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Abstract—In automatic speech recognition, deep learning mod-
els such as transformers are increasingly used for their high
performance. However, they suffer from their large size, which
makes it very difficult to use them in real contexts. Hence the
idea of pruning them. Conventional pruning methods are not
optimal and sometimes not efficient since they operate blindly
without taking into account the nature of the layers or their
number of parameters or their distribution. In this work, we
propose to perform a fine-grained analysis of the transformer
model layers in order to determine the most efficient pruning
approach. We show that it is more appropriate to prune some
layers than others and underline the importance of knowing the
behavior of the layers to choose the pruning approach.

Index Terms—Speech recognition, transformer model, pruning
techniques, weight magnitude, model analysis

I. INTRODUCTION

In recent times, information system fields such as language
processing [1], image analysis [2], speech recognition [3]
and emotion detection [4] have made great progress with
deep learning models. In automatic speech recognition (ASR),
we refer to end-to-end (E2E) systems. For machine learning
models, the number of parameters and performance are often
correlated [5]. In particular, transformers, which are state-of-
the-art models, are very resource-intensive in terms of comput-
ing power, memory, energy consumption,.. [6]. Furthermore,
it was shown that large, over-parameterized models are more
accurate than small and dense models [7]. For these reasons,
model compression techniques are required.

Neural network compression methods fall into several cat-
egories, which are quantization [8], pruning [9], knowledge
distillation [10], matrix decomposition [11] and parameter
sharing [12]. Compared to basic models such as recurrent
neural networks (RNN) or multilayer perceptron (MLP), a
transformer model has a relatively complex architecture com-
posed of several parts such as embedding layers, multi-head
attention layers and feedforward layers. Thus, the effect of
compression methods can vary when applied to different parts
of a transformer model [12]. Research on the compression
of transformer models in E2E speech recognition has tackled
the problem of quantization [13], parameter sharing [14] and
recently pruning [15] using the conventional techniques. This
research investigates the weight pruning for ASR as mean of
transformer model compression.

Global pruning and local pruning are the two conventional
orthogonal pruning schemes [16] [17]. While local pruning
prunes every layer of a model with the same rate, global
pruning considers the model as a whole and prunes the lowest
parameters [18]. One of the drawbacks of these methods is
that they work blindly, regardless of the type of layers, their
number of parameters or even their behaviour. In this paper,
we proceed to a fine-grained analysis of transformer model.
We show that some layers such as the convolution layers have
a very small number of parameters and pruning them is useless
and decreases drastically the performance. We also highlight
the behavior of certain layers such as the feedforward or multi-
head attention layers that may be relevant to the choice of
pruning technique.

The remainder of this paper is as follows: Section 2 reviews
the pruning techniques. Section 3 introduces briefly the ASR
transformer model and Section 4 presents our trained mod-
els. Section 5 describes the layers’ parameters and behavior.
Section 6 presents the pruning experiments and results and
Section 7 draws conclusions and proposes future directions.

II. PRUNING SCHEMES

Deep learning models have many insignificant weights that
contribute very little to the inference of the model [9] [2].
These weights can be set to zero without significantly affecting
performance [9]: This is called model pruning. The signifi-
cance of these weights can be determined by their magnitude,
their gradients or a custom measurement [12]. Pruning can
be incorporated into the training process as an additional
step between training epochs (iterative pruning), applied all at
once after the model training is complete (one-shot pruning)
[15], or applied between fine tuning steps [16]. There are
two conventional pruning schemes [17]: Global pruning and
local pruning. Global pruning, also called class-blind pruning
[19], gathers all layer parameters and selects a global fraction
of them to prune. Local pruning (i.e. class-uniform pruning)
removes a fixed percentage of parameters from each layer.
These methods are not based on a prior analysis of the layers:
they do not take into account the nature of the layers, their
position in the network, their number of parameters or even
the relationships between them.



III. ASR TRANSFORMER MODELS

The transformer model [1] is a sequence-to-sequence model
that maps an input sequence to an output sequence.

A. Model description

The ASR transformer model takes as input a sequence
of acoustic features (x1, x2, ..., xT ) and generates a set of
characters (y1, y2, ..., yL), one character at a time. At each
step, the model is auto-regressive, taking previously generated
characters as an additional input when generating the next
character [1]. Its architecture can be divided into two parts
namely the encoder and the decoder. The encoder converts
the input sequence into an intermediate sequence of encoded
features (h1, h2, ..., hN ). The decoder predicts a new character
yl based on the encoded features (h1, h2, ..., hN ) and the
previous decoded characters (y1, y2, ..., yl−1).

Our ASR transformer follows the same architecture as
[20]. The input acoustic features are subsampled using two
convolution layers (CONV) before being fed into the encoder.
Both the encoder and the decoder are composed of multi-head
attention (MHA) and feedforward (FF) layers, each followed
by a residual connection and normalization. A simplified
representation of the transformer model is shown on Fig. 1.

Fig. 1: ASR Transformer main components that are the convo-
lution layers (CONV), the multi-head attention (MHA) layers
and the feedforward (FF) layers.

B. Model architecture

The self-attention operation allows frames to gather context
from all timesteps and build an informative sequence of
high level [20]. Specifically the the inputs of each layer
are projected into queries Q, keys K and values V with
Q ∈ Rtq∗dq , K ∈ Rtk∗dk and V ∈ Rtv∗dv . t∗ are the elements
numbers in different inputs and d∗ are the corresponding
element dimensions. Scaled Dot-Product Attention [1] is then
computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The multi-headed attention is obtained by performing this
calculation h times. h is the number of heads.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W0 (2)

where

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

The projection matrices are WQ
i ∈ Rdmodel∗dq , WK

i ∈
Rdmodel∗dk , WV

i ∈ Rdmodel∗dv and W 0 ∈ Rh∗dv∗dmodel . In
this work, dk = dq = dv = dmodel/h

The outputs of multi-head attention go through 2-layer
position-wise feedforward network (FFN) with hidden size
dff .

FFN(x) = W2ReLU(W1x+ b1) + b2 (4)

b1 ∈ Rdff and b2 ∈ Rdmodel are the biases. The weight
matrices are W1 ∈ Rdmodel∗dff and W2 ∈ Rdff∗dmodel .

IV. BASELINE MODELS

We have developed transformer models for three languages
which are English, French and Italian using Libri-trans [21],
Ester [22], and Voxforge [23] databases respectively.

A. Data description

The Libri-trans, Ester and Voxforge corpora are produced
within the framework of the Librivox project, the French
national ESTER project and the Voxforge project. The Libri-
trans and Voxforge recordings are extracted from audiobooks,
and the Ester recordings are radio broadcasts news. Each
dataset is divided into three parts: train, development (dev)
and test as described in Table I. The train data is used for
model training. The dev and the test parts are dedicated to
evaluation.

TABLE I: Duration (in hours) of the train, dev. and test parts
of the three datasets.

Libritrans Ester Voxforge
Train 230 231 18
Dev 2 5.45 1
Test 3.5 6.5 1

B. Trained models

Baseline ASR transformer models are developed and eval-
uated with the Espnet toolkit [3]. This toolkit involves Kaldi
[24] tools for data processing and parameter extraction and
Pytorch (pytorch.org) modules for model estimation. First,
by using three different speeds (0.9, 1.0, and 1.1), the train
dataset amount tripled. Then, 80 filter bank coefficients are
extracted and normalized with respect to the mean and vari-
ance. Transcripts are represented by sub-word units, namely
characters for the Ester and Voxforge systems and byte-pair
coding subwords for the Libritrans system. Finally, several
transformer architectures are evaluated. Table II shows the
architecture of the best transformer models, their number
of parameters (in millions) and the error rates of the ASR



systems. We consider the word errors (WER) of the Libri-
trans and Ester systems and the character errors (CER) of the
Voxforge system.

TABLE II: ASR models specifications: - Architecture : number
of encoder and decoder blocks (ENC/DEC), dimension of
hidden layers (FF DIM) and attention layers (ATT DIM) and
number of attention heads (HEADS) - Number of parameters
(Millions) - Error rate (% WER/CER)

LIBRITRANS ESTER VOXFORGE
ARCHITECTURE

ENC/DEC 12/6 18/6 12/6
FF DIM 1024 2048 2048
ATT DIM 256 512 256
HEADS 4 4 4

PARAMETERS 27.92 89.64 35.07
ERROR RATE 6.6 14.1 9.1

V. MODEL WEIGHTS ANALYSIS

The layers of the transformer model are organized into
four groups: CONV layers, MHA layers, FF layers, and the
remaining layers.

A. Number of parameters

The proportion in number of weights of each group is
calculated and then plotted in Fig. 2.

Fig. 2: The proportion of weights of convolution layers (Conv),
multi-head attention layers (MHA), feedforward layers (FF)
and remaining layers (Rest) for the Libri-trans, Ester, and
Voxforge models.

In all the models, the parameters of the feedforward layers
are the most numerous exceeding 55% of the total number of
parameters, those of the attention layers are above 22%, those
of the convolution layers are lower than 3% and the rest of
the layers represent less than 5%.

B. Weight distribution

Weight pruning sets low-value weights to zero. Here we
examine the weight values across the transformer encoder

layers. The absolute values of the weights are averaged for
each layer class, i.e., the convolution layers (cv0 and cv1),
the feedforward layers FF1 and FF2, and the multi-head
attention layers Wq , Wk, Wv , and W0 and plotted in Fig. 3.

Fig. 3: Class weight distribution across the encoder blocks for
the three models Libri-trans, Ester and Voxforge.

We notice that:
• the weights of the FF1 and FF2 layers are close to each

other and have the same shape: they increase as the layer
is deep.

• the curves of Wk and Wq are also very close. They
decrease with the depth of the block except for Voxforge.

• regarding Wv and W0 layers, they are very close and
increasing.

VI. PRUNING EXPERIMENTS

Pruning experiments are carried out on the Libri-trans, Ester
and Voxforge transformer models in order to validate the



findings of Section V. We consider the main components of the
transformer model, namely convolution layers (CONV), multi-
head attention layers (MHA) and FeedForward (FF) layers.

A. Impact of the convolution layers

To measure the impact of convolution layers on the model
pruning, we performed experiments with and without convolu-
tion layers, i.e. pruning of all layers of the model or only linear
layers that are MHA, FF, and input/output layers. Conventional
methods of global and local pruning are employed.

Fig. 4: Error rate as a function of local and global pruning
rates for Libri-trans, Ester and Voxforge models considering
all layers or only linear layers.

Results are reported in Fig. 4. We notice that:

• Even if the convolution layers have very few weights,
their global and local pruning increases the error rate.
Especially for the Libri-trans model, when the pruning
rate exceeds 10%, the WER increases rapidly.

• For the Ester model, local pruning is more sensitive to
convolution layer pruning than global pruning. For Libri-
trans and Voxforge, it is rather the opposite. Indeed,

according to Fig. 3, the convolution layers of the Ester
model have higher weight values.

• When only the linear layers are pruned, the global and
local error rates are close to each other.

For these reasons, in the following pruning will be applied
only to linear layers.

B. FF layers behaviour

Now, let us examine the behavior of the feedforward layers.
We consider global pruning and focus on the FF1 and FF2
layers. For different pruning rates, we report their sparsity
through the encoder and decoder blocks respectively in Fig. 5
and Fig. 6. Each block contains an FF1 and an FF2 layer.
The curves in continuous line represent the evolution of FF1,
those in dashed line are that of FF2.

Fig. 5: FF1 and FF2 layers’ sparsity for different global
pruning rates through the encoder blocks. The curves in
continuous line represent the evolution of FF1, those in
dashed line are that of FF2.

In almost all cases, the feedforward layers FF1 and FF2
have decreasing sparsities, confirming the results of Fig. 3.



Fig. 6: FF1 and FF2 layers’ sparsity for different global
pruning rates through the decoder blocks. The curves in
continuous line represent the evolution of FF1, those in
dashed line are that of FF2.

Specifically, the mean weights of FF1 and FF2 are close
and they decrease through the encoder (and decoder) blocks.
Thus, the global pruning of the FF layers seems to be effective.
However, we cannot say that the global pruning is optimal.
Indeed, this method operates on all layers, whatever their
nature or number of parameters and we have seen in the
previous section that pruning convolution layers in our models
increases the error rate drastically. As for local pruning, it can
be argued that it is not adequate given the evolution of FF
layer weights and the fact that local pruning assigns the same
pruning rate to all layers.

C. MHA layers behaviour

We are now interested in the behavior of the MHA layers
namely the matrices Wk, Wq , Wv and W0. Considering the
progression of weights plotted in Fig. 3, we propose to verify
the conclusions of subsection V-B, i.e., that the values of
the weights of matrices Wk and Wq are decreasing and that

those of matrices Wv and W0 are increasing. To this end,
we subdivided the MHA layers of the encoder into two parts:
those of the first half of the encoder and those of its second
half. Then we propose to apply different pruning rates to these
layers depending on whether they are in the first or second
half. More specifically, we try to verify that the pruning rate
of the Wk and Wq layers must be low for the first layers and
high for the deep layers. The opposite of this assumption must
be true for the Wv and W0 layers, except for Voxforge.

To this end, we applied:
• a fixed pruning rate x to all linear layers of the trans-

former model except the MHA layers of the encoder
• different pruning rates to the MHA layers of the first

half of the encoder and its second half, so that the global
pruning rate of the MHA layers is x.

We assume that Wk and Wq have equal pruning rates and
similarly for Wv and W0. The variable pruning rates of the
MHA layers are illustrated in the following table:

TABLE III: The pruning rates of the MHA layers of the
encoder namely Wk, Wq , Wv and W0

First half layers Second half of layers
Wq and Wk pruning rate am 2x− am
Wv and W0 pruning rate 2x− am am

with am a positive variable (am < x).
Fig 7 reports the error rates when fixing the overall pruning

rate x and varying the MHA layers rate using the variable
am. When x = am, all MHA layers (in both the first and the
second half of the encoder) have the same pruning rate. The
corresponding error rate is highlighted on the curves by a large
dot. In all curves, we compare the error rates for two parts:
before the big point and after it. The global pruning error rate
is indicated by a dotted line.

According to these curves, we draw some conclusions:
• For Libri-trans and Ester systems: The error rates to the

left of the point are lower than those to its right. This
corresponds to a low pruning rate of the first layers Wk

and Wq and a high pruning rate of the deep layers Wk

and Wq . For the Wv and W0 layers, the opposite is true.
These results support the assumptions made.

• Regarding Voxforge, it is often the right part of the curves
that is lower. This means that it is better to apply high
pruning rates to the first layers Wk and Wq as well as Wv

and W0. Indeed, in Fig. 3 the weights of these layers are
increasing. This again confirms the previous statements.

• The large point on each curve corresponds to the local
pruning rate as all layers are pruned with the same rate.
This point is often higher than the minimum, so local
pruning is not efficient.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we focus on weight pruning of transformer
models in end-to-end speech recognition of three languages:



Fig. 7: Error rate as a function of the pruning rates of the
layers Wq (or Wk) for Libri-trans, Ester and Voxforge.

English, French and Italian. Standard weight pruning meth-
ods operate in a blind manner, with respect to the type of
layers, the number of parameters or their behavior. Instead,
we suggest a fine-grained analysis of the model layers. We
find that pruning layers with few parameters is futile as it
decreases performance without greatly reducing the model
size. We also notice that the deeper the feedforward layer is,
the more important it is and should be pruned less. Regarding
the attention layers, their behavior changes with their position:
The importance of the first two layers increases with depth,
that of the last two decreases. Based on these findings, future
work includes automatic analysis of model weights, followed
by automatic custom pruning.
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