X u1 ).
(3) Let H = {h 1 , . . . , h m } ⊂ (0, 1] be a bandwidth grid. Then, the selected bandwidths h N and h D for the numerator and the denominator of P Gn are given by:

h N := arg min h∈H 1 K K k=1 J (k) (h) and h D := arg min h∈H 1 K K k=1 J (k) (h).
Finally, the estimator used for numerical studies is P Gn defined by:

P Gn (xx 0 x 1 ) = µ An (xx 0 x 1 ) µ An (x) , with µ Gn (x) = 1 |G n | h D u∈Gn K 0 x -X u h D and µ Gn (xx 0 x 1 ) = 1 |G n | h 3 N u∈Gn K 0 x -X u h N K 0 x 0 -X u0 h N K 0 x 1 -X u1 h N .
This method is known as the K-fold cross validation. One advantage of this method in the context of bifurcating Markov chains is that it is not requires the knowledge of the ergodicity rate. The main drawback being that it requires a lot of time for calculations.

Gaussian symmetric BAR reference bandwidth selection.

In order to define a selection rule, we consider the special case of Gaussian BAR defined by (13) where a 0 = a 1 := a and ρ = 0 as a reference model. It is well known (see [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains under pointwise ergodic conditions[END_REF]) that the densities of the transition kernel Q of the auxiliary Markov chain and the invariant probability µ associated to Q are given by:

Q(x, y) = 1 √ 2πσ 2 exp - (y -ax) 2 2σ 2 and µ(x) = 1 √ 2πσ a exp - x 2 2σ 2 a ,
where

σ a = σ/ √ 1 -a 2 .
The density of the transition probability P associated to this bifurcating Markov chain is defined by P(x, y, z) = Q(x, y)Q(x, z) and then, µ (x, y, z) = µ(x)Q(x, y)Q(x, z). We then have that the invariant densities µ and µ are square integrable and twice differentiable, with the second order derivative of µ and all the second order partial derivatives of µ bounded, continuous and square integrable. It is also well that the Markov chain with transition Q is geometrically ergodic and that the geometric ergodic rate of convergence is a (for more details, see for e.g Example 2.8 in [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains under pointwise ergodic conditions[END_REF]). In particular, following the proof of Proposition 28 in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], one can prove that for all derivable function f such f and f are bounded, we have

(15) |Q n f (x) -µ, f | ≤ f ∞ (σ(1 -a) -1 + |x|)a n .
We assume that L(X ∅ ) = µ, that is X ∅ is distributed as µ, which implies that the process is stationary. We are now going to behave as if we did not know the invariant measures µ and µ and the transition probability P. Recall the kernel density estimator of µ defined in [START_REF] Duflo | Random iterative models[END_REF] and the kernel K 0 defined in (14). Recall also the kernel estimator of the transition density P defined in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]. To ease notation, we write µ and µ instead of µ Gn and µ Gn respectively. We recall that our strategy is to select bandwidth for the numerator and the denominator in the estimation of P.

First, we treat the denominator µ. The selection rule is based on the following asymptotic upper bound, known as asymptotic mean squared error:

(16) E ( µ(x) -µ(x)) 2 ≤ h 4 2 κ 2 2 µ (x) 2 + 4 K 0 2 2 |G n |h µ(x) + 2 C a,σ a 2 |G n | n-1 k=1 (2a 2 ) k + O(1).
where

(17) C a,σ = 1 πσ 2 (1 + a)(1 -a) 2 and κ 2 = R y 2 K 0 (y)dy = 1.
We postponed the proof of (16) in Section 9. Now, let p be a non negative probability density defined in R such that p ∞ ≤ 1. Then, (16) implies that

(18) R E ( µ(x) -µ(x)) 2 p(x)dx ≤ h 4 2 κ 2 2 R µ (x) 2 dx + 4 K 0 2 2 |G n |h + 2 C a,σ a 2 |G n | n-1 k=1 (2a 2 ) k + O(1).
The term in the left hand side of (18) is a modification of asymptotic mean integrated squared error that we call p-AMISE. We have introduced it because the last term in (16) does not depend on x. Finally, (18) suggests us to choose the bandwidth which minimises the function G defined by

G(h) = h 4 2 κ 2 2 R µ (x) 2 dx + 4 K 0 2 2 |G n |h + M a,σ a 2n 1 {2a 2 >1} ,
where M a,σ = 2/(πσ 2 a 2 (1+a)(1-a) 2 (2a 2 -1)). Optimizing in h, we get that the optimal bandwidth h D (for the denominator of P Gn defined in ( 8)) is given by

h D = (c 1 /4c 2 ) 1/5 |G n | -1/5 1 {2a 2 ≤2 -1/5 } + (c 1 /M a,σ ) (2a 2 ) -n 1 {2a 2 >2 -1/5 } ,
where

c 1 = 4 K 0 2 2 = 2 √ π and c 2 = (1/2)κ 2 2 R µ (x) 2 dx = 3 16 √ π σ -5 a .
Next, we treat the numerator µ of P Gn . Recalling Remark 2.2, we consider the general case where for all xx 0 x 1 ∈ S 3 :

µ Gn (xx 0 x 1 ) = 1 |G n |hh 0 h 1 u∈Gn K 0 (h -1 (x -X u ))K 0 (h -1 0 (x 0 -X u0 ))K 0 (h -1 1 (x 1 -X u1 )).
Recall that for a vector v v v, v v v t denotes its transpose. As in (16), we have the following asymptotic upper bound:

(19) E µ (xx 0 x 1 ) -µ (xx 0 x 1 ) 2 ≤ 1 2 κ 2 2 h h h t H H H(xx 0 x 1 ) h h h 2 + 6 K 0 6 2 |G n |hh 0 h 1 µ (xx 0 x 1 ) + C a,σ P(xx 0 x 1 ) 2 |G n | n-1 k=1 (2 a 2 ) k + O(1),
where κ 2 is defined in (17), h h h = (h, h 0 , h 1 ) t , and

H H H(xx 0 x 1 ) =     ∂ 2 µ ∂x 2 (x, x 0 , x 1 ) 0 0 0 ∂ 2 µ ∂x 2 0 (x, x 0 , x 1 ) 0 0 0 ∂ 2 µ ∂x 2 1 (x, x 0 , x 1 )     , C a,σ = 4 e πσ 2 a 2 (1 -a) 2 (1 + a)
.

We let the proof of (19) to the reader since it follows the same lines that of (16). Let p be a non negative probability density defined in R such that p ∞ ≤ 1. Integrating (19) with respect to p(x)dxdx 0 dx 1 , we get

R 3 E µ (xx 0 x 1 ) -µ (xx 0 x 1 ) 2 p(x)dxdx 0 dx 1 ≤ 1 2 κ 2 2 R 3 h h h t H H H(xx 0 x 1 ) h h h 2 dxdx 0 dx 1 + 6 K 0 6 2 |G n |hh 0 h 1 + C a,σ 4πσ 2 |G n | n-1 k=1 (2 a 2 ) k + O(1).

Now, the latter equation suggests us to choose the vector bandwidth h h h which minimises the function G defined by

G (h, h 0 , h 1 ) = 1 2 κ 2 2 R 3 h h h t H H H(xx 0 x 1 ) h h h 2 dxdx 0 dx 1 + 6 K 0 6 2 |G n |hh 0 h 1 + M a,σ a 2n 1 {2a 2 >1} .
where M a,σ = (1/(4 π σ 2 (2a 2 -1))) C a,σ . Optimizing the function G in h h h, we get that the optimal bandwidth h h h N = (h N , h 0N , h 1N ) is given by

h N = c 2 /(4c ) 1/7 |G n | -1/7 1 {2a 2 ≤2 -3/7 } + (c 2 /M a,σ ) 1/3 (2a 2 ) -n/3 1 {2a 2 >2 -3/7 } , h 0N = c 2 /(4c 0 ) 1/7 |G n | -1/7 1 {2a 2 ≤2 -3/7 } + (c 2 /M a,σ ) 1/3 (2a 2 ) -n/3 1 {2a 2 >2 -3/7 } , h 1N = c 2 /(4c 1 ) 1/7 |G n | -1/7 1 {2a 2 ≤2 -3/7 } + (c 2 /M a,σ ) 1/3 (2a 2 ) -n/3 1 {2a 2 >2 -3/7 } , where κ 2 is defined in (17), c 2 = 6 K 0 6 2 = 6/(8π √ π) and c = 1 2 κ 2 2 R 3 ∂ 2 µ ∂x 2 (x, x 0 , x 1 ) 2 dxdx 0 dx 1 = 3(1 + a 2 ) 2 64π √ π(1 -a 2 ) 3 σ -7 a , c 0 = 1 2 κ 2 2 R 3 ∂ 2 µ ∂x 2 0 (x, x 0 , x 1 ) 2 dxdx 0 dx 1 = 3 64π √ π(1 -a 2 ) 3 σ -7 a , c 1 = 1 2 κ 2 2 R 3 ∂ 2 µ ∂x 2 1 (x, x 0 , x 1 ) 2 dxdx 0 dx 1 = 3 64π √ π(1 -a 2 ) 3 σ -7 a .
We have

c 1 4c 2 = b 1 σ 5 a , c 1 M a,σ = b 2 σ 2 a , c 2 4 c = b 3 σ 7 a , c 2 4 c 0 = c 2 4 c 1 = b 4 σ 7 a , c 2 M a,σ = b 5 σ 4 a ,
where

b 1 = 32 3 , b 2 = √ πa 2 (1 -a 2 )(1 + a)(1 -a) 2 (2a 2 -1), b 3 = 48(1 -a 2 ) 3 12(1 + a 2 ) 2 , b 4 = 4(1 -a 2 ) 3 , b 5 = 3a 2 (1 -a 2 ) 3 (1 + a)(2a 2 -1) 4 √ π .
Since for a ∈ (0, 1) the constants b i , i ∈ {1, . . . , 5}, are bounded, we can approximate h D , h N , h 0N , h 1N by:

h D = |G n | -1/5 σ a 1 {2 a 2 ≤2 -1/5 } + (2 a 2 ) -n σ a 1 {2 a 2 >2 -1/5 } , h N = h 0N = h 1N = |G n | -1/7 σ a 1 {2 a 2 ≤2 -3/7 } + (2 a 2 ) -n/3 σ a 1 {2 a 2 >2 -3/7 } ,
where σ a is the estimator of the standard deviation of the measure µ and a is the estimator of the geometric ergodic rate. Note that in practice, the estimators h N , h 0N and h 1N differ slightly. Indeed, for h D and h N , σ a is computed using the sample (X u , u ∈ G n ), for h 0N , σ a is computed using the sample (X u0 , u ∈ G n ) and for h 1N , σ a is computed using the sample (X u1 , u ∈ G n ).

Recall that for i ∈ T and A ⊂ T, iA = {ij, j ∈ A}, where ij is the concatenation of the two sequences i, j ∈ T. For the geometric ergodic rate, we propose the following estimator, which is inspired from [START_REF] Gyori | Hypothesis testing for markov chain monte carlo[END_REF]:

a = u∈Gn-m+1 v∈uGm-1 (X u -X)(X v -X) u∈Gn (X u -X) 2 1/m with X = 1 |G n | u∈Gn X u ,
where m is a large enough natural integer such that m = O(n). The choice m = n/2 + 1 seems to be relevant. Finally, the estimator used for numerical studies is P Gn defined by:

P Gn (xx 0 x 1 ) = µ An (xx 0 x 1 ) µ An (x) , with µ Gn (x) = 1 |G n | h D u∈Gn K 0 x -X u h D and µ Gn (xx 0 x 1 ) = 1 |G n | h 3 N u∈Gn K 0 x -X u h N K 0 x 0 -X u0 h 0N K 0 x 1 -X u1 h 1N .
This method is an adaptation of the rule of thumb developed by Silverman in [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF]. The novelty here is that the ergodic rate of convergence is taken into account in the estimation procedure.

In the context of BMC, The main advantage of this method is that it not requires a lot of time for calculations. However, this method is a crude approximation which works for approximately "Gaussian" bifurcating Markov chains.

Numerical illustrations.

In order to validate our method, we consider two cases: case 1: (a 0 , a 1 , b 0 , 1 , σ, ρ) = (0.7, 0.5, 0, 0, 1, 0); case 2: (a 0 , a 1 , b 0 , 1 , σ, ρ) = (1.2, 0.7, 0, 0, 1, 0); In case 2, we allow the dynamic of the new pole to be unstable, even if the entire dynamic of the system is stable. Following the terminology of Bitseki and Delmas in [START_REF] Bitseki Penda | Central limit theorem for bifurcating Markov chains under L 2 ergodic conditions[END_REF][START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains under pointwise ergodic conditions[END_REF], the case 2 corresponds to supercritical case.

As we can see, Figure 1-8, the two methods allow to recover the true function when the size of the data increases. Consequently, we conclude that our method is valid. We begin the proof with A n = T n . Let (p n , n ∈ N) be a non-decreasing sequence of elements of N * such that, for all λ > 0:

p n < n, lim n→∞ p n /n = 1 and lim n→∞ n -p n -λ log(n) = +∞.
When there is no ambiguity, we write p for p n . Recall the function f n defined in [START_REF] Gyori | Hypothesis testing for markov chain monte carlo[END_REF]. We have the following decomposition: 

(20) N n,∅ (f n ) = R 0 (n) + R 1 (n) + ∆ n (f n ),
where: The projection of PGn (black) and P (green) on the line x = 3; x1 = 0. We use the rule of thumb type method and n = 15; a0 = 1.2; a1 = 0.7; x0 P (black) and P (green) 

R 0 (n) = |G n | -1/2 n-p-1 k=0 M G k ( fn ); R 1 = i∈Gn-p E[N n,i (f n )|F i ]; ∆ n (f n ) = i∈Gn-p ∆ n,i (f n ),
and for all i ∈ G n-p ,

N n,i (f n ) = |G n | -1/2 p =0 M iG p-( fn ) and ∆ n,i (f n ) = N n,i (f n ) -E[N n,i (f n )|F i ].
Note that using the branching Markov property, we have, for all i ∈ G n-p , ( 21)

E[M iG p-( fn )|F i ] = E Xi [M G p-(P fn )].
We have the following convergence.

Lemma 6.1. Under the assumptions of Theorem 3.3, we have that

lim n→∞ E[R 0 (n) 2 ] = 0.
Proof. We have

E[R 0 (n) 2 ] = |G n | -1 E[( n-p-1 k=0 u∈G k fn (X u ) 2 ] ≤ |G n | -1 ( n-p-1 k=0 E[( u∈G k fn (X u ) 2 ] 1/2 ) 2 , ( 22 
)
where we used the Minkowski inequality for the first inequality. By developing the term in the expectation, we get

E[( u∈G k fn (X u ) 2 ] = E[ u =v∈G k E[ fn (X u ) fn (X v )|X u , X v ]] + E[ u∈G k E[( fn ) 2 (X u )|X u ]] = E[ u =v∈G k P fn (X u )P fn (X v )] + E[ u∈G k P(( fn ) 2 )(X u )] = E[( u∈G k P fn (X u )) 2 ] + E[ u∈G k (P((f n ) 2 ) -(Pf n ) 2 )(X u )],
where we used the branching Markov property for the second inequality and the fact that P(( fn ) 2 )-(P fn ) 2 = P((f n ) 2 ) -(Pf n ) 2 for the third equality. Using (22) and using the inequalities

√ a + b ≤ √ a + √ b and (a + b) 2 ≤ 2a 2 + 2b 2 , we get E[R 0 (n) 2 ] ≤ |G n | -1 ( n-p-1 k=0 (E[( u∈G k P fn (X u )) 2 ] 1/2 + E[ u∈G k (P((f n ) 2 ) -(Pf n ) 2 )(X u )] 1/2 )) 2 ≤ 2|G n | -1 (( n-p-1 k=0 E[M G k (P( fn )) 2 ] 1/2 ) 2 + ( n-p-1 k=0 E[M G k (P((f n ) 2 ) -(Pf n ) 2 )] 1/2 ) 2 ).
Note that from Lemma 10.1, we have

P(f n ) ∞ ≤ Ch d/2 n and P(f 2 n ) ∞ ≤ C. Recall P( fn ) = P(f n ) -µ, P(f n ) .
Then, using (53), ( 5) and Lemma 10.1, we get

E[M G k (P fn ) 2 ] ≤ C h d n if k ∈ {0, 1} and for all k ≥ 2, E[M G k (P fn ) 2 ] ≤ C h 2d n 2 k if 2α 2 ≤ 1 C 2 k (h 2d n + (2α 2 ) k h 3d n ) if 2α 2 > 1.
It follows for the two last inequalities that

|G n | -1 ( n-p-1 k=0 E[M G k (P( fn )) 2 ] 1/2 ) 2 ≤ C 2 -n h 3d n + C 2 -p h 2d n + 2 -p (2α 2 ) n-p h 3d n 1 {2α 2 >1} .
Using [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], Assumption 3.1 and since lim n→∞ p n = ∞, it follows that

lim n→∞ |G n | -1 ( n-p-1 k=0 E[M G k (P( fn )) 2 ] 1/2 ) 2 = 0.
Next, using Lemma 10.1, we get

E[M G k (P((f n ) 2 ) -(Pf n ) 2 )] ≤ C 2 k . This implies that lim n→∞ |G n | -1 ( n-p-1 k=0 E[M G k (P((f n ) 2 ) -(Pf n ) 2 )] 1/2 ) 2 ≤ C lim n→∞ 2 -p = 0
and this ends the proof.

Next, we have the following convergence.

Lemma 6.2. Under the assumptions of Theorem 3.3, we have that

lim n→∞ E[R 1 (n) 2 ] = 0.
Proof. Using (21), we get

R 1 (n) = p k=0 R 1 (k, n), with R 1 (k, n) = |G n | -1/2 |G p-k | M Gn-p (Q p-k P fn ).
It follows that

(23) E R 1 (n) 2 1/2 ≤ p k=0 E R 1 (k, n) 2 1/2 .
Following the proof of Lemma 4.2 in [3] and using (5) and Lemma 10.1, we find that

E R 1 (k, n) 2 ≤ C 2 -p h 2d n 1 {k=p} +      C h 3d n 2 -p (2α) 2(p-k) if 2α 2 < 1 C (n -p) h 3d n 2 -k if 2α 2 = 1 C 2 -p (2α 2 ) n-p h 3d n (2α) 2(p-k) if 2α 2 > 1. From (23), this implies that E R 1 (n) 2 1/2 ≤ C 2 -p/2 h d n +      C h 3d/2 n p k=0 2 -k/2 (2α 2 ) (p-k)/2 if 2α 2 < 1 C (n -p) 1/2 h 3d/2 n if 2α 2 = 1 C (2α 2 ) n/2 h 3d/2 n if 2α 2 > 1.
From the latter inequality and using Assumption 3.1, we deduce that lim

n→∞ E[R 1 (n) 2 ] = 0.
We now study the bracket

V (n) = i∈Gn-p E[∆ n,i (f n ) 2 |F i ].
Note that for i ∈ G n-p , we have

E[∆ n,i (f n ) 2 |F i ] = |G n | -1 E[( p k=0 M iG p-k ( fn )) 2 |F i ] -|G n | -1 (E[ p k=0 M iG p-k ( fn )|F i ]) 2 .
Using the branching Markov chain property, this implies that (24)

V (n) = V 1 (n) + V 2 (n) -R 2 (n), with V 1 (n) = |G n | -1 i∈Gn-p p k=0 E Xi [M G p-k ( fn ) 2 ], V 2 (n) = 2|G n | -1 i∈Gn-p 0≤k< ≤p E Xi [M G p-( fn )M G p-k ( fn )], (25) R 2 (n) = |G n | -1 i∈Gn-p ( p k=0 2 p-k Q p-k P fn (X u )) 2 .
We have the following result. Lemma 6.3. Under the assumptions of Theorem 3.3, we have the following convergence:

lim n→∞ E[R 2 (n)] = 0.
Proof. We have using (52), ( 5) and Lemma 10.1:

E [R 2 (n)] = |G n | -1 |G n-p | ν, Q n-p p k=0 |G p-k | Q p-k P fn 2 ≤ C 2 -p ν, Q n-p ((P fn ) 2 ) + C 2 -p ν, Q n-p (( p-1 k=0 2 p-k Q p-k-1 (QP fn )) 2 ) ≤ C 2 -p h 2d n + C 2 -p h 3d n a n
, where the sequence (a n , n ≥ 1) is defined by

a n =      1 if 2α < 1 p 2 if 2α = 1 (2α) 2p if 2α > 1.
Using Assumption 3.1, and in particular Remark 3.2, it follows that lim n→∞ E[R 2 (n)] = 0.

Next, we have the following result. Lemma 6.4. Under the assumptions of Theorem 3.3, we have the following convergence:

lim n→∞ E[V 2 (n) 2 ] = 0.
Proof. Let 0 ≤ k < ≤ p and i ∈ G n-p . Conditioning two times, first by H i,p-k and next by H i,p-+1 , and using the branching Markov property, we get

E Xi [M G p-( fn )M G p-k ( fn )] = 2 -k-1 E Xi [M G p-( fn )M G p-(g k, ,n )],
where we set g k, ,n = Q -k-1 P fn ⊕ Q -k-1 P fn . Next, conditioning by H i,p-and using the branching Markov property, we get

E Xi [M G p-( fn )M G p-(g k, ,n )] = E Xi [M G p-(P( fn g k, ,n ) -P fn Pg k, ,n )] + E Xi [M G p-(P fn )M G p-(Pg k, ,n )].
From the foregoing and using (52), ( 54) and (25), it follows that:

V 2 (n) = V 5 (n) + V 6 (n), where V 5 (n) = |G n-p | -1 M Gn-p (H 5,n ) and V 6 (n) = |G n-p | -1 M Gn-p (H 6,n ), with H 5,n = 0≤k< 2 -k Q p-(P( fn g k, ,n ))1 { ≤p} and H 6,n = 0≤k< r≥0 2 -k+r Q p--r-1 P(Q r P fn ⊗ sym Q r Pg k, ,n )1 {r+ <p} .
First, we treat the term V 6 (n). Note that we have

Q r Pg k, ,n = 2 Q r+ -k P fn .
We set

h (n)
k, ,r = 2 r-k+1 Q p-1-(r+ ) P(Q r P fn ⊗ sym Q r+ -k P fn ) and h k, ,r = 2 r-k+1 µ, P(Q r P fn ⊗ sym Q r+ -k P fn ) .

We consider the following sums:

H [n] 6 = 0≤k< r≥0 h k, ,r 1 {r+ <p} and A 6,n = H 6,n -H [n] 6 = 0≤k< r≥0 (h (n) k, ,r -h k, ,r )1 {r+ <p} .
Using Lemma 10.1, we have for all 0 ≤ k < and r ≥ 0:

|P(Q r P fn ⊗ sym Q r+ -k P fn )| ≤ Q r+ -k P fn ) ∞ P(Q r P fn ⊗ sym 1) ∞ ≤ Q r+ -k P fn ) ∞ Q r+1 P fn ∞ ≤ C h 3d n . (26) 
Moreover, using (5) and Lemma 10.1, we have for all 0 ≤ k < and r ≥ 1:

|P(Q r P fn ⊗ sym Q r+ -k P fn )| ≤ C α 2r+ -k Q(Pf n ) 2 ∞ P(V ⊗ sym V ) ≤ C α 2r+ -k h 3d n P(V ⊗ sym V ). ( 27 
)
Distinguishing the cases r = 0 and r ≥ 1 and using (26), ( 27), (iv) of Assumption 1.2 and (3), we get, for some g 1 , g ∈ F ,

|H 6,n -H [n] 6 | = 0≤k< |h (n) k, ,0 -h k, ,0 | 1 { <p} + 0≤k< r≥1 |h (n) k, ,r -h k, ,r | 1 {r+ <p} ≤ C 0≤k< 2 -k α p--1 P(P fn ⊗ sym Q -k P fn ) ∞ V + C h 3d n 0≤k< r≥1 2 r-k α 2r+ -k Q p--r-1 P(V ⊗ sym V ) 1 {r+ <p} ≤ C h 3d n (V + ( 0≤k< r≥1 2 r-k α 2r+ -k 1 {r+ <p} ) g 1 ) ≤ C h 3d n a n g, (28) 
where

a n =      1 if 2α 2 < 1 p if 2α = 1 (2α 2 ) p if 2α 2 > 1.
Using (28), we find that 6), [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and that g ∈ L 1 (µ), we get

|V 6 (n) -H [n] 6 | ≤ |G n-p | -1 M Gn-p (|H 6 (n) -H [n] 6 |) ≤ C a n h 3d n |G n-p | -1 M Gn-p (g). Using (
lim n→+∞ |V 6 (n) -H [n]
6 | = 0 a.s. and in L 2 .

Next, as for (28), using (26), ( 27) and that F ⊂ L 1 (µ), we find that |H 

(n) = (V 6 (n) -H [n] 6 ) + H [n] 6 , we conclude that lim n→∞ E[V 6 (n) 2 ] = 0.
Next, we treat the term V 5 (n). We have

V 5 (n) = (V 5 (n) -H [n] 5 ) + H [n]
5 , where

H [n] 5 = 0≤k< 2 -k µ, P( fn g k, ,n ) 1 { ≤p} .
Using Lemma 10.1, we get, for all 0 ≤ k < ,

|P( fn g k, ,n ) -µ, P( fn g k, ,n ) | ≤ C Q -k-1 P fn ∞ P fn ∞ ≤ C h d n 1 {k= -1} + C h 2d n 1 {k≤ -2} .
Using the latter inequality and distinguishing the cases = p and ≤ p -1, we find that

|V 5 (n) -H [n] 5 | ≤ C (2 -p h d n + h 2d n + p h 2d n ). This implies that lim n→+∞ |V 5 (n) -H [n]
5 | = 0 a.s. and in L 2 . Next, using Lemma 10.1, we have

|H [(n)] 5 | ≤ 0≤k< 2 -k | µ, P( fn g k, ,n ) |1 { ≤p} ≤ C >0 (2 -+1 h 2d n + -2 k=0 2 -k α -k h 3d/2 n ) ≤ C h 3d/2 n .
This implies that lim n→∞ H [(n)] 5

= 0 and then that lim n→∞ V 5 (n) = 0 a.s. and in L 2 .

Finally, since V 2 (n) = V 5 (n) + V 6 (n), it follows from the foregoing that lim n→∞ E[V 2 (n) 2 ] = 0 and this ends the proof.

Now we treat the term

V 1 (n). Recall V 1 (n) = |G n | -1 i∈Gn-p p k=0 E Xi [M G p-k ( fn ) 2 ].
We have the following convergence. Lemma 6.5. Under the assumptions of Theorem 3.3, we have the following convergence:

lim n→∞ V 1 (n) = 2 K 0 6 2 µ (x, x 0 , x 1 ) in probability.
Proof. Let k ∈ {0, . . . , p} and i ∈ G n-p . Conditioning by H i,p-k and using the branching Markov property, we get

E Xi [M G p-k ( fn ) 2 ] = E Xi [M G p-k (P( f 2 n ) -(P fn ) 2 )] + E Xi [(M G p-k (P fn )) 2 ]
. Using the latter inequality and the fact that P(

f 2 n ) -(P fn ) 2 = P(f 2 n ) -(Pf n ) 2 , we get V 1 (n) = V 3 (n) + V 4 (n) -V 7 (n), where V 3 (n) = |G n | -1 i∈Gn-p p k=0 E Xi [M G p-k (P(f 2 n ))]; V 7 (n) = |G n | -1 i∈Gn-p p k=0 E Xi [M G p-k ((Pf n ) 2 )]; V 4 (n) = |G n | -1 i∈Gn-p p k=0 E Xi [(M G p-k (P fn )) 2 ].
First we treat V 7 (n). We set

H 7,n = p k=0 2 -k Q p-k ((Pf n ) 2 ).
Using (52), we have 

V 7 (n) = |G n-p | -1 M Gn-p (H
(n)| ≤ C (2 -p h d n + h 2d n ). It then follows that lim n→∞ V 7 (n) = 0 in probability. Next, we treat the term V 3 (n). We set A 3,n = H 3,n -H [n] 3 , with: (29) H 3,n = p k=0 2 -k Q p-k (P(f 2 n )) and H [n] 3 = p k=0 2 -k µ, P(f 2 n ) = 2(1 -2 -p-1 ) µ, P(f 2 n ) .
We set g n = P(f 2 n )µ, P(f 2 n ) . Using ( 5) and Lemma 10.1, we have

|V 3 (n) -H [n] 3 | ≤ |G n-p | -1 M Gn-p (2 -p |g n |) + M Gn-p ( p-1 k=0 2 -k |Q p-k-1 (Q(g n ))|) ≤ C 2 -p + C |G n-p | -1 M Gn-p ( p-1 k=0 2 -k α p-k Q(P(f 2 n )) ∞ V ) ≤ C 2 -p + C a n |G n-p | -1 M Gn-p (V ), (30) 
where

a n =      2 -p if 2α < 1 p 2 -p if 2α = 1 α p if 2α > 1.
Using [START_REF] Comte | On a nadaraya-watson estimator with two bandwidths[END_REF] and the fact that lim n→+∞ a n = 0, we find that

lim n→+∞ C 2 -p + C a n |G n-p | -1 M Gn-p (V ) = 0 a.s. and in L 2 .
From (30), this implies that

lim n→+∞ |V 3 (n) -H [n] 3 | = 0 in probability.
Using Lemma 10.2, we get

lim n→∞ H [n] 3 = lim n→∞ 2 (1 -2 -p-1 ) µ, P(f 2 n ) = 2 K 0 6 2 µ (x, x 0 , x 1 ).
From the foregoing, we conclude that lim n→∞ V 3 (n) = 2 K 0 6 2 µ (x, x 0 , x 1 ) in probability.

Finally, we treat the term V 4 (n). Using (53), we have

V 4 (n) = V 8 (n) + V 9 (n), where V 8 (n) = |G n-p | -1 M Gn-p (H 8,n ) and V 9 (n) = |G n-p | -1 M Gn-p (H 9,n ), with H 8,n = p k=0 2 -k Q p-k ((P fn ) 2 ) and H 9,n = k≥0, ≥0 2 -k+ Q p-k--1 P(Q P fn ⊗ Q P fn )1 {k+ <p} .
Writing As a result, we find that

H [n] 8 = p k=0
lim n→∞ |V 8 (n)| = lim n→∞ |V 9 (n)| = 0 in probability. Since V 4 (n) = V 8 (n) + V 9 (n), we conclude that lim n→∞ V 4 (n) = 0 in probability. Finally, since V 1 (n) = V 3 (n) + V 4 (n) -V 7 (n)
, the result of the Lemma follows from the foregoing.

As a consequence of (24), Lemmas 6.3, 6.4 and 6.5, we have the following result.

Lemma 6.6. Under the assumptions of Theorem 3.3, we have the following convergence:

lim n→∞ V (n) = 2 K 0 6 
2 µ (x, x 0 , x 1 ) in probability.

We now check the Lindeberg condition using a fourth moment condition. We set:

R 3 (n) = i∈Gn-p n E ∆ n,i (f n ) 4 .
Lemma 6.7. Under the assumptions of Theorem 3.3, we have that lim n→∞ R 3 (n) = 0

Proof. We have

R 3 (n) ≤ 16 (p + 1) 3 |G n | -2 i∈Gn-p p =0 E[(M iG p-( fn )) 4 ] ≤ 128 (p + 1) 3 |G n | -2 i∈Gn-p p =0 E[(M iG p-(f n -Pf n )) 4 ] (31) + 128 (p + 1) 3 |G n | -2 i∈Gn-p p =0 E[(M iG p-(P fn )) 4 ],
where we used that ( r k=0 a k ) 4 ≤ (r + 1) 3 r k=0 a 4 k for the two inequalities (resp. with r = 1 and r = p), Jensen inequality for the first inequality and the decomposition f n = (f n -Pf n ) + Pf n for the last inequality. For the second term of the right hand side of (31), we follow the proof of Lemma 5.6 in [START_REF] Bitseki Penda | Central limit theorem for kernel estimator of invariant density in bifurcating markov chains models[END_REF] and Lemma 4.7 in [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains under pointwise ergodic conditions[END_REF] to find that

n 3 |G n | -2 i∈Gn-p p =0 E[(M iG p-(P fn )) 4 ] ≤ C n 5 (2 -n+p h n 1 {2α 2 ≤1} + 2 -n+p (2α 2 ) 2p h 6d n 1 {2α 2 >1} ),
and using [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], this implies that (32) lim

n→+∞ n 3 |G n | -2 i∈Gn-p p =0 E[(M iG p-(P fn )) 4 ] = 0.
We are now going to treat the first term of (31). Since P(f n -P(f n )) = 0, we have, (see Remark 2.3 in [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF] for more details), Using (53), the fact that P((f n -Pf n ) 2 ) ≤ P(f 2 n ) for the first inequality and Lemma 10.1 for the second inequality, we get

ν, Q n-p h n, ≤ 2 p-ν, Q n-(P(f 2 n )) 2 + p--1 k=0 2 p-+k ν, Q n--k-1 P(Q k P(f 2 n ⊗ 2 ) ≤ C 2 p-+ C 2 2(p-) .
The latter inequality implies that (36)

n 3 2 -n-p p =0 ν, Q n-p h n, ≤ C n 3 (2 -n + 2 -n+p ).
From (34), ( 35) and (36), we conclude that lim n→∞ R 3,1 (n) = 0. Finally, from (31) and (32), this proves that lim n→∞ R 3 (n) = 0.

For A n = G n , we follows exactly the same lines and this ends the proof.

Lemma 8.2. Under Assumptions of Theorem 4.2, we have

(|A n |h 3d n ) 1/2 ( µ An (xx 0 x 1 ) µ An (x) - µ (xx 0 x 1 ) µ An (x) ) (d) ----→ n→∞ G,
where G is a centered Gaussian real-valued random variable with mean 0 and variance σ 2 = K 0 6 2 P(x, x 0 , x 1 )/µ(x).

Proof. This is a direct consequence of Theorem 3.5, (43) and Slutsky's Lemma.

9. Proof of (16)

We set f 0h (y) = h -1 K 0 (h -1 (xy)) and recall µ, f 0h = R f 0h (y)µ(y)dy. Using the decomposition

µ(x) -µ(x) = 1 |G n | u∈Gn f0h (X u ) + µ, f 0h -µ(x),
we obtain the following biais-variance type decomposition.

(45)

E ( µ(x) -µ(x)) 2 ≤ 2(|G n |) 2 E ( u∈Gn f0h (X u )) 2 + 2 µ, f 0h -µ(x) 2 .
Using (53) and the fact that the process L(X ∅ ) = µ (which implies that µQ = µ), we get (46)

|G n | -2 E ( u∈Gn f0h (X u )) 2 ≤ 2 µ, f 2 0h |G n | + 1 |G n | n-1 k=1 2 k µ, (Q k-1 (Q f0h )) 2 .
We now plan to use (15) with f = Qf 0h . For all y ∈ R, we get, after the change of variable t = h -1 (xz) and the use of the first-order Taylor's expansion, We then have that In this section, we recall useful results on BMC from Bitseki-Delmas [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF].

Lemma 10.3. Let f, g ∈ B(S), x ∈ S and n ≥ m ≥ 0. Assuming that all the quantities below are well defined, we have:

E x [M Gn (f )] = |G n | Q n f (x) = 2 n Q n f (x), (52) 
E x M Gn (f ) 2 = 2 n Q n (f 2 )(x) + n-1 k=0 2 n+k Q n-k-1 P Q k f ⊗ Q k f (x), (53) E x [M Gn (f )M Gm (g)] = 2 n Q m gQ n-m f (x) (54) + m-1 k=0 2 n+k Q m-k-1 P Q k g ⊗ sym Q n-m+k f (x).
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  C a n h 3d n . Using[START_REF] Parzen | On estimation of a probability density function and mode[END_REF], we get lim n→+∞ H[n] 6 = 0. Now, since we can write V 6

  (33) E x [(M G p-(f n -Pf n ))4 ] ≤ g n, (x) + 6 h n, (x), with:g n, (x) = E x [M G p-(P((f n -Pf n ) 4 ))] and h n, (x) = E x [(M G p-(P((f n -Pf n ) 2 ))) 2 ]. We set R 3,1 (n) = (p + 1) 3 2 -2n i∈Gn-p p =0 E[(M iG p-(f n -Pf n )) 4 ].Using the branching Markov property and (33) for the first inequality and (52) for equality, we getR 3,1 (n) ≤ C n 3 2 -2n p =0 E[M Gn-p (g n, )] + C n 3 2 -2n p =0 E[M Gn-p (h n, )] = C n 3 2 -n-p p =0 ν, Q n-p g n, + C n 3 2 -n-p p =0 ν, Q n-p h n, .(34)Using Lemma 10.1, we getν, Q n-p g n, = 2 p-ν, Q n-(P((f n -Pf n ) 4 )) ≤ 2 p-QP((f n -Pf n ) 4 ) ∞ ≤ C h -3d n 2 p-.The latter inequality implies that (35)n 3 2 -n-p p =0 ν, Q n-p g n, ≤ C n 3 (2 n h 3d n ) -1 .

(

  Qf 0h ) (y) = 1 h R K 0 (h -1 (xz)) ∂Q ∂y (y, z)dz = R K 0 (z) ∂Q ∂y (y, xhz) dz = ∂Q ∂y (y, x) R K 0 (z) dz + O(1) = ∂Q ∂y (y, x) + O(1).

(√ 2πσ 2 e - 1 / 2 2 1 ( 1

 21221 Qf 0h ) ∞ = sup y∈R ∂Q ∂y (•, x) + O(1) = 1 +O(1).Using the latter equality and (15), we get, for all k ≥ 1,(47) |Q k-1 (Q f0h )|(y) ≤ 1 √ 2πσ 2 e 1/2 (1a) (σ(1 + a) -1 + |y|)a k-1 + O(1).Recall µ is the Gaussian law N(0, σ 2 (1a 2 )). Using (47) and (σ(1+ a) -1 + |y|) 2 ≤ 2 σ 2 (1 + a) -2 + 2 y 2 , we get (48) µ, (Q k-1 (Q f0h )) 2 ≤ 1 eπσa) 2 + 1 1a 2 a 2(k-1) + O(1) ≤ C a,σ a 2 a 2k + O(1).

Lemma 10 . 2 .

 102 Let (h n , n ∈ N) be a sequence of positive numbers converging to 0 as n goes to infinity. Let g : R d → R be a measurable function such thatR d |g(x)|dx < +∞. Let f : R d → R be a measurable function such that f ∞ < +∞, R d |f (y)| dy < +∞ and lim |x|→+∞ |x|f (x) = 0. Define g n (x) = h -d n R d f (h -1 n (x -y))g(y)dy. Then, we have at every point x of continuity of g, lim n→+∞ g n (x) = g(x) R f (y)dy.

  7,n ). Using Lemma 10.1 and distinguishing the cases k = p and k ≤ p -1, we get |V 7

We can now use Theorem 3.2 and Corollary 3.1, p. 58, and the remark p. 59 from [START_REF] Hall | Martingale limit theory and its application[END_REF] to deduce from Lemmas 6.6 and 6.7 that ∆ n (f n ) converges in distribution towards a Gaussian real-valued random variable with deterministic variance σ 2 . Using (20) and Lemmas 6.1 and 6.2, we then deduce Theorem 3.3 for A n = T n .

For A n = G n , we have

and for all i ∈ G n-p ,

Following exactly the proof of Lemma 6.2, 6.6 and 6.7, we get the result for this case. We note that for A n = G n , the factor 2 is missing in the asymptotic variance. This come from the fact that here, H

[n]

3 defined in (29) is simply equal to µ, P(f 2 n ) .

7. Proof of Theorem 3.5

We begin the proof with A n = T n . From [START_REF] Hall | Martingale limit theory and its application[END_REF], we have

where the bias term B n (xx 0 x 1 ) is defined by

Since lim n→∞ (|G n |/|T n |) 1/2 = 1/ √ 2, from Theorem 3.3, it suffices, to obtain the result of Theorem 3.5, to prove that lim n→∞ B n (xx 0 x 1 ) = 0. Using the Taylor expansion and Assumption 3.4, one can prove that (see [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF] for more details)

Since lim n→∞ |T n |h 2s+3d n = 0, we conclude that lim n→∞ B n (xx 0 x 1 ) = 0 and this ends the proof for A n = T n .

For A n = G n the proof follows exactly the same lines.

Proof of Theorem 4.2

First of all, we have the following decomposition:

Then, the proof of Theorem 4.2 is a direct consequence of the previous decomposition and Lemmas 8.1 and 8.2 below.

Lemma 8.1. Under Assumptions of Theorem 4.2, we have

Proof. We consider the function g n defined on S by: g n (y) = h

for all y ∈ S. We begin the proof with A n = T n . We set gn = g nµ, g n . We have the following decomposition:

Using the fact that K 0 is bounded, integration by parts and Assumption 1.8, we have the following upper bounds:

Next, from Minkowski's inequality, we have

Using (53), ( 5) and (38), we get:

The latter inequality implies that

Using (39), ( 40) and ( 11), we deduce that

Next, using Taylor expansion and Assumption 3.4, we get (see [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF] for more details) 37), ( 41) and (42), we deduce that (43) lim n→∞ µ Tn (x) = µ(x) in probability.

We further deduce that

Using [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], the latter inequality implies that 43), (44) and using Slutsky's Lemma, we get

Now, (48) and (46) implies that

Putting the latter inequality into (45), we obtain

Finally, it is very standard to get asymptotic equivalence of the second and the third term of the right hand side of (49) (see for e.g. [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF], Section 3.3.1 for more details). This ends the proof of (16).

Appendix

First, we give some useful upper bounds. We recall that S = R d . Recall f n defined in [START_REF] Gyori | Hypothesis testing for markov chain monte carlo[END_REF].

Lemma 10.1. Under Assumption (1.8), we have:

Proof. Using a change of variables, we have, for all y ∈ S:

|K 0 |(y 0 ) |K 0 |(y 1 )P(y, x 0h y 0 , x 1h y 1 )dy 0 dy 1 .

This implies that

n . From (50) and using again a change of variables, we have, for all t ∈ S:

|K 0 |(y) |K 0 |(y 0 ) |K 0 |(y 1 ) P(xh y, x 0h y 0 , x 1h y 1 ) Q(t, xh y)dy dy 0 dy 1 .

This implies that (51)

As for (51), we have

n . Now, following the same ideas, we easily get the others upper bounds.

We recall the following result due to Bochner (see [START_REF] Parzen | On estimation of a probability density function and mode[END_REF]Theorem 1A] which can be easily extended to any dimension d ≥ 1).