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Fine-grained analysis of the transformer model for efficient pruning
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In automatic speech recognition, deep learning models such as transformers are increasingly used for their high performance. However, they suffer from their large size, which makes it very difficult to use them in real contexts. Hence the idea of pruning them. Conventional pruning methods are not optimal and sometimes not efficient since they operate blindly without taking into account the nature of the layers or their number of parameters or their distribution. In this work, we propose to perform a fine-grained analysis of the transformer model layers in order to determine the most efficient pruning approach. We show that it is more appropriate to prune some layers than others and underline the importance of knowing the behavior of the layers to choose the pruning approach.

I. INTRODUCTION

In recent times, information system fields such as language processing [START_REF] Vaswani | Attention is all you need[END_REF], image analysis [START_REF] Han | Learning both weights and connections for efficient neural networks[END_REF], speech recognition [START_REF] Watanabe | Espnet: End-to-end speech processing toolkit[END_REF] and emotion detection [START_REF] Letaifa | Perceptual borderline for balancing multi-class spontaneous emotional data[END_REF] have made great progress with deep learning models. In automatic speech recognition (ASR), we refer to end-to-end (E2E) systems. For machine learning models, the number of parameters and performance are often correlated [START_REF] Beltaifa-Zouari | Embedded real time speech recognition system for smart home environment[END_REF]. In particular, transformers, which are state-ofthe-art models, are very resource-intensive in terms of computing power, memory, energy consumption,.. [START_REF] Zhu | To prune, or not to prune: Exploring the efficacy of pruning for model compression[END_REF]. Furthermore, it was shown that large, over-parameterized models are more accurate than small and dense models [START_REF] Li | Train large, then compress: Rethinking model size for efficient training and inference of transformers[END_REF]. For these reasons, model compression techniques are required.

Neural network compression methods fall into several categories, which are quantization [START_REF] Hubara | Quantized neural networks: Training neural networks with low precision weights and activations[END_REF], pruning [START_REF] Lecun | Optimal brain damage[END_REF], knowledge distillation [START_REF] Kim | Knowledge distillation using output errors for self-attention end-toend models[END_REF], matrix decomposition [START_REF] Noach | Compressing pre-trained language models by matrix decomposition[END_REF] and parameter sharing [START_REF] Ganesh | Compressing large-scale transformer-based models: A case study on bert[END_REF]. Compared to basic models such as recurrent neural networks (RNN) or multilayer perceptron (MLP), a transformer model has a relatively complex architecture composed of several parts such as embedding layers, multi-head attention layers and feedforward layers. Thus, the effect of compression methods can vary when applied to different parts of a transformer model [START_REF] Ganesh | Compressing large-scale transformer-based models: A case study on bert[END_REF]. Research on the compression of transformer models in E2E speech recognition has tackled the problem of quantization [START_REF] Bie | A simplified fully quantized transformer for end-to-end speech recognition[END_REF], parameter sharing [START_REF] Li | Improving transformer-based speech recognition systems with compressed structure and speech attributes augmentation[END_REF] and recently pruning [START_REF] Letaifa | Transformer model compression for endto-end speech recognition on mobile devices[END_REF] using the conventional techniques. This research investigates the weight pruning for ASR as mean of transformer model compression.

Global pruning and local pruning are the two conventional orthogonal pruning schemes [START_REF] Gupta | Compression of deep learning models for text: A survey[END_REF] [START_REF] Blalock | What is the state of neural network pruning?[END_REF]. While local pruning prunes every layer of a model with the same rate, global pruning considers the model as a whole and prunes the lowest parameters [START_REF] Han | Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding[END_REF]. One of the drawbacks of these methods is that they work blindly, regardless of the type of layers, their number of parameters or even their behaviour. In this paper, we proceed to a fine-grained analysis of transformer model. We show that some layers such as the convolution layers have a very small number of parameters and pruning them is useless and decreases drastically the performance. We also highlight the behavior of certain layers such as the feedforward or multihead attention layers that may be relevant to the choice of pruning technique.

The remainder of this paper is as follows: Section 2 reviews the pruning techniques. Section 3 introduces briefly the ASR transformer model and Section 4 presents our trained models. Section 5 describes the layers' parameters and behavior. Section 6 presents the pruning experiments and results and Section 7 draws conclusions and proposes future directions.

II. PRUNING SCHEMES

Deep learning models have many insignificant weights that contribute very little to the inference of the model [START_REF] Lecun | Optimal brain damage[END_REF] [START_REF] Han | Learning both weights and connections for efficient neural networks[END_REF]. These weights can be set to zero without significantly affecting performance [START_REF] Lecun | Optimal brain damage[END_REF]: This is called model pruning. The significance of these weights can be determined by their magnitude, their gradients or a custom measurement [START_REF] Ganesh | Compressing large-scale transformer-based models: A case study on bert[END_REF]. Pruning can be incorporated into the training process as an additional step between training epochs (iterative pruning), applied all at once after the model training is complete (one-shot pruning) [START_REF] Letaifa | Transformer model compression for endto-end speech recognition on mobile devices[END_REF], or applied between fine tuning steps [START_REF] Gupta | Compression of deep learning models for text: A survey[END_REF]. There are two conventional pruning schemes [START_REF] Blalock | What is the state of neural network pruning?[END_REF]: Global pruning and local pruning. Global pruning, also called class-blind pruning [START_REF] See | Compression of neural machine translation models via pruning[END_REF], gathers all layer parameters and selects a global fraction of them to prune. Local pruning (i.e. class-uniform pruning) removes a fixed percentage of parameters from each layer. These methods are not based on a prior analysis of the layers: they do not take into account the nature of the layers, their position in the network, their number of parameters or even the relationships between them.

III. ASR TRANSFORMER MODELS

The transformer model [START_REF] Vaswani | Attention is all you need[END_REF] is a sequence-to-sequence model that maps an input sequence to an output sequence.

A. Model description

The ASR transformer model takes as input a sequence of acoustic features (x 1 , x 2 , ..., x T ) and generates a set of characters (y 1 , y 2 , ..., y L ), one character at a time. At each step, the model is auto-regressive, taking previously generated characters as an additional input when generating the next character [START_REF] Vaswani | Attention is all you need[END_REF]. Its architecture can be divided into two parts namely the encoder and the decoder. The encoder converts the input sequence into an intermediate sequence of encoded features (h 1 , h 2 , ..., h N ). The decoder predicts a new character y l based on the encoded features (h 1 , h 2 , ..., h N ) and the previous decoded characters (y 1 , y 2 , ..., y l-1 ).

Our ASR transformer follows the same architecture as [START_REF] Dong | Speech-transformer: A no-recurrence sequence-to-sequence model for speech recognition[END_REF]. The input acoustic features are subsampled using two convolution layers (CONV) before being fed into the encoder. Both the encoder and the decoder are composed of multi-head attention (MHA) and feedforward (FF) layers, each followed by a residual connection and normalization. A simplified representation of the transformer model is shown on Fig. 1. 

B. Model architecture

The self-attention operation allows frames to gather context from all timesteps and build an informative sequence of high level [START_REF] Dong | Speech-transformer: A no-recurrence sequence-to-sequence model for speech recognition[END_REF]. Specifically the the inputs of each layer are projected into queries Q, keys K and values V with 

Q ∈ R tq * dq , K ∈ R t k * d k and V ∈ R
Attention(Q, K, V ) = sof tmax( QK T √ d k )V (1) 
The multi-headed attention is obtained by performing this calculation h times. h is the number of heads.

M ultiHead(Q, K, V ) = Concat(head 1 , ..., head h )W 0 (2)
where

head i = Attention(QW Q i , KW K i , V W V i ) (3) 
The projection matrices are

W Q i ∈ R d model * dq , W K i ∈ R d model * d k , W V i ∈ R d model * dv and W 0 ∈ R h * dv * d model . In this work, d k = d q = d v = d model /h
The outputs of multi-head attention go through 2-layer position-wise feedforward network (FFN) with hidden size

d f f . F F N (x) = W 2 ReLU (W 1 x + b 1 ) + b 2 (4) b 1 ∈ R d f f and b 2 ∈ R d model are the biases. The weight matrices are W 1 ∈ R d model * d f f and W 2 ∈ R d f f * d model .

IV. BASELINE MODELS

We have developed transformer models for three languages which are English, French and Italian using Libri-trans [START_REF] Kocabiyikoglu | Augmenting librispeech with french translations: A multimodal corpus for direct speech translation evaluation[END_REF], Ester [START_REF] Galliano | The ester 2 evaluation campaign for the rich transcription of french radio broadcasts[END_REF], and Voxforge [START_REF]Voxforge (italian[END_REF] databases respectively.

A. Data description

The Libri-trans, Ester and Voxforge corpora are produced within the framework of the Librivox project, the French national ESTER project and the Voxforge project. The Libritrans and Voxforge recordings are extracted from audiobooks, and the Ester recordings are radio broadcasts news. Each dataset is divided into three parts: train, development (dev) and test as described in Table I. The train data is used for model training. The dev and the test parts are dedicated to evaluation. 

B. Trained models

Baseline ASR transformer models are developed and evaluated with the Espnet toolkit [START_REF] Watanabe | Espnet: End-to-end speech processing toolkit[END_REF]. This toolkit involves Kaldi [START_REF] Povey | The kaldi speech recognition toolkit[END_REF] tools for data processing and parameter extraction and Pytorch (pytorch.org) modules for model estimation. First, by using three different speeds (0.9, 1.0, and 1.1), the train dataset amount tripled. Then, 80 filter bank coefficients are extracted and normalized with respect to the mean and variance. Transcripts are represented by sub-word units, namely characters for the Ester and Voxforge systems and byte-pair coding subwords for the Libritrans system. Finally, several transformer architectures are evaluated. Table II shows the architecture of the best transformer models, their number of parameters (in millions) and the error rates of the ASR systems. We consider the word errors (WER) of the Libritrans and Ester systems and the character errors (CER) of the Voxforge system. 

V. MODEL WEIGHTS ANALYSIS

The layers of the transformer model are organized into four groups: CONV layers, MHA layers, FF layers, and the remaining layers.

A. Number of parameters

The proportion in number of weights of each group is calculated and then plotted in Fig. 2. In all the models, the parameters of the feedforward layers are the most numerous exceeding 55% of the total number of parameters, those of the attention layers are above 22%, those of the convolution layers are lower than 3% and the rest of the layers represent less than 5%.

B. Weight distribution

Weight pruning sets low-value weights to zero. Here we examine the weight values across the transformer encoder layers. The absolute values of the weights are averaged for each layer class, i.e., the convolution layers (cv0 and cv1), the feedforward layers F F 1 and F F 2, and the multi-head attention layers W q , W k , W v , and W 0 and plotted in Fig. 3. We notice that:

• the weights of the F F 1 and F F 2 layers are close to each other and have the same shape: they increase as the layer is deep. • the curves of W k and W q are also very close. They decrease with the depth of the block except for Voxforge. • regarding W v and W 0 layers, they are very close and increasing.

VI. PRUNING EXPERIMENTS Pruning experiments are carried out on the Libri-trans, Ester and Voxforge transformer models in order to validate the findings of Section V. We consider the main components of the transformer model, namely convolution layers (CONV), multihead attention layers (MHA) and FeedForward (FF) layers.

A. Impact of the convolution layers

To measure the impact of convolution layers on the model pruning, we performed experiments with and without convolution layers, i.e. pruning of all layers of the model or only linear layers that are MHA, FF, and input/output layers. Conventional methods of global and local pruning are employed. Results are reported in Fig. 4. We notice that:

• Even if the convolution layers have very few weights, their global and local pruning increases the error rate.

Especially for the Libri-trans model, when the pruning rate exceeds 10%, the WER increases rapidly.

• For the Ester model, local pruning is more sensitive to convolution layer pruning than global pruning. For Libritrans and Voxforge, it is rather the opposite. Indeed, according to Fig. 3, the convolution layers of the Ester model have higher weight values. • When only the linear layers are pruned, the global and local error rates are close to each other. For these reasons, in the following pruning will be applied only to linear layers.

B. FF layers behaviour

Now, let us examine the behavior of the feedforward layers. We consider global pruning and focus on the F F 1 and F F 2 layers. For different pruning rates, we report their sparsity through the encoder and decoder blocks respectively in Fig. 5 and Fig. 6. Each block contains an F F 1 and an F F 2 layer. The curves in continuous line represent the evolution of F F 1, those in dashed line are that of F F 2. In almost all cases, the feedforward layers F F 1 and F F 2 have decreasing sparsities, confirming the results of Fig. 3. Specifically, the mean weights of F F 1 and F F 2 are close and they decrease through the encoder (and decoder) blocks. Thus, the global pruning of the FF layers seems to be effective. However, we cannot say that the global pruning is optimal. Indeed, this method operates on all layers, whatever their nature or number of parameters and we have seen in the previous section that pruning convolution layers in our models increases the error rate drastically. As for local pruning, it can be argued that it is not adequate given the evolution of FF layer weights and the fact that local pruning assigns the same pruning rate to all layers.

C. MHA layers behaviour

We are now interested in the behavior of the MHA layers namely the matrices W k , W q , W v and W 0 . Considering the progression of weights plotted in Fig. 3, we propose to verify the conclusions of subsection V-B, i.e., that the values of the weights of matrices W k and W q are decreasing and that those of matrices W v and W 0 are increasing. To this end, we subdivided the MHA layers of the encoder into two parts: those of the first half of the encoder and those of its second half. Then we propose to apply different pruning rates to these layers depending on whether they are in the first or second half. More specifically, we try to verify that the pruning rate of the W k and W q layers must be low for the first layers and high for the deep layers. The opposite of this assumption must be true for the W v and W 0 layers, except for Voxforge.

To this end, we applied:

• a fixed pruning rate x to all linear layers of the transformer model except the MHA layers of the encoder • different pruning rates to the MHA layers of the first half of the encoder and its second half, so that the global pruning rate of the MHA layers is x. We assume that W k and W q have equal pruning rates and similarly for W v and W 0 . The variable pruning rates of the MHA layers are illustrated in the following table: with am a positive variable (am < x). Fig 7 reports the error rates when fixing the overall pruning rate x and varying the MHA layers rate using the variable am. When x = am, all MHA layers (in both the first and the second half of the encoder) have the same pruning rate. The corresponding error rate is highlighted on the curves by a large dot. In all curves, we compare the error rates for two parts: before the big point and after it. The global pruning error rate is indicated by a dotted line.

According to these curves, we draw some conclusions:

• For Libri-trans and Ester systems: The error rates to the left of the point are lower than those to its right. This corresponds to a low pruning rate of the first layers W k and W q and a high pruning rate of the deep layers W k and W q . For the W v and W 0 layers, the opposite is true. These results support the assumptions made. • Regarding Voxforge, it is often the right part of the curves that is lower. This means that it is better to apply high pruning rates to the first layers W k and W q as well as W v and W 0 . Indeed, in Fig. 3 the weights of these layers are increasing. This again confirms the previous statements. • The large point on each curve corresponds to the local pruning rate as all layers are pruned with the same rate. This point is often higher than the minimum, so local pruning is not efficient.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we focus on weight pruning of transformer models in end-to-end speech recognition of three languages: Fig. 7: Error rate as a function of the pruning rates of the layers W q (or W k ) for Libri-trans, Ester and Voxforge. English, French and Italian. Standard weight pruning methods operate in a blind manner, with respect to the type of layers, the number of parameters or their behavior. Instead, we suggest a fine-grained analysis of the model layers. We find that pruning layers with few parameters is futile as it decreases performance without greatly reducing the model size. We also notice that the deeper the feedforward layer is, the more important it is and should be pruned less. Regarding the attention layers, their behavior changes with their position: The importance of the first two layers increases with depth, that of the last two decreases. Based on these findings, future work includes automatic analysis of model weights, followed by automatic custom pruning.
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 1 Fig. 1: ASR Transformer main components that are the convolution layers (CONV), the multi-head attention (MHA) layers and the feedforward (FF) layers.

  tv * dv . t * are the elements numbers in different inputs and d * are the corresponding element dimensions. Scaled Dot-Product Attention [1] is then computed as:

Fig. 2 :

 2 Fig. 2: The proportion of weights of convolution layers (Conv), multi-head attention layers (MHA), feedforward layers (FF) and remaining layers (Rest) for the Libri-trans, Ester, and Voxforge models.

Fig. 3 :

 3 Fig. 3: Class weight distribution across the encoder blocks for the three models Libri-trans, Ester and Voxforge.

Fig. 4 :

 4 Fig. 4: Error rate as a function of local and global pruning rates for Libri-trans, Ester and Voxforge models considering all layers or only linear layers.

Fig. 5 :

 5 Fig. 5: F F 1 and F F 2 layers' sparsity for different global pruning rates through the encoder blocks. The curves in continuous line represent the evolution of F F 1, those in dashed line are that of F F 2.

Fig. 6 :

 6 Fig. 6: F F 1 and F F 2 layers' sparsity for different global pruning rates through the decoder blocks. The curves in continuous line represent the evolution of F F 1, those in dashed line are that of F F 2.

TABLE I :

 I Duration (in hours) of the train, dev. and test parts of the three datasets.

		Libritrans Ester	Voxforge
	Train	230	231	18
	Dev	2	5.45	1
	Test	3.5	6.5	1

TABLE II :

 II ASR models specifications: -Architecture : number of encoder and decoder blocks (ENC/DEC), dimension of hidden layers (FF DIM) and attention layers (ATT DIM) and number of attention heads (HEADS) -Number of parameters (Millions) -Error rate (% WER/CER)

		LIBRITRANS	ESTER	VOXFORGE
	ARCHITECTURE			
	ENC/DEC	12/6	18/6	12/6
	FF DIM	1024	2048	2048
	ATT DIM	256	512	256
	HEADS	4	4	4
	PARAMETERS	27.92	89.64	35.07
	ERROR RATE	6.6	14.1	9.1

TABLE III :

 III The pruning rates of the MHA layers of the encoder namely W k , W q , W v and W 0 First half layers Second half of layers Wq and W k pruning rate am 2x -am Wv and W 0 pruning rate 2x -am am
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