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A b s t r a c t .  This paper provides an overview of present trends in approximate and 
commonsense reasoning. The different types of reasoning, which can be covered by this 
generic expression, take place when the available information is either incomplete, or 
inconsistent, or pervaded with uncertainty, or imprecise and qualitative. The conclusions 
which are then obtained are usually plausible but uncertain. Yet, approximate or 
commonsense reasoning is useful in practical problems such as prospect evaluation, 
diagnosis, forecasting and decision tasks, where better information cannot be got. 
Classical logic is insufficient for handling these types of reasoning. Different ideas of 
orderings play a role in these reasoning processes: plausibility orderings between 
interpretations or situations which are unequally uncertain, similarity orderings with 
respect to prototypical situations or cases, preference orderings between acts or situations 
when the problem is a matter of choice. These orderings can be encoded using purely 
ordinal scales, or scales with a richer structure (when it is meaningful and compatible with 
the quality of the available information). This general idea of ordering provides a kind of 
unification between the different reasoning modes and somewhat typifies approximate and 
commonsense reasoning. Advances in default reasoning, inconsistency handling, data 
fusion, updating, abductive reasoning, interpolative reasoning, and decision issues in 
relation with Artificial Intelligence research, are briefly reviewed. Open questions and 
directions for future research which seem especially important for the development of 
practical applications are pointed out. The paper is largely based on authors' research 
experience, and as such, presents a rather personal view, which may not be exempt from 
some biases. 

1 - W h a t  is A p p r o x i m a t e  and C o m m o n s e n s e  Reason ing?  

Approximate reasoning, inexact reasoning, uncertain reasoning, plausible reasoning, 
commonsense reasoning are expressions which have been used, with slightly different 
intended meanings, in the Artificial Intelligence area for about twenty years in relation 
with the activities of  distinct research trends such as nonmonotonic  reasoning, 
reasoning under uncertainty, and fuzzy logic. Up to a few noticeable exceptions, 
research on these three topics has been developing along separate roads and often with 
different prospects. Most of  their respective results are still currently presented in 
specialized and well-identified workshops and conferences. Nonmonotonic reasoning 
focuses on reasoning under incomplete information and commonsense knowledge 
using symbolic approaches based on logical machineries. Reasoning under uncertainty 
uses numerical models, especially probability theory and causal Bayesian networks, 
while the mainstream of  fuzzy logic concentrates on the handling o f  fuzzy rules. 
Viewed in that way, the concerns of  the three schools seem rather different. Moreover, 
most  of  the works on nonmonotonic logics are theoretically oriented. Numerical  
uncertainty research is much interested in computational issues on the probabilistic 
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side, and in the development of other representation frameworks such as belief 
function theory or possibility theory. Fuzzy logic is especially known for its 
applications to rule-based control. Apart these three communities, there are still other, 
more recent, research groups devoted to human-like reasoning issues, like case-based 
reasoning whose concerns are practically oriented. However all these approaches have 
more in common than it seems at first glance. 

Noticeably, all these schools are interested in formalizing aspects of reasoning 
which go beyond classical deductive reasoning. In a way or in another, they can be 
seen as attempts at providing more rigorous basis for different types of problems 
empirically handled by expert systems, in order to overcome the limitations of these 
inference systems. Nonmonotonic reasoning aims at offering a proper treatment of 
rules having implicit exceptions. Uncertainty approaches propose theoretically 
founded uncertainty calculi based on different representation principles regarding the 
modelling of partial ignorance, or the use of independence assumptions. Fuzzy logic 
rather increases the representation capabilities of usual rule-based systems by allowing 
for the introduction of properties whose satisfaction is a matter of degree, in the 
condition or conclusion parts of the rules. Moreover the idea of ordering is present in 
all these approaches. The existence of an ordering between the more or less plausible/ 
normal states of the world, or equivalently between the more or less exceptional 
situations which can be encountered, underlies nonmonotonic logics. In numerical 
approaches, this ordering is explicitly reflected by the measures of uncertainty. Fuzzy 
set membership degrees encode orderings whose interpretation may differ according to 
the application, as pointed out in the following. 

It seems that there are three main distinct notions which are naturally a matter of 
degree in approximate or commonsense reasoning: uncertainty, similarity and 
preference. Approximate reasoning plays an important role in three classes of 
applications: reasoning under uncertainty, classification and data analysis, and 
decision-making problems. Interestingly enough, these three directions, that have been 
investigated by many researchers, actually correspond and/or exploit three semantics 
which have been proposed for fuzzy set membership grades, respectively in terms of 
uncertainty, similarity and preference. Indeed, considering the degree of membership 
ktF(U) of an element u in a fuzzy set F, defined on a referential U, one can find in the 
literature, three interpretations of this degree: 

�9 degree of uncertainty: this interpretation is the one at work in possibility theory 
(Zadeh, 1978; Dubois and Prade, 1988) where fuzzy sets are used to represent 
imprecise, uncertain or linguistically expressed pieces of information. ~tF(U) is then 
the degree of possibility that a parameter x has value u, given that all that is known 
about it is that "x is F". F then describes the more or less plausible values of x; 

�9 degree of similarity: l.tF(U) is the degree of proximity of u from prototype elements 
of F. Historically, this is the oldest semantics of fuzzy set membership grades 
(Bellman, Kalaba and Zadeh, 1966). This view is particularly suitable in 
classification, clustering, regression analysis and the like, where the problem is that 
of abstraction from a set of data. It is also at work in fuzzy control techniques, 
where the similarity degrees between the current situation and the prototypical ones 
described in the condition parts of the rules, are the basis for the interpolation 
mechanism between the conclusions of the rules. Besides, similarity plays a crucial 
role in case-based reasoning. It can be also used in decision (see Section 2.6); 
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�9 degree of preference: this interpretation is closely connected with decision analysis. 
Then a fuzzy set F represents a flexible constraint restricting a set of  more or less 
preferred objects (or values of a decision variable x) and ~tF(U) represents an intensity 
of preference in favor of  object u, or the feasibility of  selecting u as a value of x. 
This view is the one later put forward by Bellman and Zadeh (1970). Ix F may be 
them thought as a utility function. Approximate reasoning is then concerned with 
the propagation of preferences when several constraints (which may be fuzzy) relate 
the variables. Examples of applications are in design and scheduling problems where 
it is natural to express preferences about characteristics of the object to be realized, 
or about due dates. 

If/then rules often provide a convenient format for expressing pieces of 
knowledge. However the accurate representation of rules using classical logic is not an 
obvious matter, especially if the rule may have exceptions, or involve fuzzy terms in 
its linguistic expression. In fact, the intended use and meaning of rules may be very 
different according to the cases and should be properly understood when representing 
rules. Clearly, rules may express preference, uncertainty, or similarity. When they are 
decision-oriented, rules are of the general form "if <situation i> then <decision i>. 
Obviously, a graded set of recommended decisions may also appear in the conclusion 
part of the rule. The idea of similarity may be also at work in the condition part of the 
rules, which is then of the form, "the more the state of the world corresponds to 
<situation i>, the more recommended is <decision i>". Rules expressing uncertainty 
are more oriented towards reasoning tasks. They are of the form "if Pi is true then qi is 
true with certainty L i'' (where the level of certainty is expressed in the framework of 
some uncertainty calculus), or they involve some probability, or possibility, 
distribution 8 i in their conclusion part as in the rule "if Pi is true, then the possible 
values of x are restricted by 8i". If the condition part involves similarity, it leads to 
rules of the form "the more x is A i, the more certain qi" where A i is a gradual 
property whose truth is a matter of degree. There exist also purely gradual rules, 
which are of the form "the more X is A i, the more Y is Bi" (or equivalently "the less 
Y is B i, the less X is Ai") which provide a qualitative description of relations between 
variables X and Y in terms of the gradual properties A i and Bi; such a rule does not 
involve any uncertainty by itself. Other rules do not express a restriction in their 
conclusion part on the possible values of  a variable, but rather assert that the 
possibility/feasibility of some values is guaranteed, as in the rules "the more X is A, 
the more possible Y is B" and "the more X is A, the larger the set of possible values 
for Y". In these "possibility rules", asserting that the value of Y belongs to a set B do 
not prevent from having other values out of  B possible also, it is why the 
conclusions of several possibility rules fired by the same situation, have to be 
combined disjunctively. This contrasts with gradual rules, or rules with conclusions 
pervaded with uncertainty whose conclusions have to be combined conjunctively. This 
points out that a proper understanding of the intended meaning of rules is very 
important in approximate reasoning. All the above-mentioned types of rules can be 
represented in the framework of fuzzy set or possibility theory; see (Dubois and Prade, 
1992). 
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After this brief survey of different types of approximate or commonsense 
knowledge, where the notions of preference, uncertainty and similarity 1 are present, an 
overview of the main types of reasoning is now presented. 

2 - T h e  M a i n  P a r a d i g m s  

2.1 - D e f a u l t  R e a s o n i n g  

Default reasoning is at the core of the knowledge-based systems enterprise. The 
problem is the handling of the presence of (possibly hidden) exceptions in the rule- 
base of  an expert system. The kind of plausible reasoning that is involved here can be 
summarized as follows: how to automatically derive plausible conclusions about an 
incompletely described situation, on the basis of generic knowledge describing what is 
the normal course of  things. For instance, in a medical expert system, generic 
knowledge encodes what the physician knows about the relationships between 
symptoms and diseases, and the situation at hand is a given patient on which some 
test results are available, and plausible inference is supposed to perform a diagnosis 
task. More generally, this kind of problem can be cast in the setting of taxonomic 
reasoning, where generic knowledge describe the links between classes and subclasses, 
and some factual evidence provides an incomplete description of an instance to be 
classified. The particularity of the problem is that the generic knowledge encoded as a 
set of rules is pervaded with uncertainty due to the presence of exceptions. Solving 
this problem in a satisfactory way presupposes that three requirements be met, as 
emphasized in (Dubois and Prade, 1994a) 

i) The necessity of a clear distinction between factual evidence and generic 
knowledge. This distinction is fundamental and has been explicitly acknowledged 
in the expert systems literature at the implementation level (facts versus rules). 
The generic rules encode a background knowledge that is used to jump to 
conclusions that the only consideration of the available factual evidence would not 
allow. Clearly, accounting for the arrival of a new piece of evidence does not 
produce the same effect as the arrival of a new rule or the mofication of a rule. 
The arrival of  a new piece of evidence does not affect the generic knowledge, but 
modifies the reference class of  the case under study. On the contrary the 
introduction of a new rule causes a revision of the generic knowledge. 

ii) The need for representing partial ignorance in an unbiased way. There are three 
extreme epistemic attitudes with regard to a proposition p: on the basis of current 
evidence and background knowledge one can be sure that p is true, sure that p is 
false, or the truth-value of p can be unknown. The third situation corresponds to 
partial ignorance, and its representation should not depend on the count of 
situations in which p is true, since this count can depend on how these situations 
are described, i.e., is language-dependent. 

iii) The inference at work cannot be monotonic. A plausible reasoning system is 
expected not to be cautious, namely to go beyond the conclusions strictly entailed 
by the incomplete evidence. This is done by assuming that the particular situation 

Let us mention the idea of permission as a fourth basic notion which may appear in 
commonsense knowledge. As the three other notions, permission might be a matter of 
degree. 
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under study is as normal as possible, so that it is possible to jump to 
adventurous, but plausible conclusions. The price paid by this kind of deductive 
efficiency is that such conclusions may be canceled upon the arrival of new 
evidence, when the latter tells us that the current situation is not so normal. This 
is in obvious contradiction with the monotonicity property of classical logic that 
forbids conclusions to be retracted when new axioms come in. 

Classical logic can neither provide plausible conclusions when information is 
incomplete nor leave room for implicit exceptions in rules. Thus classical logic fails 
to satisfy requirement iii) and representation of generic knowledge by universally 
quantified formulas does not allow for exceptions. The solutions proposed by the 
expert systems literature were either based on the propagation of certainty coefficients 
(like in MYCIN and PROSPECTOR), or based on an explicit handling of the reasons 
for uncertainty at the control level. However these solutions were partially ad hoc, and 
exception handling in rule-based systems has motivated further, better founded streams 
of work, namely Bayesian networks and nonmonotonic reasoning. While the first of 
these approaches could be safely developed due to the strong probabilistic tradition, 
the second line of research proved to be more adventurous, but eventually fruitful. 
Although Bayesian approach provides a debatable representation of partial ignorance 
(point (ii) above, see Dubois, Prade and Smets (1995) for a detailed discussion), it 
turns out that many lessons from the Bayesian net literature are worth being learned, 
in order to solve the exception-tolerant inference problem while remaining in the 
tradition of logic, especially the handling of contexts by means of conditional 
probability. 

In the last ten years, many works in nonmonotonic reasoning have concentrated 
on the determination of natural properties for a nonmonotonic consequence relation, 
likely to achieve a satisfactory treatment of plausible reasoning in the presence of 
incomplete information (Gabbay, 1985; Kraus et al., 1990; Gardenfors and Makinson, 
1994). Besides, Pearl (1988) has suggested that Adams (1975)' logic of infinitesimal 
probabilities was a good basis for nonmonotonic reasoning, and indeed the core 
properties of a nonmonotonic consequence relation are present in this logic. These 
properties constitute the basis of the inference system P (P for preferential) proposed 
by Kraus, Lehmann and Magidor (1990), which provides a very cautious inference 
system. In order to get a less conservative inference, Lehmann (see Lehmann and 
Magidor, 1992) and Pearl (1990) have proposed to add a property, first suggested by 
Makinson, called rational monotony, and a particular entailment (named "rational 
closure entailment" (Lehmann and Magidor, 1992)) has been defined which satisfies 
rational monotony. Remarkably enough, Adams' logic of infinitesimal probabilities 
or equivalently, system P, can be expressed in terms of conditional objects (Dubois 
and Prade, 1994b). A conditional object qlp can be seen as a purely symbolic 
counterpart of the conditional probability Prob(qlp) (Goodman et al., 1991). Thus it 
shows that probabilities do not play a crucial role in the modelling of preferential 
entailment, since no probability degree, infinitesimal or not, are necessary with 
conditional objects. Only the conditional structure is important. It can be easily 
handled in terms of a 3-valued semantics much simpler than the preferential semantics 
(Kraus et al., 1990). 

The logic of system P, or equivalently of conditional objects, has also the merit 
of displaying the difference between two modes of belief revision: evidence focusing 
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and knowledge expansion that can be defined as follows, where K stands for the 
knowledge base storing generic knowledge and E gathers the factual evidence: 

- Evidence focusing: a new piece of evidence p arrives and makes the available 
information on the case at hand more complete. Then E is changed into E u { p } 
(supposedly consistent). K remains untouched. But the plausible conclusions from 
K and E u {p}, i.e., r such that K ~ r I E ^ p, may radically differ from those 
derived from K and E, where we use a conditional object notation (see Dubois and 
Prade (1994b) for the technical definition of ~ ) ;  it means equivalently that the 
nonmonotonic consequence relation E ^ p iv r can be derived from the conditional 
knowledge in K using the rules of system P (Kraus et al., 1990). 

- Knowledge expansion: it corresponds to adding new generic rules tainted with 
possible exceptions. Insofar as the new knowledge base is consistent (see Lehmann 
and Magidor (1992), and Dubois and Prade (1994) for the definition of  the 
consistency of a conditional knowledge base) it is clear that due to the monotonicity 
of inference ~ ,  all plausible conclusions derived from K can still be derived from K' 
since if K is a subset of K' and K ~ r I E then K' ~ r I E. But more conclusions 
may perhaps be obtained by K'. 

- Knowledge revision: it encompasses the situation when the result of adding new 
generic rules to K leads to an inconsistency. In that case some mending of the 
knowledge base must be carried out in order to recover consistency. Preliminary 
results along this line are in Boutilier and Goldszmidt (1993). 

The distinction between focusing and expansion cannot be made at all in revision 
theories that represent cognitive states by sets of formulas in propositional logic, 
such as G~denfors (1988) theory. 

In possibility theory "p generally entails q" is understood as "p ^ q is a more 
plausible situation than p ^ -,q". It defines a constraint of the form 1-I(p A q) > I-[(p ^ 
-,q) that restricts a set of possibility measures 1"[. Thus, a set K of generic knowledge 
statements of the form "p. generally entails qi", is equivalent to a collection of 
constraints {I'I(p i ^ qi) > l~(pi ^ -'qi), i = 1,n} which define (if they are consistent) a 
family of  possibility measures. It is shown in (Dubois and Prade, 1995a) that the 
entailment of a statement "generally q in context p" (i.e., I-I(p ^ q) > I-I(p ^ -,q)) 
understood as a consequence of the set constraints modelling K which holds for any 
possibility measure, is precisely equivalent to the entailment of system P. Rather 
than working with a family of possibility measures, we can select a particular one 
which provides a "faithful" representation of K, which can be computed as follows. 
For each interpretation co of the language, the maximal possibility degree rc(o3) = 
rI({ co}) is computed, that obeys the set of possibilistic contraints representing K. 
This is done by virtue of  the principle of minimal specificity (or commitment) that 
assumes each situation as a possible one insofar as it has not been ruled out. Then 
each generic statement is turned into a material implication -'Pi v qi, to which a 
weight N(-~pi v qi) is attached where N is measure of necessity associated with the 
less specific possibility distribution ~. It comes down, as shown in Benferhat et al. 
(1992) to rank-ordering the generic rules giving priority to the most specific ones, as 
done in Pearl (1990)'s system Z. It offers a convenient framework for implementing 
"rational closure" (Lehmann and Magidor, 1992) which is thus captured. Possibilistic 
logic does not allow for a direct encoding of pieces of generic knowledge such as 
"birds fly" under the form of a pair of a classical formula and a weight. However, it 
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provides a target language in which plausible inference from generic knowledge can be 
achieved in the face of incomplete evidence, once the weights are computed as said 
above. 

Generally speaking, a possibilistic knowledge base K is a set of  pairs (p,s) where 
p is a classical logic formula and s is a lower bound of a degree of necessity (N(p) > 
s). It can be viewed as a stratified deductive data base where the higher s, the safer the 
piece of  knowledge p. Reasoning from K means using the safest part of  K to mal~e 
inference, whenever possible. Denoting Ktx = {p, (p,s) ~ K, s > or}, the entailment 
K ~- (p,t~) means that Kct ~ p. K can be inconsistent and its inconsistency degree is 
inc(K) = sup{or, K w- (_l_,t~)} where .k denotes the contradiction. In contrast with 
classical logic, inference in the presence of inconsistency becomes non-trivial. This is 
the case when K ~ (p,ct) where t~ > inc(K). Then it means that p follows from a 
consistent and safe part of K (at least at level t~). This kind of syntactic non-trivial 
inference is sound and complete with respect to the above defined preferential 
entailment. Moreover adding p to K and nontrivially entailing q from K u {p} 
corresponds to revising K upon learning p, and having q as a consequence of the 
revised knowledge base. This notion of revision is exactly the one studied by 
G~irdenfors (1988) at the axiomatic level. See Dubois, Lang & Prade, 1994 for details. 

2 . 2  - A b d u c t i v e  R e a s o n i n g  

Abductive reasoning is viewed as the task of retrieving plausible explanations of 
available observations on the basis of causal knowledge. Rules relating causes and 
manifestations are pervaded with exceptions and uncertainty. Sometimes it is possible 
to assess, at least qualitatively, the level of certainty with which a cause or a set of 
causes entail a manifestation. Then a rather simple approach can be proposed (under 
the hypothesis that there is only one failure at a time in the systems) which takes 
advantage of the level of certainty for rank-ordering the plausible explanation. See 
Cayrac et al. (1994) for instance. More generally the idea of parsimonious covering 
(Peng and Reggia, 1990) which look for explanations involving a minimal set of 
causes should be used. Lastly let us mention the fuzzy set approach first introduced by 
Sanchez, which does not deal with uncertainty strictly speaking but rather consider 
with which intensity a manifestation can be observed when a cause is present. 

Assumption-based Truth Maintenance Systems (De Kleer, 1986) cope with 
incomplete information by explicitly handling assumptions under which conclusions 
can be derived. To this end some literals in the language are distinguished as being 
assumptions. Possibilistic logic offers a tool for reasoning with assumptions. It is 
based on the fact that in possibilistic logic a clause (-,h v q, et) is semantically 
equivalent to the formula with a symbolic weight (q, min (c~, t(h)) where t(h) is the 
(possibly unknown) truth value of h. The set of environments in which a proposition 
p is true can thus be calculated by putting all assumptions in the weight slots, 
carrying out possibilistic inference so as to derive p. The subsets of assumptions 
under which p is true with more or less certainty can be retrieved from the weight 
attached to p. This technique can be used to detect minimal inconsistent subsets of a 
propositional knowledge base and can be applied to diagnosis problems (see Benferhat 
et al., 1994). Diagnosis problems can be related to nonmonotonic reasoning also in 
the sense that, an abnormal exceptional state of affairs corresponding to a failure mode 
is found to be inconsistent with the usual course of things describing the generic 
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behavior of the system to be diagnosed (consistency-based approach). See (Console 
and Torasso, 1991). 

2 . 3  - R e a s o n i n g  u n d e r  I n c o n s i s t e n c y  

As already said, inconsistency can be encountered in different reasoning tasks, in 
particular: 

when reasoning with exception-tolerant generic knowledge, where the knowledge 
base includes default rules and instanciated facts, and later a new information is 
received that contradicts a plausible conclusion derived from the previous knowledge 
base; 

- in abductive reasoning, for instance in model-based diagnosis, when observations 
conflict with the normal functioning mode of the system and the hypothesis that 
the components of the system are working well; this leads to diagnose what 
component(s) fail(s); 

when several consistent knowledge bases pertaining to the same domain, but 
coming from n different experts, are available. For instance, each expert is a reliable 
specialist in some aspect of the concerned domain but less reliable on other aspects. 
A straightforward way of building a global base 2~ is to concatenate the knowledge 
bases Ki provided by each expert. Even if K i is consistent, it is rather unlikely that 
K1 u K2 u . . .  u Kn will be consistent also. 

This subsection briefly discusses the treatment of inconsistency caused by the use 
of multiple sources of  information. Reasoning under inconsistent pieces of  
information, although it requires to go out of the framework of classical logic in order 
to avoid triviality, has been considered for a long time in the literature by 
philosophers (e.g., Rescher and Manor, 1970), but is also of interest in combining 
knowledge bases (e.g., Baral et al., 1992). Then the syntactic appearance of the 
knowledge base is of primary importance (Nebel, 1991) since it is semantically 
inconsistent. In such problems, it is interesting to consider that knowledge bases are 
all stratified, namely that each formula in the knowledge base is associated with its 
level of certainty corresponding to the layer to which it belongs. The use of priorities 
among formulas has been shown to be very important to appropriately revise 
inconsistent knowledge bases (Fagin et al., 1983). In particular, G~denfors (1988) has 
proved that any revision process that satisfies natural requirements is implicitly based 
on priority ordering. In the context of merging several knowledge bases, the 
introduction of priorities between pieces of information in ~ can be explained by the 
two following scenarios: 

- Each consistent knowledge base Ki, issued from a source of information, is "flat" 
(i.e., without any priority between their elements). But we have a total pre-ordering 
between the sources of information according to their reliability. In this case 
merging different sources of information lead to a prioritized knowledge base 2~, 
where the certainty level of each formula reflects the reliability of the source. A 
particular case is when each piece of information in ~ is supported by a different 
source. 

- All sources of information are equally reliable (and thus have the same level of 
reliability), but inside each consistent knowledge base K i there exists a preference 
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relation between pieces of  information given by an expert, who rank-orders them 
according to their level of certainty. Here again, the combination of the different 
sources of information gives an uncertain knowledge base, provided that the scales 
of uncertainty used in each knowledge base Ki are commensurate. 

The most elementary form of  non-trivial entailment from an inconsistent 
prioritized knowledge base is possibilistic logic. On the basis of  the stratified 
structure of the knowledge base, many other types of entailment can be proposed; see 
e.g., (Benferhat et al., 1995; Elvang-Goransson et al., 1993). These entailments are 
more powerful/adventurous than the possibilistic logic entailment which only 
consider the consistent part of the bases which is above the level of inconsistency. 
Several of these entailments are based on the notion of consistent argument (in favor 
of  a conclusion) whose strength depends on the layer of the least certain formulas 
involved in the argument. An argumentative entailment may then be proposed which 
allows for the production of consequences for which the strongest argument pro is 
stronger than the strongest argument against. We may also think of attaching, to each 
formula in the base, a weight which reflects to what extent there exist arguments that 
support both the formula and its negation; such "paraconsistency" weight can then be 
propagated. See Benferhat et al. (1995) for details. 

2 . 4  - D a t a  F u s i o n  

In numerical settings, the problem of combining pieces of evidence issued from 
several sources of information can be encountered in various fields of application, 
particularly in i) sensor fusion, i.e., when pieces of information coming from different 
sensors are to be aggregated, ii) multiple source interrogation systems where each of 
the sources can provide precise, imprecise or uncertain information about values of 
interest, iii) expert opinion pooling, when different individual statements have to be 
synthesized. Our basic claim is that there cannot be a unique mode of combination, 
which would be satisfactory in any situations, even when the framework for 
representing information is chosen. 

Various combination problems exist, especially, i) preference aggregation versus 
information aggregation and ii) the combination of information coming from parallel 
sources versus the revision of already available information. In the preference 
aggregation problem it makes sense to find the opinion of the "average man" in an 
homogeneous group of individuals, to look for trade-offs between preferences, while 
on the contrary, if the information aggregation is a matter of truth and reliability, 
logical combinations are natural candidates. In this latter case conjunctive 
combinations apply when all the sources are reliable, while disjunctive combinations 
deal with the case of  unreliable sources hidden in a group of other reliable ones. 
Obviously weighted logical combinations may be considered in particular when the 
sources are not equally reliable. Averaging operations in information aggregation can 
be justified when the set of sources can be viewed as a single random source producing 
different inputs. In that case, indeed, the set of data to be fused can be interpreted as 
standard statistics. For instance several successive measurements from a single sensor 
can be viewed as the result of a random experiment. Then the discrepancies between 
the sources can be explained in terms of random variability. However in the case of 
unique measurements issued from distinct sensors, or in the case of expert opinions, it 
is not clear that averaging combination modes make sense. Besides, the case of 
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merging information from parallel sources should be distinguished from the problem 
of belief revision where sources do not play a symmetrical role. In the first situation, 
all the sources provide information simultaneously, while in the revision process 
there is a chronological ordering between the source which represents the present state 
of belief and the source which issues the new information. In each case the pooling 
obeys different requirements, for instance belief revision is generally not 
commutative; see Dubois and Prade (1994c). 

2.5  - I n t e r p o l a t i v e  R e a s o n i n g  

Similarity is the basic tool in at least three cognitive tasks: classification, case-based 
reasoning and interpolation. In classification tasks, objects are put in the same class 
insofar as they are indistinguishable with respect to suitable criteria. Similarity is 
meant to describe indistinguishability, and an important limiting case is obtained 
using equivalence relations leading to the partitioning of a set of objects. 
Classification based on equivalence relations is done in the theory of rough sets 
(Pawlak, 1991). Case-based reasoning (Kolodner, 1993) exploits the similarity 
between already solved problems and a new problem to be solved in order to build up 
a solution to this new problem. When this solution to a new problem is obtained by 
adapting solutions to already solved problems, the reasoning methodology then comes 
close to a matter of interpolation, whereby the value of a partially unknown function 
at a given point of a space is estimated by exploiting the proximity of this point to 
other points for which the value of the function is known. Although interpolative 
inference is part of usual commonsense reasoning tasks, it has been seldom considered 
as amenable to logical settings, because it fundamentally relies on a gradual view of 
proximities that is absent from classical logic. In contrast, uncertain reasoning, which 
also involves gradual notions, has received a logical treatment. Results in 
nonmonotonic reasoning show that some form of uncertain reasoning can be captured 
by equipping the set of interpretations with an ordering structure expressing 
plausibility (Lehmann and Magidor, 1992; Shoham, 1988). It may be thus tempting 
to model interpolative reasoning by equipping a set of logical interpretations with a 
proximity structure. 

This kind of investigation has been started by Ruspini (1991) with a view to cast 
fuzzy patterns of inference such as the generalized modus ponens of Zadeh (1979) into 
a logical setting. Indeed in the scope of similarity modeling, a basic reasoning pattern 
can be expressed informally as follows, 

p is close to being true; p approximately implies q ~ q is not far from being true 

where "close", "approximately,', and "not far" refer to the similarity relation S, while 
p and q are classical propositions. This pattern expresses an extrapolative syllogism, 
and is in accordance with the generalized modus ponens of Zadeh. An example of 
situation where this type of inference pattern looks natural is the following. Consider 
the expert advice in finance: "if you have saved more than 10.000 $ (p) then you 
should invest 50 % of your capital". Suppose you have 9.500 $ (p'). Using classical 
logic, p' I~ p, and thus p' ^ (p ---> q) I# q. But in practice people would not wait to 
reach the 10.000 $ threshold and would start investing some percentage of their 
savings, all the closer to 50 % as these savings amount to near 10.000 $. In that case 
the similarity stems from the metric structure equipping the monetary scale. 
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This type of reasoning is at work in fuzzy control applications, albeit without 
clear logical foundations. Klawonn and Kruse (1993) have shown that a set of  fuzzy 
rules can be viewed as a set of crisp rules along with a set of  similarity relations. 
Moreover an interpolation-dedicated fuzzy rule 'if is A then Y is B" can be understood 
as "the more x is A the more Y is B" and the corresponding inference means that if 
X = x and ct = ~tA(X ) then Y lies in the level cut Bc~. When two rules are at work, 

such that 51 = ~Al(X ), ct 2 = [tA2(X), then the conclusion Y ~ (B1)t~ 1 ~ (B2)t~ 2 lies 

between the cores of B 1 and B 2, i.e., on ordered universes, an interpolation effect is 
Obtained. It can be proved that Sugeno's fuzzy reasoning method for control can be 
cast in this framework (Dubois, Grabisch, Prade, 1994). More generally interpolation 
is clearly a kind of reasoning based on similarity (rather than uncertainty) and it 
should be related to current research on similarity logics (Dubois et al., 1995). More 
generally similarity relations and fuzzy interpolation methods should impact on 
current research in case-based reasoning. 

The long term perspective of such a line of research could be to provide logical 
foundations to some forms of "fuzzy logic", and also case-based reasoning where 
similarity plays a basic role. The idea would be to start from a set of conditional 
statements of the form "p is not far from implying q", that forms a conditional 
similarity-oriented knowledge base given by a domain expert, and to reconstruct an 
underlying, "least committed", similarity measure, using the characteristic axioms of 
a similarity-based inference machinery, by analogy to the treatment of conditional 
knowledge bases in nonmonotonic reasoning. 

2.6  - D e c i s i o n  and  A r t i f i c i a l  I n t e l l i g e n c e  

Decision theory has been mainly developed in economy and in operations research for 
a long time. It is only recently that decision under uncertainty is become a topic of 
interest in Artificial Intelligence, especially among people interested in planning. 
However we may foresee a richer complcmentarity between the two fields. In this 
section, we point out two examples illustrating this view. 

Recently, Gilboa and Schmeidlcr (1992) have advocated a similarity-based 
approach to decision where a case is described taking inspiration from case-based 
reasoning, as a triple (situation, act, result) and where a decision-maker's utility 
function u assigns a numerical value u(r) to a result r. When faced with a new 
situation So, the decision-maker is supposed to choose an act which maximizes a 
counterpart of classical expected utility used in decision under uncertainty, namely 

Us0,M(a) = ]~(s,a,r)~ M S(s0,s) " u(r) 

where S is a non-negative function which estimates the similarity of situations, here 
the similarity of the current situation s o against already encountered ones stored in the 
repertory set M. 

It is worth noticing that this similarity-based utility looks like Sugeno's 
computation of the command to perform in a fuzzy controller. Indeed both expressions 
use an interpolation mechanism, but for solving a different problem. A set of rules "if 
X is A(i) then Y = b( i)'' i = 1,n ~t la Sugeno can be equivalently viewed as a set of 
pairs (situation, result) = (a(i),b (i)) equipped with a similarity relation S, provided that 
Vi, A(i) = {a(i)} o S. In Sugeno's approach the notion of result and utility of result 
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are not distinguished, or if we prefer all the "results" b(i) have the same utility. What 
plays the role of an action in the sense of Gilboa and Schmeidler, is here the fact itself 
of applying the set of fuzzy rules, which explains why there is no maximization in 
Sugeno's approach. The similarity-based utility is perhaps more akin to the fuzzy vote 
procedure proposed in Bensana et al. (1988) for selecting a (scheduling) decision b in a 
situation x from a set of rules "if X is A(i) then Y = b(i) with weight w( i)'' (w(i) can 
be viewed as the utility of the result of the rule), by maximizing an index of the form 

U(b) = •i:b=b(i) IXA(i)(x) * w (i). 

Another line of research is to design a logical machinery able to compute the best 
decision in a given situation, according to some normative theoretical framework. 
Possibility theory offers such a framework where both inference and decision under 
uncertainty can be captured. Indeed a counterpart to von Neumann and Morgenstern' 
expected utility theory has been proposed in the framework of possibility theory. The 
existence of a utility function, representing a preference ordering among possibility 
distributions (on the consequences of decision-maker's actions) that satisfies a series of 
axioms pertaining to decision-maker's behavior, has been established (Dubois and 
Prade, 1995b). The obtained utility is a generalization of Wald's criterion, which is 
recovered in case of total ignorance; when ignorance is only partial, the utility takes 
into account the fact that some situations are more plausible than others. 
Mathematically, the qualitative utility is nothing but the necessity measure of a fuzzy 
event in the sense of possibility theory (a so-called Sugeno integral). The possibilistic 
representation of uncertainty, which only requires a linearly ordered scale, is 
qualitative in nature. Only max, min and order-reversing operations are used on the 
scale. The axioms express a risk-averse behavior of the decision maker and correspond 
to a pessimistic view of what may happen. The proposed qualitative utility function 
is currently used in flexible constraint satisfaction problems under incomplete 
information. 

It can also be used in association with possibilistic logic, which is tailored to 
reasoning under incomplete states of knowledge. A crucial point in decision theory is 
to make a clear difference between knowledge about the world and decision maker's 
preferences. We have seen that default or uncertain conditional knowledge can be 
represented in the framework of possibilistic logic. Similarly, more or less preferred 
states associated with different levels of priority can be also represented by 
possibilistic formulas, since necessity measures capture both the ideas of certainty and 
priority. Indeed a constraint is less prioritary in as much it is possible to violate it; 
this idea has been extensively used when extending the Constraint Satisfaction 
Problem framework to flexible constraints having different levels of priority (Dubois, 
Fargier and Prade, 1994). Thus we build two possibilistic logic bases, one for the 
knowledge about the world and one for the preferences. Possible decisions correspond 
to literals that can be fixed to true or false by the decision-maker. Then, we are 
looking for the decision(s) which are such that, when added to the knowledge base 
describing what is known about the world, it entails that the preferred states are 
satisfied. In possibilistic logic this entailment becomes a matter of degree and 
corresponds to the pessimistic view, risk-averse point of view captured by the 
qualitative utility function built in the framework of possibility theory. An optimistic 
point of view would only require the consistency of the knowledge base to which the 
decision is added, with the set of formulas expressing the preferences. 
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2.7 - Updating 

One of the most challenging problems in databases and knowledge-based systems is 
that of modifying a knowledge base under the arrival of a new piece of information. 
Basically, if the new information contradicts the contents of the knowledge base, there 
exists several ways of restoring consistency, unless strict guidelines are supplied that 
lead to a unique solution. An important distinction has been drawn by Katsuno and 
Mendelzon (1991) between revising a knowledge base and updating it. In revision, the 
new information is meant to improve our cognitive state regarding a given situation; 
what was plausibly thought as being true may actually be false. In updating, the new 
information is meant to inform the knowledge base that something has changed in the 
actual world; what was thought to be true may no longer be true because things have 
changed. 

In order to discuss the problem of updating a knowledge base describing the 
behaviour of an evolving system, it would be fruitful to unify three points of view on 
this problem: the point of view of the system analyst who describes the evolution of 
a system via a transition graph between states, the point of view of formal 
philosophers who have laid bare the postulates of rational updating, and the point of 
view of database research, where the update is achieved at the syntactic level by means 
of transition constraints (e.g., Cholvy, 1994). Such transition constraints partially 
determine a transition graph between states of the system. Such a graph can be viewed 
as a possibilistic Markov chain (Dubois et al., 1995). The same observation can be 
derived from Katsuno and Mendelzon's postulates, except that the obtained transition 
graph underlies an inertia property. 

3 - C o n c l u d i n g  R e m a r k s  - -  G o i n g  F r o m  T h e o r y  to  P r a c t i c e  

In this paper, different forms of reasoning which can be considered as approximate or 
commonsense reasoning have been surveyed. The role played by the ideas of 
uncertainty, preference and similarity has been emphasized. These notions are 
naturally a matter of degree. However it seems reasonable to use in practice models 
which are as qualitative as possible, i.e., to use ordinal scales for graded uncertainty, 
preference or similarity (except if the available data allows for a less qualitative 
representation). Possibility theory and fuzzy sets can be used in this spirit. 

Although considerable progress have been made in the last twenty years in the 
modelling of approximate and commonsense reasoning, important issues still need to 
be investigated before developing applications on a large scale. Some of these 
directions of research have already been pointed out in the main part of the paper. Let 
us briefly mention two others. 

Concerning reasoning with rules having exceptions: all the considered approaches 
suffer from the same limitations regarding the blocking of property inheritance 
problem (a subclass cannot inherit any property of a superclass as soon as the 
subclass is already exceptional with respect to one property of the superclass). A 
possible way for overcoming this problem is to add pieces of conditional independence 
information of the form "in the context ~x, accepting ~ has no influence on accepting 
"f". This kind of information can be represented in the possibility theory framework 
by adding constraints which are of the same form as the constraints modelling default 
rules; see (Benferhat et al., 1994), and (Delgrande and Pelletier, 1994) for a related 
proposal. Expressing independence information may be the right way to get 
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conclusions which are in agreement with intuitions. Another important issue for 
practical applications is the validation of knowledge bases: this applies for any kind of 
non-standard knowledge base: default conditional base, fuzzy rules base, etc. 
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