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Abstract

Structural properties in a network have mostly been defined in terms of their microscopic level and
macroscopic level. Many existing studies focus mainly on learning representations for vertices in similar
local proximity such as the first-order proximity (microscopic level), while some other studies describe the
global network connectivity and characteristics (macroscopic level). It is however important to understand
the substructures between the vertex and network levels so as to capture the structural identities exhibited
by vertices. In this paper, we present a novel and flexible approach for learning representations for
structural identities of vertices in a network, such that set of vertices with similar structural identity are
mapped closely in the low latent embedding space. Our approach applies the Poisson distribution-based
measure and a divergence estimation score to capture nodes’ structural similarities at k-hop proximity
via a guided walk; and using the Skipgram model, we learn embeddings for nodes with similar structural
identity captured in the walk. Experiments with real-life datasets validate our approach, as well as gave
superior performance when compared with existing models on link prediction, node classification, and
learning-to-rank tasks.

This is a preprint that has not undergone any post-submission improvements or cor-
rections. The Version of Record of this paper is published in International Journal of
Data Science and Analytics, and is available online at https://doi.org/10.1007/s41060-
023-00390-z

1 Introduction

Graphs are connected substructures made up of set of vertices, with links which describes how these
vertices are related. Graphs can be attributed or non-attributed in nature. We can learn the similar
functions exhibited by the nodes in an attributed graph through the different attributes of the nodes and
edge features. However, there are more interesting cases where the node functions are modeled from the
structural relationships between nodes without any sort of attributes or label as seen in non-attributed
networks. The problem of capturing the structural identity of nodes have been studied in many domains
[1, 2, 3]. In a typical description, a PPI network for a human cell has human proteins as nodes, and a
metabolic enzymes-coupled with physical interactions depicts the relationship between the human pro-
teins. Each protein node can be partitioned into different groups based on its respective function in the
network. The structural property of a graph can be described in three levels: microscopic level, macro-
scopic level, and mesoscopic level. In [4], the authors describe the microscopic structure of a network as
the local neighbourhood connectivity between adjacent nodes as defined by their edge weights. However
we see in [5, 6, 7] that the focus was on preserving the microscopic patterns of the network through
the first-order structural proximity between connected vertices of a graph. The macroscopic structure
on the other hand is concerned with preserving expansive global characteristics, network connectivity,
and information spread in the graph. In [8], the authors learn node representations of the graph by
sampling small networks in the graph to approximate the global properties in the final representations.
The mesoscopic view of a network takes a different dimension from microscopic and macroscopic view.
While the microscopic and macroscopic views preserve the local structure and global properties of a
network, the mesoscopic view is concerned with capturing vertices with similar structural identity and
having intra-community proximity as shown in Figure 1. Vertices with similar structural identity should
be captured irrespective of the position of such vertices in a graph [9]. The aim is such that vertices with
similar structural identity property will be mapped closely in the embedding space, while the generated
low-latent embedding can be applied in downstream structural dependent tasks [10]. Recent efforts in
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network embedding have been quite successful in designing models capable of capturing the homophily
nature of a network; that is nodes belonging in the same neighbourhood or having similar neighbourhood
nodes (second-order proximity) will have the same low-latent embedding. Considering such models, it is
certain that nodes with similar neighbourhood structure but that are distant apart in the network, will
have different low-latent embedding since such models only take account of connections in local 1− hop
proximity. To effectively overcome this challenge, a few studies have been conducted to capture nodes
sharing similar structural roles in the network. The authors in [4] propose a hierarchical configuration
model to preserve the dense connectivity within subgraphs and community structures, as well as the
sparse connectivity between them. Popular similarity distance measures such as Euclidean distance,
Manhattan distance, Jaccard similarity, and Cosine similarity are common distance techniques adopted
by embedding methods to capture structural patterns in a network. The similarity distance techniques
involve computing a distance function which quantifies the distance between all node pairs in each neigh-
bourhood of nodes, and then a clustering method is adopted to segregate the node pairs within close
distance proximity into similar points on the embedding space [6, 11, 12]. Major drawbacks with these
distance measure techniques are that they are less intuitive to the inherent characteristics exhibited by
network’s nodes and edges with emphasis majorly on node pairwise connectivity, and this can affect the
quality of embedding produced for certain learning tasks. In addition, the clustering analysis parameters
are mostly hand engineered in a supervised manner, which might be unsuitable for wide range of domain
tasks. Recursion functions can also be computed on neighbouring nodes to determine equivalent classes
to which each neighbourhood of nodes belong, but recursive techniques only increases the time complexity
for training a node embedding model [1, 13, 14].

Figure 1: Shows structurally similar nodes. Nodes with the same colours are structurally identical.

Because of the dominant homophily property exhibited by many networks, recent learning represen-
tation techniques are centered upon preserving node structures connected in first-order or second-order
proximity (for example two persons who are friends in a social network or who likes the same products
have strong homophily traits, and would have similar latent representation features). As a result of this,
nodes with direct connections or at most 2-hop shared neighbourhood connections are more likely to have
the same features than nodes that are structurally separated in the network. Embedding learned through
preserving homophily properties will probably scale well in domain specific link prediction tasks, but will
fail in tasks involving classifying nodes in terms of the their structural identity. In contrast, specific tasks
performed on learned embedding that depend more on structural identity will perform better than those
solely on homophily as shown in our experimental results. Structural proximity properties within a neigh-
bourhood of nodes are mostly preserved in the learned embedding, such that nodes in that neighbourhood
have similar embedding. This is true since these nodes share direct connections or at most 2-hop shared
neighbourhood connections. Embedding learned through this method will scale well in domain specific
link prediction tasks, but will fail in tasks involving classifying node in terms of the roles they possess in
the network.
In this study, we propose a simple yet effective probability measure approach to capture and learn low
latent embedding for nodes in an attributed network, while preserving the structural identity of each
node in the embedding. A visualization on an embedding space should map nodes with similar structural
identity close to each other. Our study leverages on the Poisson distribution function; the goal is to
maximize the likelihood of a node sharing similar structural identity across successive neighbourhood of
nodes in the network. By successive neighbourhood, we are able to compare a node u not just with its
adjacent neighbours, N(u), but with node neighbourhoods at k-level distance of N(u). To compute the
extent at which each node in N(u) significantly differs from u, we propose to use the Kullback-Leibler
divergence for a single node entity. Through comparing the divergence of a current node in the walk
with its successive node neighbourhood, we are able to build a corpus comprising sequence of nodes in
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(a) Input Network (b) struc2vec (c) DeepWalk

(d) LINE (e) node2vec (f) Identity2Vec

Figure 2: Comparing Visualizations for structural identity embedding for node2vec, struc2vec, DeepWalk,
LINE, and Identity2Vec the WebKB dataset [16].

a probability walk pattern, for which we learn their embedding using the Skipgram model [15]. Our
contribution is the development of a learning framework for preserving structural identity for nodes in
the learned embedding. The key objectives of our study includes:

1. We design a 2-level neighborhood approach to assessing structural identity between nodes irrespec-
tive of their position in the network. Therefore nodes whose neighborhood structure are similar are
deemed identical irrespective of the network position of the nodes and their neighborhoods.

2. We propose a novel technique, Identity2Vec, for capturing the structural identity similarities via
probability walks, through a combination of the Poisson distribution function and the Kullback-
Leibler divergence for a single node entity. Our technique is capable of capturing structural identity
similarities for connected or unconnected networks.

3. We compared our model with existing state-of-the-art on node classification, link prediction, and
learning-to-rank tasks.

The rest of the paper is organized as follows. Section 2 discusses related literature. Section 3 introduces
our proposed model. In Section 4, we present the datasets used, the results of our evaluation and a
discussion of the results. We conclude the paper in Section 5, and highlight possible directions for future
work.

2 Related Literature

In recent times, there are growing number of models and techniques proposed for learning representations
of structural properties in a network [3, 1, 17]. We shall discuss related works in terms of models using
the random walk approach, and models adopting the probability measure techniques, as well as those
preserving structural identity for nodes in a network.
The random walk approach captures and preserves in embedding, the first-order proximity (i.e., at 1−hop)
and second-order proximity (i.e., at 2−hops) in a node neighbourhood. The random walk approach sam-
ples sequences of nodes of predefined length into a corpus, and a deep learning architecture is applied
to learn embedding for the corpus while preserving the properties captured in the node sequences. The
authors in [6, 7, 18, 19] designed models to sample sequence of paths from an input graph through uni-
formly sampling neighbours of last visited node until a predefined length of sequence is reached; low
latent embedding is then learned from the node corpus which preserves all the features captured in the
random walk sequences. The low latent embedding is learned through different deep learning architec-
ture. Node2vec [6], DeepWalk [7], metapath2vec [19], and walklets [20] use the Skipgram model to learn
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embedding; while HSNL [21] and DeepCas [22] use a Neural network model to learn embedding for the
node corpus.
The probability distribution measure aims at maximizing the probability of preserving node properties
in the embedding space using some kind of distribution metric. In [23], the authors propose a model for
preserving scale-free properties in an undirected network using vertex degree penalty. The scale-free prop-
erties preserved for a network is such that the node degree distribution follows a power law relationship.
The scale-free property of the network can further be reconstructed on an euclidean space. In [24], the
authors proposed a Discriminative Deep Random Walk (DDRW) for classifying the topological structures
in a network, by jointly optimizing a classification objective function and the embedding entities in a
latent space.
Structural embedding aims at capturing and preserving the structural identity and topology of the net-
work. In a closely related study, struc2vec [1] propose a 3−step process that captures the structural
similarity of nodes at different scales, reconstruct a multilayered graph to encode the structural simi-
larities, and generate structural context from the reconstructed graph and learn latent representations
for these structural contexts. As a result of the multilayered scaling of the input network, struc2vec
has very high time and space complexity especially for very massive networks. Some of our experiments
with struc2vec encounter a memory error and terminates for very large networks. In [25], the authors
propose comE to capture and preserve community-aware high-order proximity for nodes within a network
structure in learned embedding. Through community embedding, different nodes can be embedded in the
same community irrespective of the position of the nodes in the network. In our study, we took a different
approach to learning structural roles for nodes in a network through a probability distribution optimiza-
tion technique. The authors in [26] proposed subgraph2vec for learning low-latent vector representations
of substructure dependencies with similar semantics in an embedding space. To capture the semantic
features of each substructure, the authors use the Weisfeiler-Lehman relabeling strategy (originally used
to label nodes in breadth-wise neighborhoods), and thereafter a modified Skipgram model to learn varying
length features around target subgraph. The context formation procedure in this study yields contexts of
different sizes for different subgraphs; this is a major drawback since there is no theoretical justification
on how subgraph kernels of different sizes can be said to be similar. In [17], the authors proposed sub2vec
to learn low-latent embedding for nodes in a subgraph based on their neighborhood and structural fea-
tures. To capture the features for each subgraph, the study used a truncated random walk for sampling
nodes to generate an id-path (for neighborhood features) and a degree path (for structural features). The
study failed to address the ”randomness” in the walk; thus making it difficult capturing neighborhood
patterns. The degree of each node in a subgraph also does not necessarily describe the structure of the
subgraph. In [27], the authors proposed an approach for identifying the roles of the nodes in a network
using the neighbourhood structural property. Since this approach does not preserve the node context in
the embedding, it will most likely not accurately capture node pairs having similar roles (structurally
equivalent). A pictorial view of learned embedding applied to a visualization task is seen in Figure 2. We
compare the learned embedding from our model with results from other models. Our model was able to
properly aggregate and preserve the structural identity of the nodes irrespective of their location. Nodes
with similar structural roles have the same color and are mapped closely together in an embedding space.
Embedding model like LINE [5] which focuses solely on the first-order proximity of adjacent nodes in
a local neighborhood is unable to capture the structural diversity of nodes at different locations in the
network.

3 Proposed Model

3.1 Problem Definition and Notations

A Graph G = (V,E) is a structure that consists of a set V of elements called vertices or nodes, and a
set E ⊆ V × V of edges connecting the vertices. Two nodes linked by an edge are said to be adjacent or
neighbors. N(u) represents the set of all the neighbours of node u. The degree od node is the number of
its direct neighbors.
Structural identity in graphs is an equivalence notion which describes the structural pattern of vertices
or the relationship between a vertex and other vertices in their neighborhood. Vertices exhibiting similar
structural identity includes vertices in a clique or vertices with the same degree.
Poisson distribution is defined as a modeling function for finding the probability of a number of variables
(nodes) occurring within a given area of space (node neighborhood), provided that the variables occur
independently of each other [28]. We denote Ψu as the Poisson distribution for node u.
Kullback-Leibler divergence is a statistical distance which measures how much the probability distribution
of an object (node) differ significantly from another object. We denote by λu the KL-divergence rate for
a node u.
The eigenvector centrality measures the influence of a node in the network by considering the properties
of its neighbors. Nodes with neighbors having a greater role in the network or neighbors with more con-
nections are deemed influential, and they have higher eigenvector coefficients. Ωu denotes the eigenvector
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centrality measure for a node u.

Our goal is to build a framework to learning, for each node, a δ-dimensional embedding vector ui ∈
Rδ | ∀u1, u2, ...un, such that the vector preserves the local proximity information and structure identity
property of its corresponding node.
To properly capture at most 2-hop proximity between nodes, the main considered similarities are the
first-order and second-order proximity. The first-order proximity captures the local-pairwise relationship
between directly connected vertices in terms of the proximity between vertices in a graph. A second-order
proximity exists between u and v if they share a common 1-hop neighbor, i.e., they are at two hops in
the graph.

3.2 Identity2Vec - Model Overview

In this section, we describe our proposed model which is capable of capturing the notion of structural
identity of nodes on an embedding space. We aim at designing an effective model capable of preserving in
low dimensional embedding, the structural roles exhibited by nodes in a network irrespective of the relative
position of the nodes and the complex neighbourhood topology; with the embedding also not particularly
influenced by the features of the nodes and edges exhibited in each neighbourhood. Basically, the order
of nodes in the network and the connectivity state of the network should not impair the ability to capture
and preserve node structural identity. We achieve this with minimal time and space complexity compared
to existing structural identity preserving techniques.

3.2.1 Initializing Structural Properties

The idea behind Identity2Vec is to determine similarities in the structural identity between nodes in
the network. To understand the notion of identity similarities between nodes, we consider important
structural properties at successive levels of neighborhood sizes, without considering the node or edge
attributes. These structural properties are as follows:

• Degree Distribution: The degree of a node is the number of connections to other nodes in a
first-order proximity neighborhood, basically the number of neighbours of the node. It is important
to state that the degree of nodes can be skewed, since many nodes could have few degree while a
significant fraction of the nodes have extremely high degree. To properly characterize the struc-
ture of a complex network, we consider the degree distribution ∆ which represents the probability
distribution of each node degree over the entire network. Given a network G = (V,E), the degree

distribution of a node u ∈ V is given as ∆ud =
nd

n
where n is the number of nodes in the network

and nd is the number of nodes with degree d. Two nodes with the same ∆ have similar neighborhood
structure (since they have the same d); nodes whose first-order neighbors have the same ∆ also have
similar neighborhood.

• Eigenvector centrality: measures the influence of a node in the network by considering the
properties of its neighbors. For example, nodes having neighbors with more connections are deemed
influential, and thus have higher eigenvector coefficients. The principal eigenvector computation is

defined as Ωu =
1

c

∑
v∈N(u)

Au,vΩv where Au,v is an adjacency matrix between nodes u and v such

that Au,v = 1 if there is an edge between nodes u and v, otherwise Au,v = 0; and c is a constant for
scaling the eigenvector.
These extracted properties for each node ∆ and Ω, are crucial when computing the structural
divergence rate for nodes in a neighborhood as we will discuss in the following section.

3.2.2 Structural Sequence Generation

Our study is inspired by the Skipgram model proposed in [15] for learning low dimensional representation
for graph nodes, as well as the Poisson probability distribution. Given that the Poisson distribution
models the probability of objects occurring in a given space, we find this distribution metric suitable for
use in our study to model node probabilities within each node neighborhood. In addition, since the Poisson
probability metric is useful for computing probabilities of a series of variables occurring independently in
different space or interval of time, we justified the use for it in our study because the properties of each
node in a neighbourhood is independent of nodes in other neighborhood. Many related studies proposing
the use of other probability measures rely on fixed node properties (i.e., node degree) to find structural
identity in a network [23, 24]. With Poisson probability, we can leverage on a number of properties to
determine the average rate of change between variables in a given space. To compute the divergence rate
(λ), we use the KL-divergence which is considered a good loss function for measuring the difference of
two events as it properly captures the information loss between ground truth distribution and predicted
probabilities. Moreover, KL-divergence is primarily a distance metric which measures the statistical
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Figure 3: Illustration of probability walk starting at node s and currently at node u.

distance between probabilities of variables. The ability of KL-divergence to measure structural metric
(distance) between variables makes it suitable for use in our study to measure the difference between
nodes using their structural properties [29].
To generate sequences of nodes with defined length, we design probability walks starting from each node
in the network. To guide the walk, we use the Poisson probability distribution and KL-divergence.
The Poisson probability distribution characterizes events with varied degree of occurrence within some
definite time. To capture the structural similarity between nodes in every walk, we consider the first-order
and second-order neighborhood domain as a substructure comprising of the current node u in the walk
and a 2-level neighborhood (made up of N(u) and the neighbors of N(u)). By implication, our model
analyses each node in the walk not just with structural properties of its immediate first-order proximity
neighbours, but also with properties of ”higher level” neighbours which are neighbours connected to the
neighbourhood of the source node. This 2-level neighborhood pyramid as shown in Figure 2 gives us
enough context information with which we can measure the structural divergence between nodes to guide
the walk. The Poisson probability of a given variable x can be computed with the formula:

Ψx =
(λk × e−λ)

k!
(1)

where k is the number of variables whose probabilities are calculated within a given space, λ is the average
rate of change of each variable occurring within a space, and e is the Euler constant. To estimate this
average change, we adopt the KL-divergence metric.
In relation to Figure 3, k is the number of neighbours of u, λ represents the divergence rate with respect
to each vertex x ∈ N(u). Take a source node u having neighbors N(u) and structural properties Ωvi

and ∆vi ∀(v1, v2, ..., vn) ∈ N(u), we compute a Poisson probability function on each element of N(u)
with their structural properties playing a key role in this computation. The intuition is that a node
with similar structural identity as u will have the highest possible probability amongst all nodes in N(u).
We adopted a modified KL-divergence metric to compute the similarity between nodes. To understand
KL-divergence, we first analyse the general expression:

DKL(p∥q)x =
∑(

p(x)
log p(x)

q(x)

)
(2)

x is a given variable, p(x) and q(x) are different probability distributions (i.e., binomial and uniform
distributions) of x. KL-divergence computes the difference of the two probability distributions, summed
over a set of different x values.
In our study, we modified KL-divergence metric λ of Equation 2 to use the aggregated properties in the 2-
level neighbourhood for measuring the divergence rate for each node inN(u). This divergence rate λ biases
the walk away from nodes with dissimilar properties as u, and therefore is very integral in computing the
probability for each node as shown in Equations 3 and 4. In the 2-level neighbourhood space, we assume
that computing the difference in Ψ of each N(u) is dependent on the aggregated structural property
distribution of their corresponding neighbor nodes. Therefore in our modified KL-divergence, p and q
would represent the degree and eigenvector distribution of the nodes in the neighborhood of each N(u).
Having computed the Ψ metric of each N(u) and that of u, we select a next node vi ∈ N(u) in the walk
with the least dissimilar Ψ probability to that of u.
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In Figure 3, we consider a probability walk currently at node u, we compute the transition probability
of the walk from node u to one of its neighbors using the attributes in the the 2-level neighborhood. At
each neighbour node v1, v2, and v3) of node u, in our example, we measure the divergence rate using
the combination of the degree distribution ∆, Ω, and shortest path distance (d) to current node. The
shortest path distance serves only as a penalty factor against successive nodes in the walk far away from
u. To determine the divergence rate for node v1, v2, and v3 we take into account the properties (∆, Ω,
and d) of their neighbors. For example, The neighbors of node v1 have the following properties:

• node a ∈ N(v1): p(a) = ∆a and q(a) = Ωada, and

• node b ∈ N(v1): p(b) = ∆b and q(b) = Ωbdb, while ω are the structural attributes of v1.

In this case, p(a) and p(b) are akin to p(x) while q(a) and q(b) are akin to q(x) of Equation 2. Substi-
tuting these into Equation 2, the divergence rate for node v1 given its neighborhood N(v1) properties is
represented as:

λ(v1∥N(v1) =
1

ω

((
∆a

log∆a

(Ωada)

)
+

(
∆b

log∆b

(Ωbdb)

))
(3)

λ(v1∥N(v1) =
1

ω

n∑
i=1

(
∆xi

log∆xi

(Ωxidxi )

)
=

1

ω

n∑
i=1

(
log∆2

xi

(Ωxidxi )

)
(4)

where n is the number of nodes in N(v1), and x1, x2, ..., xn are neighbors of node v1. Following the same
principles, we compute the divergence rate for node v2 and node v3 of our example. The divergence rate
can be substituted into Equation 1 to compute the probability metric for each node to determine the
potential next node in the walk. For convenience, probability distribution for node v1 can be expressed
summarily as:

Ψv1 =
βkeβ

k!
(5)

For simplicity, we represent the divergence rate distribution derived from equation 4 as β. The result
of Equation 5 represents the identity metric of node v1 in relation to the structural properties of its
neighborhood. Furthermore, the distribution in Equation 5 can be applied across all the other neighbors
of a current node (i.e., v2 and v3) to derive an identity metric for each node. Since we also take into
account the relationship between each neighbor of nodes v1, v2 and v3, and the current node u, the entire
process ensures that every subsequent next node in the walk maintains high level of structural identity
similarity with the current node.

3.2.3 Learning Structural Representations and Optimization

We use Skipgram [15] to learn vector representations for network nodes. The Skipgram model takes
as input a large corpus of sentences, and maximizes the probability of words appearing together in a
sentence within a defined context window. To build a corpus of nodes, we use a probability walk to
sample sequences of nodes of predefined length starting from every node in the network. This iteration
will repeat r times to generate enough sequences. The likelihood probability of traversing to the next
node in the probability walk is described as:

p(xi, r) = min
x

−
n∏

xi∈N(u)=1

βk
xi
eβxi

k!
(6)

where n in the number of neighbor nodes at each instance of current node u in the probability walk until
the walk length is reached, with x1, x2, ..., xn the neighborhood nodes at each u instance. The likelihood
probability described in Equation 6 is applied for each start node in the network. We adopt negative
sampling to approximate the computation of large network, and optimize the representation learning of
Skipgram using Stochastic Gradient Descent (SGD), whose derivatives are estimated through the back-
propagation algorithm. The objective function which maximizes the log-probability of mapping source
node u with its neighbours N(u) in the feature space through the set of similar vector representations is
given as:

max
Z

∑
u∈|V |

logPr(N(u)|Z(u)) (7)

In Equation 7, N represent the node neighborhood corpus derived from sampling node sequences
through the probability walk, and Z is the entire feature matrix representations with size |V | × δ dimen-
sions. Z(u) is the learned representation of node u with its context neighbours N(u). Each node in the
neighbourhood can have a structural relationship with current node u. The log-probability of computing
this relationship in the feature space through the set of similar vector representation is defined by the
softmax function :

Pr(xi|Z(u)) =
exp(Z(xi) · Z(u))∑

u∈|V | exp(Z(v) · Z(u))
(8)
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Table 1: Network Data Statistics [16].

Dataset Nodes Edges Max.
Degree

Dataset
Description

Citeseer 3264 4536 6 Scientific publications

Cora 2708 5429 169 Scientific publications

FIRSTMM 56.6k 252k 20 Biological and robotics

Proteins 43.5k 162.1k 50 BioInformatics

NCI-1 122.3k 265.5k 8 Chemical Compound

Enzymes 19.5k 75k 18 Protein Structures

DHFR 32k 67k 8 Molecular Descriptors

Political Retweets 18.5k 61.2k 1k Social Network

The objective function for optimization defined in Equation 8 can be rewritten as:

max
Z

∑
u∈|V |

log(
∑

u∈|V |
exp(Z(v) · Z(u))) +

∑
xi∈N(u)

Z(xi) · Z(u)

 (9)

By optimizing Equation 9 using SGD, the Skipgram model maximizes the predictability of a node in the
walk given a current node, thereby creating node embedding where nodes with similar structural identity
have similar low latent representations over a defined window size.

4 Experimental Evaluation and Result Discussion

We evaluate our model against struc2vec [1] LINE [5], DeepWalk [7], and node2vec [6] models.

1. struc2vec: This technique adopts a multilayered scaling of networks to learn structural embedding
through capturing the structural similarity of nodes at different scales, reconstructing a multilayered
graph to encode the structural similarities, and generating structural context from the reconstructed
graph to learn latent representations for these structural context.

2. LINE: This technique learns low latent δ-dimensional embedding of nodes in a network. To achieve
this, the model learns δ/2 dimension by sampling nodes in first-order and second-order proximity
respectively of the source nodes, with the node samples trained using a deep learning algorithm and
optimized using asynchronous stochastic gradient algorithm.

3. DeepWalk: This technique learns δ-dimensional representations by simulating uniform random walks
to collect node samples. The samples are trained using the skipgram model with hierarchical soft-
max, and optimized using Stochastic Gradient Descent.

4. node2vec: This technique learns δ-dimensional representations by simulating random walks guided
by two hyperparameters (p and q) to collect node samples. The samples are trained using the
Skipgram model with negative sampling, and optimized using Stochastic Gradient Descent.

We evaluate all models through link prediction, node classification, and learning-to-rank tasks. Like
other evaluating models, our model was designed and implemented using Python language. We maintained
uniform parameter settings across all other models; the parameter settings used were 64 dimensions, a
walk length of 80, the number of walks from each source node set to 10, a context window size of 10, and
the optimization is run for a single epoch while LINE was allowed to run until optimization is reached.
In addition, all models were optimized using Stochastic Gradient Descent (SGD). Since we used negative
sampling to approximate softmax probabilities just like node2vec and LINE, we also adopted negative
sampling for DeepWalk and struc2vec which is superior to hierarchical softmax used in DeepWalk and
struc2vec. The benchmark datasets used in this study is summarized in Table 1:

4.1 Scalability Analysis

Using the same parameter settings of 64 dimensions, a walk length of 80, a number of walks of 10,
a window size of 10, and negative sampling, we apply our model to learn embedding for Erdos-Renyi
graphs with increasing node sizes ranging from 100 to 1, 000, 000 and average degree of 10. The result
shown in Figure 4 indicates that our model scales linearly when learning low latent representations with
increasing the number of nodes for sampling. Despite some degree of high time complexity, our model
performs well on very massive networks.

8



Table 2: Learning to Rank Analysis Results.

Dataset Evaluation struc2vec LINE DeepWalk node2vec Identity2Vec

Citeseer AUC 0.67 0.52 0.65 0.62 0.75

Cora AUC 0.71 0.60 0.70 0.73 0.79

Enzymes AUC 0.77 0.65 0.75 0.76 0.79

Politics AUC 0.75 0.61 0.71 0.77 0.80

Figure 4: Scalability Analysis for our model on Erdos-Renyi graphs with constant average degree of 10.

4.2 Learning-to-Rank Analysis

We conducted a pairwise binary classification machine learning rank analysis to classify best candidates
nodes with similar structural identity features, with the learned representations as node features. We
used Support Vector Machine with regularization C = 1.0 as our learning-to-rank classifier with ROC
Curve (AUC) as the evaluation metric. To avoid overfitting the Learning-to-Rank model, we splited our
data into training and evaluation sets with 70%of the data assigned for training and 30% for evaluation.
The results in Table 2 show that our model significantly outperforms the other models in classifying nodes
with similar structural identity in the learned embedding. LINE and DeepWalk model which lays much
emphasis on preserving neighborhood proximity over preserving node roles performed worse on average
across all the sampled datasets. The rich combination of the neighborhood topology and node structural
features preserved in the embedding learned by Identity2Vec shows a positive correlation with structural
roles ranking as shown in this analysis.

4.3 Link Prediction Experiments

We design and trained a link prediction model to predict previously unseen edges in a network using the
property captured and embedded in the learned embedding. To ensure the link prediction model is not
overfitted, the network was split in the ratio 70 : 30 with 70% of the data used for training the model and
the remaining 30% for evaluation; and all the nodes and edges in the original network were taken into
consideration. While splitting the network into training and test data, we ensured that the network re-
mained largely connected thus avoiding disconnected components. For all the eight benchmark networks,
we learned vector embedding for the networks with all five embedding models including Identity2Vec.
The results for link prediction analysis was evaluated with some popular heuristic scores that have good
performance in link prediction as highlighted in Table 3.

Result Discussion: We summarize the results for the link prediction. First, we compare the results
with the baseline heuristic scores of Table 3. struc2vec showed poor results in a few datasets, while LINE
showed poor results in cora dataset. For majority of the results, the results from the models outperform
the baseline heuristic scores. Overall, struc2vec and LINE models performed poorly in the link prediction
experiment. This could be because LINE model captures neighborhood nodes in first-order proximity
without consideration of the global connectivity of the network. In addition, LINE models does not
sample a node belonging in multiple neighborhood.

Meanwhile, struc2vec constructs several layers of the graph in hierarchy to learn structural roles, thus
resulting in nodes disconnected into different layers. Our model Identity2Vec outperforms other four
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Table 3: Link Prediction Heuristic Scores.

Heuristic
Method

Mathematical
Expression

Cora First
MM

Protein Enzymes Political
Retweet

DHFR NCI Citeseer

Common
Neighbour

|N(x) ∩N(y)| 0.6631 0.6843 0.7119 0.7481 0.7012 0.7567 0.7579 0.7602

Jaccards
Neighbour

∣∣∣N(x)∩N(y)
N(x)∪N(y)

∣∣∣ 0.6580 0.6729 0.6932 0.6610 0.6521 0.6341 0.6737 0.7195

Preferential
Attachment

|N(x)| ∗ |N(y)| 0.6873 0.6891 0.7141 0.6783 0.7012 0.6862 0.7119 0.7028

Adamic
Index

Σ
z∈N(x)∩N(y)

1
log|N(z)|′ 0.7063 0.7168 0.7585 0.7705 0.7164 0.7521 0.7781 0.7478

Resource
Allocation

Σ
z∈N(x)∩N(y)

1
|N(z)| 0.6831 0.7045 0.6951 0.6859 0.7067 0.6872 0.7106 0.7119

x and y denotes nodes, N(x) and N(y) denotes the neighbour set of these nodes,
while z is the common neighbour of node x and node y.

Table 4: AUC Evaluation Results for Link Prediction.

Datasets struc2vec node2vec DeepWalk LINE Identity2Vec
Cora 0.7115 0.7658 0.7529 0.5407 0.8413

Proteins 0.7254 0.7478 0.7736 0.7103 0.7995
FirstMM 0.7044 0.8419 0.7464 0.7533 0.7606
Enzymes 0.6902 0.7419 0.7248 0.7403 0.8024
DHFR 0.6834 0.7730 0.7487 0.7124 0.8339
Politics 0.7082 0.8365 0.8165 0.7538 0.8656
NCI 0.6907 0.8115 0.8278 0.7665 0.8394

Citeseer 0.6962 0.7951 0.7301 0.7118 0.8373

models in seven datasets, while it outperforms struc2vec and LINE by at least 17% and 13% respectively
as seen in Table 4. For a much dense network such as FIRSTMM, node2vec proved quite competitive
and outperformed our model. For much sparse networks, our model outperformed other state-of-the-art
as highlighted in Table 4. Our model learn embedding by capturing the structural patterns in a 2-level
neighborhood of node for each successive probability walk. While building the corpus for nodes with
similar structural identity, the first-order and second-order structural connectivity between neighborhood
of nodes is also captured along each walk path and preserved in the embedding. As a result, our model
has the chances of a high predictive accuracy for structural links in the network since the link prediction
analysis involves predicting structural relationships between adjacent nodes.

4.4 Node Classification Experiments

This section discusses the node classification results. We evaluated the latent vector embedding from all
five models using Cora, Citeseer, Politics, and Enzymes datasets shown in Table 1. The labels in these
datasets were assigned the features which we try to classify for each node. We designed one-vs-rest multi-
class logistic regression with L2 regularization to classify the node labels, with the learned representation
as input feature into the model. The model was trained at a maximum 300 iterations, the Limited memory
Broyden-Fletcher-Goldfarb-Shanno Algorithm was used to optimize the model, and an l2 regularization
for the iteration weights. To prevent overfitting, we used a maximum of 70% training data to train the
model; while we also vary the training data from 30% to 70%, and the remaining data to evaluate the
performance of the model. To predict the overall performance of the model for classifying nodes in the
network, we adopt the micro and macro weighted of F1-score metric [30].

We make the following observations. The results in Figure 5 clearly show that the embedding from
LINE poorly classifies the nodes in the network. The LINE model was designed such that nodes can
only be sampled once irrespective of the number of structural neighborhood they belong in. This poses a
limitation to correctly classify nodes and predict missing links in a network. While DeepWalk performs
relatively better than LINE, the result is still underwhelming. This can also be attributed to the notion
that not only does DeepWalk learn embedding for node in the same structural neighborhood with no
interest on the structural roles of these nodes, sampling node into a corpus using conventional random
walk technique ends up randomly selecting nodes from different neighborhood with no consideration for
the properties of these nodes. Node with different properties would end up getting sampled in each walk
thereby resulting in poor training and classification of nodes [31]. We observe that node2vec shows better
classification result than DeepWalk and LINE, but remains slightly inferior to models preserving the
various roles of nodes in a network.
In a dense politics social network, struc2vec performed relatively better at classifying nodes but with a
high time complexity. However as we increase the training data from 30% through 70%, the weighted F1
metric shows Identity2Vec having consistently a higher performance over other models on Citeseer, Cora,
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and Enzymes datasets. As more input training features is used to train the node classification model, the
rich structural identity preserved in the features from Identity2Vec gives a much better classification for
nodes especially observed at 70% training data. Our model outperforms struc2vec by up to 10% in the
enzymes network. Intuitively, the 2-level neighborhood system adopted in our model ensures we get a
better classification accuracy since not only are we sampling node properties from adjacent neighbors in
the walk, we are also capturing global properties of nodes at k-distance from source node. An aggregation
of these properties allows for rich information preserved in the learned embedding.

5 Conclusion

In this study, we proposed Identity2Vec, a novel technique for capturing the structural identity for nodes
in a network and preserving such rich information in a learned embedding. Nodes with similar structural
identity can also perform similar roles in a network. Refer to Figure 1, nodes labeled in blue have similar
roles in that each node serves as a bridge to connect a subgraph with the rest of the network. As such, one
can identify and partition nodes based on the structural roles they perform in the network. To capture the
structural identity of nodes, we introduce a 2-level neighborhood sub-structural framework for sampling
nodes and generating context information using Poisson probability metric and KL-divergence statistics.
Through the 2-level neighborhood framework, we can explore the global structures of a network thereby
capturing richer structural context. We learn embedding for nodes in the sampled node corpus using the
Skipgram model. We also performed some experimental evaluation to show the effectiveness of our model
in capturing structural identity of nodes. In comparison with node2vec, DeepWalk, LINE, and struc2vec
network embedding models, our model shows better accuracy in role learning, node classification, and
link prediction experiments. For future work, it will be interesting to extend the concept of embedding
structural identity of node to dynamic network using the random walk technique, to investigate how the
roles of nodes changes over time.
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(a) Citeseer-Micro (b) Enzymes-Micro

(c) Cora-Micro (d) Politics-Micro

(e) Citeseer-Macro (f) Enzymes-Macro

(g) Cora-Macro (h) Politics-Macro

The x axis represents the Training ratio while y axis represents Micro F1 and Macro F1 score
Black=node2vec, Purple=DeepWalk, Green=LINE, Yellow=struc2vec, Brown=Identity2Vec

Figure 5: F1 metrics with 30%, 40%, 50%, 60%, 70% training sizes.
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Supplementary information The source code of the algorithms is available https://gitlab.liris.cnrs.fr/hseba/identity2vec.
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