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Abstract: Reservoir computing is an analog bio-inspired computation scheme for efficiently
processing time-dependent signals, the photonic implementations of which promise a combination
of massive parallel information processing, low power consumption, and high-speed operation.
However, most of these implementations, especially for the case of time-delay reservoir computing,
require extensive multi-dimensional parameter optimization to find the optimal combination of
parameters for a given task. We propose a novel, largely passive integrated photonic TDRC
scheme based on an asymmetric Mach-Zehnder interferometer in a self-feedback configuration,
where the nonlinearity is provided by the photodetector, and with only one tunable parameter in
the form of a phase shifting element that, as a result of our configuration, allows also to tune
the feedback strength, consequently tuning the memory capacity in a lossless manner. Through
numerical simulations, we show that the proposed scheme achieves good performance -when
compared to other integrated photonic architectures- on the temporal bitwise XOR task and
various time series prediction tasks, while greatly reducing hardware and operational complexity.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Much interest is currently directed towards neuro-inspired computing paradigms, which are
essentially machine learning frameworks for processing information in an intertwined, brain-
inspired manner, not limited by the transfer of information from memory to processor, commonly
known as the Von-Neumann bottleneck. Reservoir computing (RC) is one such type of analog
computing which has garnered widespread interest since it was introduced (independently) by
Jaeger as "echo state networks" [1], and Maass et al. [2] as "liquid state machines", offering
a simplified model which is easier to train when compared to other recurrent neural network
(RNN) approaches.

In general, RC schemes consist of 3 layers: an input layer where data is injected, a reservoir
layer where the input signal drives the multiple dynamical nodes, and an output layer where the
responses of the nodes are captured, linearly combined, and trained for the desired task. RC is
essentially a simplified RNN where only the weights of the output layer are trained, and the input
and internal weights are set and fixed to values that depend on the desired dynamical regime. The
simplified training is due to the projection of the input data onto a higher dimensional state-space
by a nonlinear dynamical system; thereby making it easier to find planes that can linearly separate
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the different classes of data and allowing for simple regression techniques to solve complex
nonlinear tasks such as chaotic time series prediction. Time-delay reservoir computing (TDRC),
first introduced in [3], is a footprint-friendly scheme for hardware implementations, requiring
only a single dynamical node connected to itself with a delay line. Through sampling this node
N times in the span of one input clock cycle, the time-multiplexed responses can be viewed as
the individual responses of N neurons. We refer the reader to [4] for a concise overview of RC
principles. Consequently, RC has thus far enjoyed a multitude of hardware demonstrations across
many technologies and platforms [5], especially in photonics using bulk optics [6–10], and, more
recently, on photonic integrated circuits (PICs) [11–14]. For the latter, this is in large part due to
improved performance when compared to electronic approaches in terms of power consumption,
speed, footprint, and cost [11]. One particular strength of using RC in photonics is the fact that
the input and internal weights need not be tuned. From a hardware point of view, this means that
the RC framework is robust to fabrication variations. With this in mind, however, most coherent
(single wavelength) nanophotonic systems suffer from sensitivity to environmental factors such
as temperature fluctuations, limiting the RC operation time and making it difficult to have one set
of weights that are reusable. In general, the parameters are optimized every time the photonic
RC is utilized due to ambient fluctuations, especially in the cases of all-optical feedback. To
the authors’ knowledge, this remains an area to be explored with only a few recent examples
in the literature proposing techniques to solve this issue, such as training for a given range of
wavelengths corresponding to the range of thermal fluctuations in a controlled setting [15], or
using other machine learning techniques such as transfer learning [16]. Thus, while the cost of
optimizing the weights themselves is minimal, it is paid for by the need for optimizing the system
parameters, often requiring the scanning of a multi-dimensional parameter space. For example,
the proposed VCSEL scheme in [17] and the microring-based scheme in [14] both require 4
parameters to be optimized. Furthermore, while it is useful for some parameters such as the
bitrate or input power to be tuned and optimized for the purpose of finding the global optimum
for each specific task, they may not be readily available degrees of freedom for general-purpose
RC within an applications setting. This may be of interest for designing reservoirs for a specific
target application, where those parameters would be more or less fixed. On the other hand, for
more general-purpose RC applications, the search for local optima within a more constrained
parameter space gives a better idea of the usability of the design, while giving a fairly accurate
picture of the information processing capabilities of the system.

Considering the above, we propose a novel photonic architecture based on an asymmetric
Mach-Zehnder interferometer (MZI) for TDRC with only one tunable parameter: a phase shifting
element, and a nonlinearity provided by the photodetector, as its output intensity is proportional
to the square of the electric field which describes the node states. We show that such a minimum
complexity approach (i.e. using a minimal number of simple hardware components and control
parameters) is sufficient for obtaining good performance on the various tasks investigated. Our
approach enables GSa/s processing speeds which are only limited by the photodetector electronics,
and we consider the Lithium-Niobate-on-Insulator (LNOI) platform [18–20] to leverage the
low waveguide losses that enable an on-chip feedback loop, in addition to high-speed on-chip
modulation.

2. Reservoir architecture and operation principle

The integrated photonic reservoir is based on an asymmetric MZI used in a feedback configuration
by means of a delay line. The asymmetric MZI is based on two 3-dB directional couplers and
different arm lengths (3.0 mm and 1.5 mm), as shown in Fig. 1. The top ports of the MZI are
connected to each other by a spiral waveguide of length 4.55 cm, which introduces delay and thus
short-term memory to the system. A phase shifting element on the bottom MZI arm controls both
the feedback phase and feedback strength in this configuration, thereby essentially tuning the
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memory (without coupling optical power out of the system in the process as with using optical
attenuators), thanks to the coupling modulation scheme [21].

Considering an input optical field Ein(t) = Ain exp (iωt) with amplitude Ain and ω = 2πc/λ0,
where λ0 is the source wavelength, it enters the first coupler at t = 0, and considering the 3-dB
couplers as point couplers, we can describe the fields’ evolution in time everywhere in the system
using the scattering matrix approach (see Fig. 1):
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where αc is the fraction of optical power exiting from the coupler (considered equal for both
ports), α1,2,fb = 10−AL/10 are the overall fractions of power after waveguide propagation for a loss
factor A [dB/m] and the respective waveguide lengths L1,2,fb [m], which are the lengths of the
upper MZI arm, bottom MZI arm, and the feedback loop, respectively, κ and r are the cross and
through field coupling coefficients, respectively, β = 2πneff /λ0 [m−1] is the propagation constant
of the guided mode with effective refractive index neff , τ1,2,fb [s] are the delay times of the upper
MZI arm, bottom MZI arm, and delay line, respectively, and Φ [rad] is the applied phase shift on
the bottom arm. The −i in front of κ results from the π/2 phase shift encountered when the field
is crossing in the coupler.

The choice of the spiral waveguide length Lfb is important for enabling the desired maximum
memory of the system. Normally, the feedback length would be constrained by the desired
operation speed through one of two techniques: (i) Matching the sample hold duration with
the delay time of the feedback, (ii) using a slightly longer sample hold duration than the delay
time of the feedback. The first case is useful when the temporal distance between the ’virtual’
nodes is smaller than the timescale of the nonlinearity such as the electronic implementation in
[3], which creates a forward coupling of these nodes in addition to remembering their previous
states by equating the delay time to the bit period. On the other hand, when the timescale of the
nonlinearity is too fast such that it can be considered instantaneous in the system [6,7], using (i)
will result in the nodes remembering only their own previous states (provided that the system
does not reach steady state during one bit period) and so they become completely disconnected
from each other. This can be alleviated by mismatching the sample hold duration with respect to
the delay line (ii), which allows the nodes to remember the previous state of their neighboring
node instead of their own (for a de-sychronization time of one node distance). However, as
discussed in [22], it is not necessary for the delay time to be constrained by these two regimes for
a variety of applications, especially those that do not require a large short-term memory. These
constraints are due to considering the network equivalents of the TDRC scheme.

In fact, the memory capacity, discussed later in section 3.1, is significantly affected by the ratio
of delay time to the sample hold duration. In [23] it has been shown that a resonance between the
delay time and the sample hold duration can even be detrimental to the memory of the system
for some tasks, specifically when they are integer multiples of each other. However, the specific
components of the total metric are affected differently and thus the detriment in performance is
task-dependent. Considering the above, we leverage these insights to design the delay line of our
system for good performance and to reduce footprint. At an input sample rate B = 1 Gbit/s (i.e.
sample hold time τB = 1 ns), the equivalent length is LT = cτB/ng ≈ 13.24 cm. While the study
in [22] uses the opto-electronic model as their basis, their findings show the impact of the ratio of
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the delay time to the input clock cycle on the memory capacity, which are also applicable in our
case, the only difference being that the feedback phase is also considered in our case of optical
feedback. Therefore we have done a few sweeps around LT/Lfb = 3 while avoiding the resonant
condition of having the exact integer value. Our design choice of LT/Lfb = 2.91 thus reflects
a region where indeed the memory capacity has been reduced below its maximum, but is still
enough for performing the nonlinear tasks presented here, while saving around 3× on footprint.
The second point to consider in this architecture is the choice of an asymmetric MZI as opposed
to a symmetric one, where τ1 = τ2. As shown in Fig. 2 (b), the dynamics of the system are more
interesting than that of the symmetric case in Fig. 2 (a) due to the different number of delays
introduced in the system. Using an asymmetric MZI, there is one additional delay which enriches
the dynamics further and this temporal mismatch enables the system to provide a more complex
spectro-temporal response. These rich dynamics correspond to a more interesting mapping of
input to output, thereby allowing the reservoir to solve highly nonlinear tasks more effectively.

Fig. 1. Proposed architecture: a CW laser is modulated by the electrical input using a
Mach-Zender modulator, the reservoir layer consists of the asymmetric MZI connected onto
itself with a spiral waveguide and a photodetector, which also performs the readout.

Fig. 2. Simulated dynamical response of the system subjected to different applied phase
shifts Φ[rad] to an input bitstream with (a) symmetric MZI, (b) asymmetric MZI
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3. Methodology

The inputs of the various tasks are fed one at a time to the simulated system and its response
is recorded and then trained on the various tasks using linear regression. All the simulations
were carried out with the model presented in 2 and with an open source S-matrix based photonic
circuit solver [24] to validate the reliability of our model. In this study, we consider the operation
of the phase shifting element up to Vπ and divide the interval into 101 points, constituting our
applied phase values, to get an accurate view of the trend between the reservoir’s predicted
results and the applied phase. Masks were applied on the inputs for all the benchmark tasks
presented here, with values drawn pseudo-randomly from a uniform distribution on the interval
(0,1] corresponding to the number of ’virtual’ nodes in the reservoir Nv (determined here by the
photodetector’s bandwidth). In this way, each mask value can be viewed as the input weight
connecting the input layer to its corresponding Nth node. For all the tasks, we passed the photonic
circuit’s response (Eout2 in Eq. (2)) through photodetectors of 5 GHz, 10 GHz, 20 GHz, and
25 GHz bandwidth (corresponding to 5, 10, 20, and 25 nodes, respectively) to determine the
required size of the reservoir for the various tasks, and choose the photodetector that gives the
best performance considering all the tasks presented here. Furthermore, the trained output layer
was tested on different inputs and their results are presented here. To ensure accurate circuit-level
simulations, the simulation timestep ∆t was chosen to be 100 times smaller than the span of one
input clock cycle, which is also small enough to take into account the short delays of the MZI
arms. The simulation parameters are shown in Table 1 (a). All the simulated photodetectors were
bandwidth-dependent (incorporating a 4th order butterworth filter) and exhibited Gaussian noise
with variance corresponding to the different contributions to noise, as listed in Table 1 (b). The
use of standard ordinary least squares regression proved sufficient for the model to generalize
and predict accurately the unseen test data, because we considered almost ideal inputs and also
injected noise to the training data through the photodetector’s response (a form of regularization
in itself). For experimental verification, however, Tikhonov regularization or Bayesian regression
may need to be employed, where nonidealities and outliers may result in an ill-posed problem
when attempting to calculate the matrix pseudoinverse [25].

3.1. Linear memory capacity

The linear memory capacity is one of the fundamental tasks for RC, which aims to test the echo
state property by training the reservoir to reconstruct a given input stream of values ∈ [0, 1)
drawn from an independent and identical distribution (i.i.d.) k inputs later. It was first introduced
in [26] and is given by:

MCk =
cov(u(n − k), yk(n))2

var(u(n))var(yk(n))
= 1 − NMSE (4)

NMSE =
⟨∥y(n) − yexp(n)∥2⟩

⟨∥(yexp(n)) − ⟨yexp(n)⟩∥2⟩
(5)

where u(n) is the input at discrete timestep n, yexp(n) is the expected value, NMSE is the
normalized mean square error, and MCk ∈ [0,1] is the memory capacity for a k bits shift. MCk = 1
corresponds to a perfect recall of the input sequence after k input samples/bits, while MCk = 0
corresponds to the complete absence of any information regarding the input sample/bit k steps
into the past.

A sequence of 4000 samples was constructed from an i.i.d. stream. The target sequence is
a k-bits delayed copy of the input, testing the reservoir’s ability to faithfully reconstruct the
input sequence after k input samples. The model was trained on the first 1000 samples and then
tested on the remaining 3000 samples. The performance of specific components of the memory
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Table 1. Simulated photonic circuit and photodetector
parametersa

Simulation Parameter Value

B 1 GSa/s

∆t 10 ps

λ0 1550 nm

neff 2.2111

ng 2.2637

αc 0.966

A 20 dB/m

Pin 10 mW

r 0.7

Rl 100 Ω

Id 5 nA

NEPTIA 24 pW/
√

Hz

aSimulated photonic circuit parameters: B is the input bit/sample rate,
∆t is the simulation timestep, λ0 is the operation wavelength, neff
and ng are the effective and group indices for the waveguide, αc is
the directional coupler gain, A is the waveguide propagation loss, and
Pin is the input optical power. Simulated integrated photodetector
parameters: responsivity r, load resistance Rl, dark current Id , and
NEPTIA is the noise equivalent power of the transimpedence amplifier.

capacity (Eq. (4)) are investigated as it gives a better indication of the usability of the stored
information, in contrast to just the amount of information stored given by the summation of all
the components, given by MCtotal =

∑︁N
k=1 MCk, where N is the number of nodes. The relevance

of this evaluation for tasks requiring specific memory has also been mentioned and taken into
account in other works [14,22].

3.2. Temporal bitwise XOR

The temporal bitwise XOR task is a nontrivial, nonlinear memory-specific task commonly used
for evaluating RC performance which was first introduced in [27]. For this task, a quasi-ideal bit
stream of 4000 bits was generated, where the first 1000 bits were fed to the circuit for training
and the rest were used for testing. The target bit streams were constructed by applying the XOR
operation on the bit stream and a k time steps shifted version of it, yielding x[n] ⊕ x[n− k], where
x[n] is the current input bit (similar to the treatment of this task in [13]). The performance (up to
k = 4) is evaluated with the bit error rate (BER) metric which is the number of wrongly predicted
bits over the length of the total bit sequence.

3.3. Mackey-Glass

The Mackey-Glass sequence was first used as a RC benchmark in [28], and is generated from
solving the following differential equation numerically using the 4th order Runge-Kutta method:

dy(t)
dt
=

ay(t − τ)
1 + y(t − τ)10 − by(t) (6)

with the commonly used parameters a = 0.2, b = 0.1, τ = 17, and an integration step of 0.1. The
behavior resulting from these chosen parameters is fairly periodic and only slightly irregular
in the sense of causing minor fluctuations for each repeated cycle. The training set was 5000
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samples long and the test set consisted of another 3000 samples. The task is a one-step ahead
prediction. The performance is then evaluated according to the NMSE between the target values
and the predicted output.

3.4. Santa Fe

The Santa Fe dataset [29] comprises of data points collected experimentally from a far infrared
laser operating in a chaotic regime. This dataset is fairly chaotic in the vicinity of a few data
points and fairly cyclic in terms of long-term dynamical behavior. The stream of 4000 data points
was divided into 2000 points used for training and the other 2000 for testing. This task is also a
one-step ahead prediction. The performance on the test set is then evaluated by NMSE.

3.5. NARMA3

The nonlinear autoregressive moving average (NARMA) is a commonly used benchmark task for
RC which mimics a randomly varying signal around a certain average value, similar to noise. It
is often used in its 10th order form to test a reservoir with very large memory. Due to the smaller
memory in our system, we test the performance on a 3rd order variant of this task, which would
show how the system is solving a sufficiently nonlinear task, without imposing further memory
requirements than the system is capable of. The discrete difference equation that produces the
NARMA3 sequence is given by:

y[n] = 0.3y[n − 1] + 0.05y[n − 1]
3∑︂

i=1
y[n − i] + 1.5u[n]u[n − 3] + 0.1 (7)

where the input sequence u is drawn from a uniform distribution [0,0.5]. The task is to predict
y[n] given u[n]. The performance on the test set is evaluated with NMSE.

3.6. Baseline: asymmetric MZI

To better understand the role of the delay line and its impact on the various tasks presented here,
and as such their memory requirements, we proceed to compare the architecture presented in
Fig. 1 with just the asymmetric MZI without the feedback spiral waveguide. To that end, we
consider the same tasks mentioned above to evaluate the performance of the asymmetric MZI
alone on solving them.

4. Results and discussion

4.1. Linear memory capacity

The results for different k time steps shifts in Fig. 3 show the variation of MCk with respect to
applied phase shift. For lower number of nodes, the effect of the phase shift is more pronounced
on the memory as can be seen in Fig. 3(a),(b), with k = 3 and k = 4 improving significantly
as the reservoir size increases (Fig. 3(c),(d)). We also show MCtotal for each reservoir size in
Fig. 4(a) and the optimal MCk obtained for each k up to k = 10, as shown in Fig. 4. Beyond
Nv = 5, the peak MCk values for many k’s appear to be close to each other. This suggests that
further exceeding the studied number of nodes (i.e Nv = 25) would not enhance the memory
further as it is fundamentally limited by the length of the spiral waveguide with the given input
bitrate. Our results for MCtotal, shown in Fig. 4, are consistent with those presented in [22], as
we achieve MCtotal ≈ 5.5 which is close to the result obtained in the same work for our chosen
ratio of delay time and input clock cycle. Thus, our total memory capacity exceeds the PIC
implementation in [30] which requires copies of the delayed input at the modulation stage to
exceed its intrinsic MCtotal = 1, and is lower than the one presented in [13] where additional
post-processing that merges the responses to previous inputs and the current one increases the
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number of virtual nodes and thus the linear memory capacity from an intrinsic MCtotal ≈ 6 to
MCtotal ≈ 8. Furthermore, our MCk results for 20 nodes are almost equivalent to the simulated
result in [12] using 20 on-chip lasers from k = 1 to k = 5. However, it is lower for further k as
our system was not designed for large memory for the purpose of the currently investigated tasks.
This can be easily alleviated - thanks to the low losses of LNOI platform - by utilizing a longer
spiral length and using the desynchronized regime explained in section 2, and/or possibly using
similar pre/post-processing techniques as the ones described above in [13,30].

Fig. 3. Performance of the reservoir on solving the linear memory capacity task for different
values of applied phase shift Φ for different reservoir sizes: (a) Nv=5 (b) Nv=10, (c) Nv=20,
(d) Nv=25.

Fig. 4. MCtotal (a) and peak obtained values of MCk (b) for different reservoir sizes: Nv=5,
Nv=10, Nv=20, and Nv=25.

4.2. Temporal bitwise XOR

For the XOR task, the test sequence used consisted of 3000 bits, limiting the resolution of the
BER is limited to 0.33 × 10−3. Thus, a BER below 10−3 is considered as acceptable, as shown in
purple in Fig. 5, where results are shown for k = 1 to k = 4 for various reservoir sizes. Similar to
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the memory capacity results, the performance on the XOR task mostly improves as the reservoir
size scales. It is shown in Fig. 5(a) that it is possible to do the one bit XOR with 5 nodes, and
possibly even less. It can be seen from Fig. 5(c) that the architecture can be used successfully for
XOR-ing the current input bit with 3 bits into the past, for Nv = 20.

Fig. 5. Performance of the reservoir on solving the temporal bitwise XOR task for different
values of applied phase shift Φ [rad] on the MZI arm for different reservoir sizes: (a) 5
Nodes, (b) 10 Nodes, (c) 20 Nodes, (d) 25 Nodes. Where the blue line (k=1) is not visible, it
is due to BER = 0 everywhere on the plot.

4.3. Mackey-Glass

The results in Fig. 6(a) are for differently sized reservoirs under applied phase shift. One of the
interesting features in the curve is that the performance is only minimally affected by the number
of nodes Nv presented here, which suggests that only a small memory is required for this task.
We obtain NMSE = 0.0056 which is close to the optimum value obtained in [14] and even when
compared to a bulk setup [31].

Another interesting point this result shows is minimal dependence on the varying phase shift,
which prompts further investigation into which part of the architecture is responsible for the
obtained NMSE performance. It was found that equivalent performance is obtainable by training
the input data with linear regression, without going through the photonic circuit. This is discussed
later in section 4.6.

4.4. Santa Fe

For the Santa Fe timeseries prediction, the results in Fig. 6(b) show a minimum NMSE of 0.038
using 25 nodes, which is close to the simulated result in the nonlinear microring approach in
[14] (NMSE=0.038) and better than the experimental result in the multiple cavities approach
based on a feed-forward photonic neural network in feedback reported in [32] (NMSE=0.06). It
is also slightly better than the experimental result mentioned in [13] (NMSE=0.049), which was
achieved by increasing the laser pump current and the semiconductor optical amplifier (SOA)
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Fig. 6. Performance of the reservoir (NMSE) under applied phase shift on one-step ahead
prediction time series tasks: (a) Mackey-Glass, and (b) Santa Fe

current, using 23 virtual nodes, albeit with additional postprocessing techniques. Furthermore,
we also obtain better prediction results than the approach in [12] where they reported a minimum
NMSE≈ 0.01 using 40 on-chip lasers with small external cavities of 10 mm.

4.5. NARMA3

For the Narma3 task, beyond Nv = 5 the results show only a slight dependence on the number of
nodes for all values of phase shift, and is especially the case around Φ = 0.5 rad. However, it is
much more strongly influenced by the phase shifter’s effects of altering the memory from Φ = 1
rad to Φ = 2.5 rad. Considering the memory of our system, a low NMSE= 0.096 is obtained
using as few as 10 Nodes.

4.6. Baseline: asymmetric MZI

Performing the same numerical investigations on the MZI alone without the feedback loop
helps in understanding the delay’s role further. For our operation speed of 1 GSa/s, it can be
seen that tasks requiring a memory of one sample/bit into the past are achievable, which is not
surprising since at some point the current sample interacts with the previous input sample due to
the differences between the arm lengths, and consequently the asymmetric MZI alone is sufficient.
Such tasks are the memory capacity and XOR tasks for k = 1, where MC1 ≈ 1.0 everywhere
for all phase shifts and for all reservoir sizes Nv. The XOR operation for k = 1 is successful
beyond a certain value of phase shift, due to destructive interference at this value of applied phase
(Fig. 8(a), a similar behavior is seen in (b) as well). For tasks requiring deeper memories the
MZI fails completely: MCk>1 ≈ 0 for all N and phase shift, BER≈ 0.5 XOR for k>1. For the
Santa Fe task, the performance degrades considerably as shown in Fig. 8(b) with NMSE≈ 0.34
being the best value achieved. For the NARMA3 task (Fig. 8(c)), it fails completely with NMSE
≈ 0.7 everywhere on the plot.

For the Mackey-Glass one-step ahead prediction task, we get equivalent performance (NMSE =
0.00587) with the MZI alone as shown in Fig. 8(d), and in fact it is also similar to the performance
obtained when training the input data itself (masked and unmasked) using linear regression,
where we also found no degradation in NMSE for all Nv considered (NMSE = 0.00583). We
find this result particularly interesting, since it shows that solving the one-step ahead task can be
done with 5 trainable features and using a regression on the input data itself. Considering two
and three steps ahead predictions on the same task, the full reservoir architecture only slightly
outperforms (NMSEk=2 = 0.0114, NMSEk=3 = 0.0170) the almost equivalent result of training
on both the input dataset directly, and passing it through just the MZI (NMSEk=2 = 0.0119,
NMSEk=3 = 0.0182). According to these results, the one-step ahead Mackey-Glass task is
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linearly separable and is not a significant challenge for the RC framework, unless much lower
NMSE values (ex. <10−3) are obtained.

Fig. 7. Performance on the NARMA3 task for various Nv

Fig. 8. Performance of the different tasks using only the asymmetric MZI under varying
phase shift: (a) XOR for k=1, (b) Santa Fe, (c) NARMA3, (d) Mackey-Glass.

4.7. Further discussion

For all the tasks presented here, it can be seen that a photodetector with 20 GHz bandwidth
-yielding 20 virtual nodes- is sufficient for obtaining the best performance on this architecture.
Furthermore, the variation in prediction accuracy (under applied phase shift) for the several tasks
presented are strongly related to the phases of the signals travelling into the spiral from the two
MZI arms. To further explain this notion, we refer back to the memory capacity results in section
4.1. According to the value of Φ, interference occurs at the output and input couplers, where
the incoming signal also participates. Due to the low losses, multiple round trips can occur
within both paths, which can yield either constructive or destructive interference over one or
multiple round trips. This directly influences the virtual nodes’ connectivity matrix, and has a
much stronger effect for lower number of nodes such as Nv = 5, as can be seen from the larger
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variability in Fig. 3 (a). Increasing the number of nodes allows more information to survive
after each roundtrip, which especially enhances tasks requiring deeper memories. The memory
eventually saturates when there is no longer any representation of the information inside the
system for further past inputs (Fig. 3(c) and (d)). Naturally, this behavior is also pronounced in
other tasks (Fig. 6(b) and Fig. 7).

In addition, there are multiple advantages for using the proposed RC scheme, and we illustrate
this by briefly discussing the other PIC implementations from the literature. First is the fully
integrated low-loss delay line, which is made possible by considering low-loss platforms such
as LNOI, which entails less power loss coupling into and out of the chip, similar to [13], and
in contrast to [14] when using an external feedback. Second is high-speed operation, limited
only by the photodetector bandwidth, whereas other architectures employing relatively slow
nonlinearities (especially thermal nonlinearities in case of silicon-on-insulator) can significantly
lower computation speeds [30]. Third is the multiple timescales approach we used, which has
also been leveraged in [32], however our architecture reduces complexity in terms of number of
phase shifters needed to be controlled while also obtaining better results on the Santa Fe task.
Compared to [12] which uses up to 40 on-chip lasers, the memory MCk of our system is close
to the one they obtain using 20 on-chip lasers in the range of k = 1 to k = 5 (Fig. 4 (b)). The
similarly passive architecture in [11], which is also relying only on the photodetector nonlinearity,
is however limited in scalability by usage of physical nodes instead of virtual ones, and the need
to change the ratio of interconnection delay and bit period for solving different tasks, and since
the former is fixed this entails changing the bitrate of the input stream for tasks requiring different
memories, such as the bitwise XOR with multiple bits in the past. However, in our case as has
been shown in section 4.2, only a phase shifting element is required. In fact it is even possible to
do the XOR for k = 1 to k = 3 at the same value of phase shift, thus requiring only a change in the
applied output weights to perform the three different tasks. The architecture in [13], consisting
of a distributed Bragg reflector laser and amplifiers, as well as integrated delay lines, achieved
similar performance on the Santa Fe task after additional post-processing.

On the other hand, it is also important to consider that simulation setups and learning algorithms
can differ between different investigations, for example sometimes ridge regression is employed
instead of linear regression. It is therefore not straightforward to compare these different examples
from the literature, which is why such a comparison is beyond the scope of this work. Instead,
we aim to shed light on the fact that RC with matching performance to the above examples can
be done on-chip with passive components, without the need for nonlinearities beyond that of the
photodetector, with minimum active components (no amplifiers or multiple laser sources), and
with only one tunable phase shifter as a tunable parameter. Using only one phase shifter that is
relatively easy to control, as opposed to multiple parameters, can enable on-chip stabilization
using optical feedback techniques [33], which could potentially allow photonic RC that is robust
to ambient fluctuations, without the need to retrain constantly. Further adding to the system
complexity may indeed boost the system performance beyond simpler architectures such as the
one presented in this work. We believe this work could therefore serve as a baseline in terms of
performance for the given system and hardware requirements, and that future works could enable
performance improvements that warrant the use of higher complexity PIC RC schemes.

5. Conclusion

We have proposed an integrated photonic architecture for RC which leverages the low losses of the
LNOI platform to enable a fully integrated delay line and with only one phase shifting parameter
to tune the feedback phase and the feedback strength simultaneously. The delay line was designed
to be compact enough while still delivering performance that is equivalent or slightly better
than other PIC implementations for a comprehensive body of tasks. Further enhancement of the
memory is possible by increasing the length of the spiral waveguide, at the cost of footprint. This
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approach also provides more efficient utilization of power and the information stored inside the
reservoir layer, when compared to other photonic implementations requiring an optical attenuator
block in the feedback loop to tune the feedback strength, where light is simply coupled out of the
system. We conclude that minimum complexity RC designs can also open the doors towards
robust RC in ambient conditions by only requiring the stabilization of one parameter, thereby
increasing the longevity of each training cycle and possibly allowing the deployment of photonic
RC in real-world settings and applications. Lastly, we believe this work can also serve as a
baseline to be compared against for more complex photonic RC systems, since there could indeed
be room for performance improvement through using more interesting configurations which
exhibit more system or hardware complexity. The exploration of nonlinearities in the LNOI
platform would be a good choice, as its nonlinearities are on the timescale of the optical cycle.
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