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Abstract
The Colless index is a measure of balance used in phylogeny to study the shape of phylogenetic

trees. In this paper, we study a more general class of objects, which we call mobiles, where
leaves of a full binary tree have integer weights. We extend the Colless index to the more general
problem of measuring balance in mobiles. We give a lower bound on the Colless index in the
case of unit weights on n leaves, and give two classes of trees for which this bound is tight. We
then turn to the more general case of mobiles, where we are given a list of integer weights and
are asked to find a mobile of minimal Colless index. We identify instances of this problem that
admit a polynomial-time algorithm, and show that in general it is in the parameterized class XP.
The general problem is not known to be in P nor NP hard, a situation similar to the case of
finding Huffman codes where the costs of the letters are not all equal. We give an integer linear
program for both of these problems, that can easily be adapted to other Huffman-like problems
with different cost evaluation functions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
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1 Introduction

1.1 The Colless index for phylogenetic trees
A phylogenetic tree is an abstract representation of the evolutionary relationships among
species. It is represented as a rooted tree whose leaves are labelled with the species under
study, and each internal node represents the most recent common ancestor of its descendants
(see Figure 1 for an example). The task of phylogenetic reconstruction involves the study of
morphological and molecular similarities. The resulting trees are often compared to other
phylogenies, or to random evolutionary models, to assess their relevance. This has led to the
development of a tree shape theory in phylogeny, that provides comparison techniques based
on the tree topologies.

Among the most studied shape properties is the notion of tree balance [30, 25] which has
been made popular by the Sackin index [29] and the Colless index [10]. The former is the
sum of the depths of the leaves (often normalized to represent the average external path
length), whereas the latter (over binary trees) computes the sum of the absolute difference
|x − y| at each internal node, where x (resp. y) is the number of leaves in the left (resp. right)
subtree of the node considered. We also mention the number of cherries (pairs of adjacent
leaves) [23], and the total cophenetic index defined more recently by Mir et al. [24, 7] as the
sum over all pairs of leaves of the depth of their least common ancestor.
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Figure 1 Example of a phylogenetic tree for the Artiodactyla.

The tree shape indices are used in practice to quantify the diversity skewness of phylogen-
etic trees, and to compare it to models of random tree growth [16, 30, 20, 25, 23, 2, 4, 17]. The
expected value, variance, covariance, etc., of these indices are known for random evolutionary
processes [20, 16, 23, 5, 24, 7]. Some normalization techniques have also been proposed, in
order to compare trees with different number of leaves. Shao and Sokal [30] suggested for
instance to replace an index I over n leaves by (I − Imax)/(Imax − Imin) where Imax (resp.
Imin) is the maximum (resp. minimum) possible value of the index over n leaves. Computing
the maximum of the aforementioned indices is rather straightforward (it is O

(
n2) for the

Sackin and Colless indices, and O
(
n3) for the total cophenetic number [24]). On the other

hand, having closed-form expressions for the minimum can be more involved. Unlike the
Sackin and total cophenetic indices [22, 24], such a formula was not known for the Colless
index until now (Section 3 and Theorem 4). We summarize these results in Table 1.

The previous indices can also be expressed as the sum of costs c(x, y) placed on the
internal nodes of the trees (where c(x, y) = x + y, c(x, y) = |x − y| and c(x, y) =

(
x
2
)

+
(

y
2
)

for the Sackin, Colless and total cophenetic indices, respectively). This implies a natural
linear time algorithm for computing the indices, as well as recursive properties that are given
in Table 1 and will be studied in more detail for the Colless index in this paper.

Index Cost Formula for the Minimum value Optimal trees

Sackin x + y Sn = (⌈log n⌉ + 1)n − 2⌈log n⌉

- Complete[26, 22] Sn = S⌈n/2⌉ + S⌊n/2⌋ + n

Sn+1 = Sn + |n|0 + |n|1 + 1

Colless |x − y| Cn = 2 · (n mod 2k) +
k−1∑
i=0

(−1)bi · (n mod 2i+1)
- Left-complete
- Partition(Section 3) Cn = C⌈n/2⌉ + C⌊n/2⌋ + (n mod 2)

Cn+1 = Cn + |n|0 − |n|1 + 1

Cophenetic
(

x
2

)
+
(

y
2

)
Φn =

(
n
2

)
+ 1

2 · (Cn − Sn)
- Complete[24] Φn = Φ⌈n/2⌉ + Φ⌊n/2⌋ +

(⌈n/2⌉
2

)
+
(⌊n/2⌋

2

)
Φn+1 = Φn + n − |n|1

Table 1 Minimal values of the Sackin (Sn), Colless (Cn) and Cophenetic (Φn) indices over n

leaves. We denote bkbk−1 . . . b0 the binary representation of n, and |n|0 (resp. |n|1) the number of 0
(resp. 1) in it. The rightmost column outlines families of trees realizing the minimum value. A full
characterization for the Colless index is not known. These families will be defined in Section 2.
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1.2 Weights, Huffman coding and Balanced Mobiles

The indices from the previous section can be generalized to binary trees with positive weights
on their leaves. We call such objects “mobiles”, by analogy with what can be found in modern
art (Calder) or above toddler beds. The Sackin (resp. Colless) index of a mobile is computed
as before, except that the internal cost c(x, y) = x + y (resp. c(x, y) = |x − y|) takes as input
the total weight of the leaves in the left and right subtrees of the node considered. The
situation described in Section 1.1 corresponds to mobiles with leaves of weight 1. Note that a
leaf of (integer) weight w can also be interpreted as a fixed subtree with w leaves, for which
we do not want to include its internal imbalances in the total cost.

The Sackin index of a mobile with weights w1, . . . , wn has value
∑n

i=1 wi · li, where li
is the depth of the leaf having weight wi. Minimizing this quantity has been extensively
studied in the context of coding theory, since it is equivalent to the following problem:

▶ Problem 1 (Huffman Coding). Let {a1, a2, . . . , an} be letters and wi the frequency of ai.
Find a prefix code {c1, c2, . . . , cn} minimizing the average code length

∑n
i=1 wi · |ci|, where

|ci| is the length of the encoding ci of ai.

This problem can be solved with the well-known Huffman algorithm [18] that recursively
builds a mobile of optimal Sackin index by grouping the two smallest weights together.
There has been much work attempting to characterize cost functions for which the Huffman
algorithm is optimal. In the generalized setting, we are given a weight merging function w,
a cost function c and a cost combination function F . Given a mobile M over n leaves, the
weight and cost of an internal node are defined recursively as w(x, y) and c(x, y), where x

and y are the weights of the left and right children of the node considered. The total cost of
M is F (c1, . . . , cn−1) where each ci is the cost of a distinct internal node. In the standard
Huffman problem (Sackin index), w(x, y) = c(x, y) = x + y and F is the sum function.

There is an extensive literature [1] on the functions w, c and F for which the Huffman
algorithm minimizes the total cost. One well-studied case for instance is when w(x, y) =
c(x, y) = t + max(x, y) (where t is a constant) and F = max [15, 27]. The cost combination
function F can also be F (c1, . . . , cn−1) =

∑
i f(ci), where f is any nondecreasing concave

function, if w(x, y) = c(x, y) = x + y [11]. Parker [28] encompassed these results in a more
general framework in which F must be a max, min or “Schur concave” function (which
includes the sum), and w and c are some “quasilinear” functions (e.g. sum, max, etc.). From
a more abstract point of view, Knuth [21] developed the notion of “Huffman algebra” in which
the Huffman algorithm minimizes the evaluation cost of any given expression. A complete
characterization of the cases of optimality of the Huffman algorithm is still unknown.

One of the main examples where Huffman’s algorithm is not optimal is Huffman coding
with unequal letter costs. The cost function is c(x, y) = α · x + β · y for some — possibly
nonconstant — parameters α, β (in the basic Huffman problem, α = β = 1). This problem
was first studied by Karp who solved it in exponential time with integer linear programming
[19]. Later, a result of Bradford et al. [6] (improving on a dynamic programming algorithm
from Golin et al. [13]) gave an exact algorithm in time O

(
nmax(α,β)). Golin et al. [12] also

provided a polynomial-time approximation scheme (PTAS). The special case of all-equal
weights wi (also known as Varn coding) has been solved in polynomial time [31, 14, 9], but
no such algorithm is known for the general case, nor is it known to be NP-hard.

The generalized Colless index is another case of non-optimality for the Huffman algorithm
(see a counterexample in Figure 7 of Appendix A). Most of this paper will be devoted to this
problem, which does not seem to have been studied so far, and that we call Balanced Mobiles:
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▶ Problem 2 (Balanced Mobiles). Given a (multi-)set of integer weights {w1, w2, . . . , wn},
find a mobile M whose n leaves have weights w1, w2, . . . , wn (in any possible order) and
whose Colless imbalance CM is as small as possible.

One of our main contributions is to show that the Huffman algorithm (described in
Appendix A.1) solves this problem in the particular case of power-of-two weights (Theorem 6).
This does not fall within the scope of the previous optimality results for the Huffman algorithm.

Summary of results We start by studying the optimal value of the Colless index over trees
with n leaves of unit weight (Section 3). We show that partition and left-complete trees are
optimal, and give recursive and closed-form expressions for their imbalance Cn.

We then turn to polynomial time instances of the Balanced Mobiles problem (Section 4).
We prove that the Huffman algorithm is optimal when the weights are powers-of-two (Sec-
tion 4.1), or for finding perfectly balanced mobiles (Section 4.3). We show that the Balanced
Mobiles problem is in the parameterized class XP, using a relaxation of Huffman’s algorithm
(Section 4.2). The complexity of the given algorithm is roughly O

(
log(n)nC⋆+1) where C⋆ is

the optimal imbalance.
Finally, we give an integer linear program for the Balanced Mobiles problem (Section 5.1)

and we compare it to a naive algorithm based on a bijective characterisation of labeled trees
(Section 5.2). These two algorithms can be used to solve other Huffman-like problems, such
as Huffman coding with unequal letter costs.

2 Terminology of trees

A rooted tree is a connected acyclic graph with one node identified as the root. The depth of
a node is its distance to the root, and the level k of a tree is the nodes at depth k − 1. A
node u is the parent of a node v (resp. v is a child of u) if they are connected by an edge,
and the depth of v is greater than the depth of u. We also say that u is an ancestor of w

(resp. w is a descendant of u) if there is a path from w to u in which each node is the parent
of the previous one. Two nodes are siblings if they have the same parent. A leaf is a node
which is not parent to any other node. A node which is not a leaf is called an internal node.

We focus on (rooted) full binary trees in which each internal node has exactly two children.
Such a tree is ordered if the children of each parent are identified as left or right. We also
sometimes refer to left and right children for unordered trees, in which case they can be
chosen arbitrarily.

Some special cases of full binary trees are the cherry (binary tree over two leaves), the
perfect trees over 2k leaves (all the leaves have depth k), the complete trees (the leaves
are concentrated on the last two levels), the left-complete trees (complete trees with the
additional condition that all leaves in the last level are as far left as possible) and the partition
trees (at each internal node, the number of leaves x and y in the left and right subtrees differ
by at most 1). Since all the partition trees over n leaves are isomorphic, we will talk about
the partition tree Pn over n leaves. We also denote Ln the left-complete tree over n leaves.

Figure 2 Partition tree P11 (on the left) and left-complete trees L11 (on the right).
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A mobile is a full binary tree whose leaves are labelled with positive integer weights. As
the Colless index is the only measure of imbalance studied in this paper, we fix the local
imbalance of an internal node ν to be the difference (in absolute value) between the weights
of the left and right subtrees of ν, and the (Colless) imbalance CM of a mobile M to be the
sum of its local imbalances. We also define the imbalance CT of a tree T as the imbalance
of T with unit weights on its leaves, and we denote Cn the smallest possible imbalance for
a tree with n leaves. A mobile M is optimal if it is not possible to achieve an imbalance
less than CM on the same weights as M . If CM = 0 then M is said to be perfectly balanced.
Figure 3 depicts two mobiles built on weights {2, 3, 5, 7}. The local imbalances are written
next to the internal nodes.

2 7 3 5

1

5 2 7
5

32

0

1

3

Figure 3 Two mobiles built on weights {2, 3, 5, 7}. The imbalance of the left mobile is 8. The
imbalance of the right one is 4. The right mobile is optimal: one cannot build a mobile of imbalance
less than 4 on weights {2, 3, 5, 7}.

3 Minimal values of the Colless index for unit weights

We study the Collex indices CPn
and CLn

of the partition and left-complete trees over n

leaves. We prove that these trees have both minimal Colles index (i.e. CPn = CLn = Cn).
This allows us to give several characterizations of the optimal Colless index Cn over n leaves,
including a closed-form expression.

The combinatorial structures of the partition and left-complete trees lead to two natural
recursive definitions of their imbalance.

▶ Proposition 1. The imbalance CPn of the partition tree Pn over n leaves is
CP1 = 0
CP2n

= 2CPn

CP2n+1 = 1 + CPn + CPn+1

Proof. The local imbalance of the root of a partition tree is zero if and only if the tree has
2n leaves (for some n). In this case, the left and right subtrees of the root have both n leaves.
Thus CP2n

= 2CPn
. On the other hand, the local imbalance of the root is one if and only if

the tree has 2n + 1 leaves (for some n). In this case, the left and right subtrees of the root
have n and n + 1 leaves respectively. Thus CP2n+1 = 1 + CPn + CPn+1 . ◀

▶ Proposition 2. The imbalance CLn
of the left-complete tree Ln over n leaves is{

CL1 = 0
CLn+1 = CLn + |n|0 − |n|1 + 1

where |n|0 (resp. |n|1) is the number of 0 (resp. 1) in the binary representation of n.

Proof. The left-complete tree over n + 1 leaves is obtained from the left-complete tree over
n = 2k + m leaves (where 0 ≤ m < 2k) by replacing the leftmost leaf of depth k with
a cherry. We show in Appendix B.1 that this operation increases the total imbalance by
|n|0 − |n|1 + 1. ◀
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Using the previous two propositions, it is easy to prove that the partition and left-complete
trees have the same imbalance (i.e. CPn

= CLn
). This is shown in Theorem 4 below. Before,

we prove that the partition trees have optimal Colless index, which will also imply the
optimality of the left-complete trees.

▶ Proposition 3. The partition trees have optimal Colless index.

Proof. We show how to transform any optimal tree into a partition tree, without increasing
the imbalance. The proof is done by induction on n in Appendix B.2. ◀

We can now conclude our study of the optimal Colles index Cn over trees with n leaves.
The next theorem gives several characterizations of Cn in terms of trees, recursive formula
and closed-form expressions.

▶ Theorem 4. Denote by bkbk−1 . . . b0 the binary representation of n, and |n|0 (resp. |n|1)
the number of 0 (resp. 1) in it. Then, the following definitions of Cn are equivalent:
1. Cn is the optimal Colless index for a tree with n leaves
2. Cn is the imbalance of the partition tree over n leaves
3. Cn is the imbalance of the left-complete tree over n leaves
4. C1 = 0, C2n = 2Cn and C2n+1 = 1 + Cn + Cn+1

5. C1 = 0 and Cn+1 = Cn + |n|0 − |n|1 + 1

6. Cn = 2 · (n mod 2k) +
k−1∑
i=0

(−1)bi · (n mod 2i+1)

Proof. The equivalence between the first, second and fourth definitions is a direct consequence
of Propositions 1 and 3. Using the characterization of CPn

and CLn
given in Propositions 1

and 2 respectively, we prove in Appendix B.3 that CPn
= CLn

. This shows the equivalence
between the third, fourth and fifth definitions. Finally, the equivalence with the last item is
also proved in Appendix B.3, using the fourth and fifth definitions. ◀

▶ Remark. These results about Cn and the Colless index are summarized and compared to
other tree shape statistics in Table 1. In particular, note that

(
n+1

2
)

+ (Cn+1 − Sn+1)/2 =((
n
2
)

+ (Cn − Sn)/2
)

+ n − |n|1. Thus, Φn =
(

n
2
)

+ (Cn − Sn)/2, where Sn and Φn are
respectively the optimal Sackin and total cophenetic indices defined in introduction.

The set of trees having optimal Colless index seems to be more complex than for the
Sackin and total cophenetic indices, and we dot not have a full characterization of it. It
might be tempting to propose the family of complete trees (as it includes the partition and
left-complete trees). However, Figure 4 gives a counterexample to this conjecture.

11 1 1
1 11 1 1 1 1 1

2

1

1

1

1

Figure 4 A non-optimal complete tree over 12 leaves (the imbalance is 6, whereas C12 = 4).
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4 Polynomial time instances of Balanced Mobiles

In the previous section, we studied the minimal Colless index for mobiles with unit weights.
Here, we turn our attention to the Balanced Mobiles problem, that generalizes this problem
to arbitrary input weights. We restrict to coprime numbers, as multiplying all the weights by
a same factor does not change the shape of the optimal mobiles.

We concentrate on the Huffman algorithm for Balanced Mobiles, that recursively builds a
mobile by grouping the two smallest weights together (see Appendix A.1). This algorithm is
not optimal in general for solving Balanced Mobiles, nor it is an approximation algorithm
(see Figure 7 of Appendix A). However, we show in Section 4.1 that it becomes optimal
if the weights are restricted to be powers-of-two. We also prove that the general Balanced
Mobiles problem is in the parameterized class XP, by giving an algorithm that finds optimal
mobiles in polynomial time when the total imbalance is a fixed constant. In the case of
perfectly balanced mobiles, which is studied in Section 4.3, this algorithm behaves exactly
like Huffman.

4.1 Mobiles with powers-of-two weights
Observe first that the Huffman algorithm executed on n unit weights gives precisely the
left-complete tree Ln. Consequently, using Theorem 4, the Huffman algorithm is optimal in
this case.

▶ Proposition 5. If the weights w1, . . . , wn are all equal to one, then the Huffman algorithm
builds an optimal mobile.

We generalize this optimality result to powers-of-two weights.

▶ Theorem 6. If the weights w1, . . . , wn are powers of two, then the Huffman algorithm
builds an optimal mobile in time O(n log n).

Proof. This is a proof by contradiction that uses the result of Proposition 5. We assume that
Theorem 6 is false and choose a particular mobile M that must exist in this case and have
some minimality properties. We then derive a contradiction by studying the two possible
shapes of this mobile. See Appendix C for the details. ◀

As explained in introduction (Section 1.2), there is an extensive literature (notably
[1, 28, 21]) on the Huffman-like problems that can be solved with the Huffman algorithm.
None of these results applies to the case of Theorem 6. We hope it would help to characterize
further families of problems solved with the Huffman algorithm.

4.2 Mobiles of constant imbalance
We relax the Huffman algorithm to construct optimal mobiles for arbitrary input weights. Our
goal is to find a mobile of imbalance less than a given threshold δ (if one exists). Instead of
always grouping the two smallest weights w1 and w2, as it is done in Huffman’s algorithm, we
also try to group w1 with the other weights wi such that |w1−wi| ≤ δ and we search recursively
a mobile of imbalance less than δ−|w1 −wi| on {w1 +wi, w2, . . . , wi−1, wi+1, . . . , wn}. We call
this algorithm R-Huffman. See Appendix A.2 for the formal description and the complexity
analysis. This result shows that Balanced Mobiles is in the parameterized class XP.

▶ Theorem 7. Given weights {w1, . . . , wn} and a threshold δ, R-Huffman finds a mobile of
imbalance at most δ (if one exists) in time O

(
log(n)nmin(δ,n)+1) and space O(n log n).
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▶ Corollary 8. The optimal imbalance C⋆ over n weights w1, . . . , wn can be found in time
O
(
log(n)nmin(C⋆,n)+1) by running the R-Huffman algorithm with δ = 0, 1, 2 . . . , C⋆. In partic-

ular, this is polynomial time if C⋆ is known to be bounded by a constant.

The proof is immediate from the following lemma.

▶ Lemma 9. For any weights w1 ≤ · · · ≤ wn, there exists an optimal mobile in which the
sibling of the leaf of weight w1 is also a leaf.

Proof. Given two mobiles of weights A and B such that w1 ≤ A ≤ B, the following rotation
does not increase the imbalance:

A B

w1 −→
A

B
w1

Consequently, starting from an optimal mobile and repeating this operation several times, we
can increase the depth of the leaf of weight w1 until its sibling is another leaf. The resulting
mobile is also optimal. ◀

4.3 Perfectly balanced mobiles
The R-Huffman and Huffman algorithms are equivalent if the input is δ = 0. Thus, Theorem 7
implies that the Huffman algorithm is optimal for finding perfectly balanced mobiles.

▶ Theorem 10. The Huffman algorithm builds a perfectly balanced mobile on weights w1, . . . ,

wn in time O(n log n), whenever such a mobile exists.

▶ Remark. It is also easy to see from Theorem 7 that Huffman is optimal when the smallest
imbalance is 1. However, Figure 7 in Appendix A.1 gives a counterexample for imbalance 2.

It turns out that the class of weights that admit such mobiles can be easily characterized.

▶ Theorem 11. There exists a perfectly balanced mobile on the (coprime) weights w1, . . . , wn

if and only if all the weights wi are powers of two and
∑n

i=1 wi is a power of two.

Proof. The proof proceeds by induction. Details are provided in Appendix D. ◀

4 4

1 1
2 2 2

Figure 5 A perfectly balanced mobile on weights {1, 1, 2, 2, 2, 4, 4}.

5 Exponential algorithms for Balanced Mobiles

We conclude with an integer linear program that solves Balanced Mobiles, as well as many
other Huffman-like problems. We also detail briefly an exhaustive search algorithm based on
a bijective characterisation of labeled trees.
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5.1 Integer Linear Programming
In this section, we add the extra condition that mobiles are ordered trees. We first describe
what the variables of our program represent. Recall that any mobile built on n weights
w1, . . . , wn has exactly n − 1 internal nodes. We say that a numbering of these nodes is
increasing if each path from the root has increasing numbers (the node v cannot be an
ancestor of the node u if u < v) and no two nodes have the same number. For simplicity, we
assume that these numbers are taken in {1, . . . , n − 1} (in particular, the root is numbered
1). Given an increasing numbering, we associate with each weight wi (1 ≤ i ≤ n) and each
node u (1 ≤ u ≤ n − 1) two boolean variables ℓi,u and ri,u assigned as follows:

ℓi,u = 1 if wi is in the left subtree of the node u, 0 otherwise
ri,u = 1 if wi is in the right subtree of the node u, 0 otherwise.

Figure 6 illustrates a mobile with the assignment of the corresponding variables.

1

2 3

w2 4 w3 w5

w1 w4

weight
node 1 2 3 4

w1 ℓ1,1 = 1 ℓ1,2 = 0 ℓ1,3 = 0 ℓ1,4 = 1
r1,1 = 0 r1,2 = 1 r1,3 = 0 r1,4 = 0

w2 ℓ2,1 = 1 ℓ2,2 = 1 ℓ2,3 = 0 ℓ2,4 = 0
r2,1 = 0 r2,2 = 0 r2,3 = 0 r2,4 = 0

w3 ℓ3,1 = 0 ℓ3,2 = 0 ℓ3,3 = 1 ℓ3,4 = 0
r3,1 = 1 r3,2 = 0 r3,3 = 0 r3,4 = 0

w4 ℓ4,1 = 1 ℓ4,2 = 0 ℓ4,3 = 0 ℓ4,4 = 0
r4,1 = 0 r4,2 = 1 r4,3 = 0 r4,4 = 1

w5 ℓ5,1 = 0 ℓ5,2 = 0 ℓ5,3 = 0 ℓ5,4 = 0
r5,1 = 1 r5,2 = 0 r5,3 = 1 r5,4 = 0

Figure 6 An evaluation tree and the corresponding correct assignment.

We now address the reverse question: given a set of variables (ℓi,u, ri,u)1≤i≤n,1≤u≤n−1:
how can one characterize the correct assignments that represent existing mobiles? We first
describe a set of conditions, and we translate them later into linear constraints.

▶ Definition 12. An assignment of the boolean variables (ℓi,u, ri,u)1≤i≤n,1≤u≤n−1 is correct
if it corresponds to a mobile whose leaves are distinctly labeled with w1, . . . , wn, together
with an increasing numbering of its internal nodes. An assignment is proper if it satisfies the
following conditions:

(1) Disjoint subtrees For all i and u, either ℓi,u = 0 or ri,u = 0.
(2) Root consistency For all i, either ℓi,1 = 1 or ri,1 = 1.
(3) Full binary tree For all u, there exists i such that ℓi,u = 1 and j such that rj,u = 1.
(4) Left leaf node If ℓi,u = 1 and ℓi,v = ri,v = 0 for all v > u, then ℓj,u = 0 for all j ̸= i.

Right leaf node If ri,u = 1 and ℓi,v = ri,v = 0 for all v > u, then rj,u = 0 for all j ̸= i.
(5) Common ancestors If ℓi,v + ri,v = ℓj,v + rj,v = 1 then ℓi,u = ℓj,u and ri,u = rj,u for u < v.
(6) Direct child node If ℓi,u = ℓj,u = 1 or ri,u = rj,u = 1, then there exists v > u such that

ℓi,v + ri,v = ℓj,v + rj,v = 1 and ℓi,w = ri,w = ℓj,w = rj,w = 0 for all
u < w < v.

We intend to show that the correct assignments are precisely the proper ones. We first
prove that the previous conditions are necessary for an assignment to be correct.

▶ Proposition 13. Any correct assignment is proper.
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Proof. Consider a correct assignment of the variables (ℓi,u, ri,u)1≤i≤n,1≤u≤n−1 and a corres-
ponding mobile M built on some weights w1, . . . , wn. We make some basic observations on
this mobile that explain why this assignment is also proper.

The leaf with weight wi cannot be simultaneously in the left and right subtrees of the
node u (Condition 1). All the leaves are either in the right or the left subtree of the root
(Condition 2). Each internal node has at least one leaf in its left subtree and one leaf in its
right subtree (Condition 3). If the left child of the node u is the leaf with weight wi (i.e.
ℓi,u = 1 and ℓi,v = ri,v = 0 for all v > u, since we consider increasing numbering), then none
of the other leaves can be in the left subtree of the node u (first case of Condition 4, the
second one is similar). If v is a common ancestor to the leaves of weights wi and wj (i.e.
ℓi,v + ri,v = 1 and ℓj,v + rj,v = 1), then they must also have the same ancestors from node
1 to v (Condition 5). If the leaves of weights wi and wj are in the left subtree of the node
u (i.e. ℓi,u = ℓj,u = 1), then the left child v of the node u is a common ancestor to these
leaves (ℓi,v + ri,v = ℓj,v + rj,v = 1) and none of the other nodes w, for u < w < v, can be an
ancestor to them (first case of Condition 6, the second one is similar). ◀

We now show that these conditions are sufficient for an assignment to be correct.

▶ Proposition 14. Any proper assignment is correct.

Proof. We show how to split the set of variables into two parts, for which the two restrictions
of the initial proper assignment are also proper. Using a well chosen induction hypothesis, it
implies that these two restricted assignments are correct. Finally, the initial assignment is
proved to be also correct, since it corresponds to a mobile whose left and right subtrees are
associated to the two previous sets of variables. See Appendix E.1 for the details. ◀

It is now easy to convert the conditions of Definition 12 into linear constraints.

▶ Proposition 15. The boolean assignments that satisfy the following integer constraints are
the correct assignments.

Constraint 0: ∀i, u, 0 ≤ ℓi,u ≤ 1 and 0 ≤ ri,u ≤ 1
Constraint 1: ∀i, u, ℓi,u + ri,u ≤ 1
Constraint 2: ∀i, ℓi,1 + ri,1 = 1
Constraint 3: ∀u,

∑
i
ℓi,u > 0 and

∑
i
ri,u > 0

Constraint 4: ∀i ̸= j, ∀u,

{
(1 − ℓi,u) +

∑
v>u

(ℓi,v + ri,v) ≥ ℓj,u

(1 − ri,u) +
∑

v>u
(ℓi,v + ri,v) ≥ rj,u

Constraint 5: ∀i ̸= j, ∀u < v,

{
ℓi,u + (ℓi,v + ri,v + ℓj,v + rj,v) ≤ 2 + ℓj,u

ri,u + (ℓi,v + ri,v + ℓj,v + rj,v) ≤ 2 + rj,u

Constraint 6: ∀i ̸= j, ∀u < u′,

{
2 − ℓi,u − ℓj,u +

∑u′

w=u+1(ℓi,w + ri,w) ≥ ℓj,u′ + rj,u′

2 − ri,u − rj,u +
∑u′

w=u+1(ℓi,w + ri,w) ≥ ℓj,u′ + rj,u′

Moreover, this set of constraints involves O
(
n2) 0–1 variables and O

(
n4) constraints.

Proof. Translating the conditions of Definition 12 into these constraints is straightforward.
See Appendix E.2 for the details. ◀

Finally, the choice of the objective function in the linear program follows from the cost
function used for Balanced Mobiles.

▶ Theorem 16. The optimal mobiles for the Balanced Mobiles problem with weights w1, . . . ,

wn are those that satisfy the constraints of Proposition 15 and minimize the objective function
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n−1∑
u=1

∣∣∣∣ n∑
i=1

(ℓi,u − ri,u) · wi

∣∣∣∣
The solutions to this program can be computed (naively) in time 2O(n2) and space O

(
n2).

Proof. The cost associated to each internal node u of a mobile is
∣∣∑

i∈Lu
wi −

∑
i∈Ru

wi

∣∣,
where Lu (resp. Ru) are the leaves in the left (resp. right) subtree of node u. We also have∑

i∈Lu
wi =

∑n
i=1 ℓi,u · wi and

∑
i∈Ru

wi =
∑n

i=1 ri,u · wi. The total cost is the sum over all
the internal nodes of these quantities. ◀

Note that the constraints specified in Proposition 15 only express the fact that the mobiles
are correctly constructed. It does not say anything about the imbalance. Consequently, other
Huffman-like problems can be cast in this linear program, using other objective functions.
This is the case for instance of Huffman coding with unequal letter costs.

▶ Theorem 17. The optimal mobiles for the problem Huffman coding with unequal letter
costs α, β and weights w1, . . . , wn are those that satisfy the constraints of Proposition 15 and
minimize the objective function

n−1∑
u=1

n∑
i=1

(α · ℓi,u + β · ri,u) · wi

▶ Corollary 18. Balanced Mobiles and Huffman coding with unequal letter costs can be recast as
integer linear programs with O

(
n2) variables and O

(
n4) constraints. Moreover, the program

for Huffman coding with unequal letter costs contains only binary variables.

Proof. The objective function for Balanced Mobiles is
∑n−1

u=1 |
∑n

i=1(ℓi,u − ri,u) · wi|, which is
not linear. However, we can introduce new variables x1, . . . , xn−1 together with constraints
xu ≥

∑n
i=1(ℓi,u − ri,u) · wi and xu ≥ −

∑n
i=1(ℓi,u − ri,u) · wi (for all u) and a new objective

function
∑n−1

u=1 xu. This program has the same solutions as the original one, and it is linear.
The objective function for Generalized Huffman Coding is already linear. ◀

▶ Remark. We point out that the LP relaxations of the linear programs for these problems
admit a zero solution (obtained by setting all the ℓi,u and ri,u variables to 1/2). This rules
out the possibility of using a relaxation to obtain approximation algorithms.

Our 0-1 integer linear program for solving Huffman coding with unequal letter costs is an
alternative to the one proposed by Karp [19]. The latter contains O

(
max(α, β) · n2) variables

and O(max(α, β) · n) constraints in the worst case (Karp suggests some heuristics to decrease
these numbers). Also note that the heuristic methods used in practice for solving integer
linear programs may often be better than the above mentioned 2O(n2) time complexity.

5.2 Efficient enumeration of trees
We give a second (naive) exponential time algorithm, based on a bijection between leaf-
labeled, unordered, full binary trees and matchings. It uses exhaustive search by efficiently
enumerating all mobiles, and finding the one with minimum imbalance. It also works for
any other Huffman-like problem, by changing the cost function which is evaluated on the
enumerated trees.

▶ Proposition 19. There is an algorithm that solves Balanced Mobiles exactly in O
(
2(n log n)/2)

time and O(n log n) space.

Proof. See Appendix F. ◀
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The space complexity is polynomial and the algorithm is highly parallelizable. The
worst-case complexity is also better than for the integer linear program. However, it could
be the case that the input weights and the heuristics of the LP solvers used in practice make
the latter more efficient.

6 Concluding remarks

This work leaves open many questions. The first is to find a polynomial-time algorithm
that solves the Balanced Mobiles problem, or to prove that it is NP-hard. This is also open
for other Huffman-like problems, such as Huffman coding with unequal letter costs. More
generally, what are the cost functions for which there is a polynomial time algorithm, an
approximation scheme or a fixed parameter tractable algorithm? Can we describe all the
situations in which the Huffman algorithm is optimal?

One direction that could be explored further is to use the bijection between labeled trees
and matchings to devise a new integer linear program, and then use a rounding argument to
get an approximation algorithm for some cost functions.
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A Algorithms

A.1 Huffman algorithm for the Colless index

Algorithm 1: Huffman algorithm for the Colless index
Input: weights w1 ≤ · · · ≤ wn

Output: imbalance Huffman(w1, . . . , wn)
if n = 2 then

Return |w2 − w1|
else

Return |w2 − w1| + Huffman(Sort(w1 + w2, w3, . . . , wn))

In this procedure, w1 +w2 is not always the smallest weight among w1 +w2, w3, . . . , wn. This
is why they are sorted in increasing order. In practice, it is better to use a min-heap so as to
extract the two smallest weights and then re-insert their sum efficiently. Thus, the running
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time can be made O(n log n). The algorithm can also be modified to output a mobile that
achieves the resulting imbalance. Ties can be handled arbitrarily, as it may change the shape
of the mobile but not its imbalance.

The Huffman algorithm does not solve the general Balanced Mobiles problem, nor it is an
approximation algorithm, as shown in Figure 7.

2
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2 2

1

1

1
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3 3
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1

Figure 7 Two mobiles built on weights {2, 2, 3, 3} ∪ {5 · 2j , 5 · 2j}k
j=0. The left mobile is obtained

with Huffman’s algorithm, it has imbalance 4 + 2k. The right mobile is optimal, it has imbalance 2.

A.2 Relaxation of Huffman for small imbalance: R-Huffman

Algorithm 2: R-Huffman algorithm
Input: weights w1 ≤ · · · ≤ wn, threshold δ

Output: True if there exists a mobile of imbalance less than δ on weights
{w1, . . . , wn}, False otherwise

1 if n = 2 then
2 Return the boolean value |w1 − w2| ≤ δ

3 else
4 foreach i ≥ 2 such that |w1 − wi| ≤ δ do
5 if R-Huffman(Sort(w1 + wi, w2, . . . , wi−1, wi+1, . . . wn), δ − |w1 − wi|) then
6 Return True

7 Return False

Let us replace {w1, . . . , wn} by a set {(qj , nj)} in which the qj are the distinct weights of
the multiset {w1, . . . , wn} and the nj are their multiplicities (

∑
nj = n).

The line 4 is executed at most n times. The insertion in the sorted list (line 5) can then
be done in O(log n). Thus, apart from the recursive calls, the running time is O(n log n).

Since the qj are all distinct, the recursive calls of the line 5 cannot be run twice on the
same threshold. Denote by T (n, δ) the complexity of R-Huffman({w1, . . . , wn}, δ) (for a worst-
case input {w1, . . . , wn}). We obtain T (n, δ) ≤ O(n log n) +

∑min(δ,n)
i=0 T (n − 1, i). Moreover,

T (n, 0) = O(n log n). It is easy to prove by induction that T (n, δ) = O
(
log(n)nmin(δ,n)+1).

Recall that we don’t take into account the magnitude of the weights for the space
complexity. The algorithm uses a stack of depth O(n) and O(log n) space on each level of
the stack to store the position i of the element which is grouped with w1 (line 4). Overall
the space needed is O(n log n).



Y. Hamoudi, S. Laplante, R. Mantaci XX:15

B Proofs for Section 3 (Colless index for unit weights)

B.1 Proof of Proposition 2 (Imbalance of left-complete trees)
We want to show that the imbalance CLn

of the left-complete tree Ln over n leaves is{
CL1 = 0
CLn+1 = CLn

+ |n|0 − |n|1 + 1

where |n|0 (resp. |n|1) is the number of 0 (resp. 1) in the binary representation of n.
Consider the left-complete tree Ln over n = 2k +m leaves, where 0 ≤ m < 2k, and replace

the leftmost leaf ℓ of depth k by a cherry (so as to obtain Ln+1). During this operation, the
local imbalances evolve as follows (see Figure 2 for an example):

the local imbalances of the nodes which are not ancestors of the leaf ℓ do not change
for each ancestor ν of ℓ, if ℓ is in the right (resp. left) subtree of ν then the local imbalance
at node ν decreases (resp. increases) by 1

1

1

1

1 11 1 1 1
1 1

1

−→

1+1

1+1

1−1

1 11 1 1 1
1 11 1

−→

2

2

1 11 1 1 1
1 11 1

Figure 8 Evolution of the local imbalances between L9 and L10.

In other words, CLn+1 is obtained from CLn
by adding +1 when going to the left on the

path from the root to leaf ℓ, and −1 when going to the right. If we label the nodes at depth
k by their binary representation with k bits (the leftmost node is labeled by k zeros, and the
rightmost one by k ones), then the quantity to be added is the number of zeros minus the
number of ones in the label of node ℓ.

000 001 010 011 100 101 110 111

Figure 9 Numbering of the nodes at depth three on 3 bits. When going from 9 to 10 leaves, the
imbalance increases of +1 since the node to be replaced with a cherry has label 001.

However, the label of the node ℓ is precisely the binary representation of m over k bits.
Denote by Pad(m, k) the binary representation of m padded with 0 on the left to be of
length k. We have:

CLn+1 = CLn + |Pad(m, k)|0 − |Pad(m, k)|1
= CLn

+
∣∣2k + m

∣∣
0 −

∣∣2k + m
∣∣
1 + 1

= CLn
+ |n|0 − |n|1 + 1
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B.2 Proof of Proposition 3 (Optimality of partition trees)

We prove by induction on n that the partition trees have optimal Colless index. The base
cases n = 2 and n = 3 are trivial. We take some n ≥ 4 and assume that our hypothesis is
true up to n − 1. We want to show that it is also the case for n.

Consider an optimal tree T with n leaves. Denote by TL and TR the left and right subtrees
of T , and let ℓ and r be the number of leaves in TL and TR respectively (ℓ + r = n, and
|ℓ − r| is the local imbalance of the root). We show how to transform T into the partition
tree Pn without increasing the imbalance (i.e. CT = CPn).

The induction hypothesis is applied first to ℓ and r: the partition trees Pℓ and Pr on ℓ

and r leaves respectively are optimal. We denote by T ′ the tree T in which TL and TR are
replaced by Pℓ and Pr. We must have CT = CT ′ since T is optimal, CPℓ

≤ CTL
and CPr

≤ CTR
.

If ℓ = 1 or r = 1 then the local imbalance of the root of T ′ is n − 2. However, using
Proposition 1, it is easy to prove that CPn

< n−2 (when n ≥ 4). Consequently, we must have
ℓ, r ≥ 2 (since CT ′ ≤ CPn

). We denote P −
ℓ and P −

r the left subtrees of Pℓ and Pr respectively,
and P +

ℓ and P +
r their right subtrees. We also let ℓ−, r−, ℓ+, r+ be the number of leaves in

all of these subtrees (ℓ− + ℓ+ = ℓ and r− + r+ = r). We can assume w.l.o.g. that ℓ ≤ r,
ℓ− ≤ ℓ+ and r− ≤ r+. Since Tℓ and Tr are partition trees, we must have ℓ+ − ℓ− ≤ 1 and
r+ − r− ≤ 1. The tree T ′ is as follows:

Pℓ− Pℓ+ Pr− Pr+

r− + r+ − ℓ− − ℓ+

ℓ+ − ℓ− r+ − r−

Consider now the three possible cases:
ℓ− = ℓ+ and r− = r+. The imbalance of T ′ is: CT = CT ′ = CPℓ− + CPℓ+ + CP −

r
+ CP +

r
+

2(r− − ℓ−). We rotate T ′ into T ′′ as follows:

Pℓ− Pr− Pℓ+ Pr+

0

r− − ℓ− r− − ℓ−

The new imbalance is CT ′′ = CPℓ− + CPℓ+ + CPr− + CPr+ + 2(r− − ℓ−) = CT . Thus, T ′′

is still optimal, but the local imbalance of the root is 0 now. Finally, we replace the
left and right subtrees of T ′′ by Pℓ−+r− so as to obtain Pn. According to the induction
hypothesis, this does not increase the imbalance. Thus CT = CPn

.
ℓ+ = ℓ− + 1, r− = r+. The imbalance of T ′ is: CT = CT ′ = CPℓ− + CPℓ+ + CPr− + CPr+ +
2(r− − ℓ−). We rotate T ′ into T ′′ as follows:

Pℓ− Pr− Pℓ+ Pr+

1

r− − ℓ− r− − ℓ− − 1

T ′′ is still optimal (CT ′′ = CT ), but the local imbalance of the root is 1 now. We reuse
the induction hypothesis on the left and right subtrees of T ′′ to turn it into Pn without
increasing the imbalance. Thus CT = CPn

.
We use the same kind of reasoning for the last case: ℓ+ = ℓ− + 1 and r+ = r− + 1.
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B.3 Proof of Theorem 4 (Optimal imbalance for unit weights)

We first prove that C2n = 2Cn and C2n+1 = 1 + Cn + Cn+1 implies Cn+1 = Cn + |n|0 − |n|1 + 1.
Equivalently, we want to show that λn = |n|0 − |n|1 + 1, where λn = Cn+1 − Cn. The proof
is by induction on n. The base case is true since λ1 = C2 − C1 = 0 − 0 = |1|0 − |1|1 + 1.
Consider now n > 1 and assume that the result is true up to n − 1. There are two cases:

If n = 2m (n even) then λ2m = C2m+1 − C2m = 1 + Cm + Cm+1 − 2Cm = 1 + λm (second
case of Theorem 4). So, using the induction hypothesis, λ2m = 1 + |m|0 − |m|1 + 1.
However |n|0 = |2m|0 = |m|0 + 1 and |n|1 = |2m|1 = |m|1. Thus, λn = |n|0 − |n|1 + 1.
The other case n = 2m + 1 (n odd) can be proved similarly.

We now show Cn = 2 · (n mod 2k) +
k−1∑
i=0

(−1)bi · (n mod 2i+1) using the fourth and fifth

definitions of Theorem 4. The proof is by induction on n. Observe that it is true for all
n ≤ 8, and consider the binary representation bkbk−1 . . . b0 of an integer n > 8. There are
two cases:

If n = 2m (n is even) then b0 = 0. According to the fourth definition of Theorem 4, we
have Cn = 2 · Cm. Thus, using the induction hypothesis:

Cn = 2 ·

(
2 · (m mod 2k−1) +

k−2∑
i=0

(−1)bi+1 · (m mod 2i+1)
)

= 2 · (n mod 2k) +
k−2∑
i=0

(−1)bi+1 · (n mod 2i+2) since b0 = 0

= 2 · (n mod 2k) +
k−1∑
i=0

(−1)bi · (n mod 2i+1)

If n = 2m + 1 (n is odd) then b0 = 1. Assume that there exists i such that bi = 0
(otherwise it is easy to directly prove that the result is true for n = 2k+1 −1). Let i0 be the
position of the rightmost 0 (i.e. n = bk . . . bi0+101 . . . 1). According to the fifth definition
of Theorem 4, we have Cn = Cm + Cm+1 + 1. Thus, using the induction hypothesis:

Cn =
(

2 · (m mod 2k−1) +
k−2∑
i=0

(−1)bi+1 · (m mod 2i+1)
)

+
(

2 · (m + 1 mod 2k−1)

+
i0−1∑
i=0

(−1)1+bi+1 · (m + 1 mod 2i+1) +
k−2∑
i=i0

(−1)bi+1 · (m + 1 mod 2i+1)
)

+ 1

However, for all i < i0 we have (m + 1 mod 2i) = 0, and (m + 1 mod 2i0) = 2i0−1. Thus:

Cn =
(

2 · (m mod 2k−1) +
k−2∑
i=0

(−1)bi+1 · (m mod 2i+1)
)

+
(

2 · (m + 1 mod 2k−1)

−2i0−1 +
k−2∑
i=i0

(−1)bi+1 · (m + 1 mod 2i+1)
)

+ 1
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Moreover,
i0−1∑
i=0

(−1)bi+1 · (m mod 2i+1) = −2i0−1 + i0. Consequently:

Cn = 4 · (m mod 2k−1) + 2 ·
k−2∑
i=0

(−1)bi+1 · (m mod 2i+1) +
k−2∑
i=i0

(−1)bi+1 − i0 + 3

Finally,
i0−1∑
i=0

(−1)bi+1 = 2 − i0. It implies that:

Cn = 4 · (m mod 2k−1) + 2 ·
k−2∑
i=0

(−1)bi+1 · (m mod 2i+1) +
k−2∑
i=0

(−1)bi+1 + 1

= 4 · bk−1 . . . b1 + 2 ·
k−2∑
i=0

(−1)bi+1 · bi+1 . . . b1 +
k−2∑
i=0

(−1)bi+1 + 1

= 2 · (bk−1 . . . b10 + 1) +
k−2∑
i=0

(−1)bi+1 · (bi+1 . . . b10 + 1) − 1

= 2 · (n mod 2k) +
k−2∑
i=0

(−1)bi+1 · (n mod 2i+2) − 1

= 2 · (n mod 2k) +
k−1∑
i=0

(−1)bi · (n mod 2i+1)

C Proof of Theorem 6 (Powers-of-two weights)

▶ Definition 20. A mobile M is said to be irregular if it verifies the following conditions:
M is an optimal mobile built on powers-of-two weights
M cannot be built by the Huffman algorithm
the imbalance of M is less than the one obtained by the Huffman algorithm on the same
weights.

Theorem 6 precisely states that if the weights are powers of 2, then there is no irregular
mobile. We prove it by contradiction. Assume from now on that such mobiles exist. We are
going to choose one of them that verifies some minimality conditions.

▶ Definition 21. For any mobile M , define the maximum max M of M to be the greatest
weight on the leaves on M . Let m be the smallest possible maximum for irregular mobiles.
We choose M to be an irregular mobile whose maximum is m, and whose number of leaves
is as small as possible among all the irregular mobiles of maximum m.

We also define ML and MR to be the left and right subtrees of M. We state several
lemmas allowing to prove that M cannot exist.

▶ Lemma 22. We have: m ≥ 2.

Proof. According to Proposition 5, there is no irregular mobile whose weights are all equal
to one. ◀

▶ Lemma 23. We can assume w.l.o.g. that ML and MR are built by the Huffman algorithm.
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Proof. Note that ML is an optimal mobile whose maximum is at most m, and that has
fewer leaves than M. Given the minimality conditions on M, the mobile ML cannot be
irregular. According to Definition 20, this implies that we can replace ML by a mobile built
by the Huffman algorithm on the same weights without increasing the imbalance. The same
reasoning applies to MR. ◀

▶ Lemma 24. The mobile M has either one or two leaves of weight one.

Proof. If M does not contain any leaf of weight one then we could divide all the weights by
two so as to obtain an irregular mobile of maximum m/2, which is a contradiction.

Suppose now that M has at least three leaves of weight one. We can assume without loss
of generality that ML contains at least two such leaves. However, according to Lemma 23,
ML is built by the Huffman algorithm. Thus, there must be two siblings leaves of unit
weights in ML. Replace them by a single leaf of weight two so as to obtain a new irregular
mobile M′. According to Lemma 22, we have max M = max M′ = m. However, M′ has
fewer leaves than M, which contradicts the choice of Definition 21. ◀

▶ Lemma 25. If ML (resp. MR) has a leaf of weight one, then it contains at least two
leaves.

Proof. Assume that ML consists of a single leaf of weight one. Denote by w1 ≤ · · · ≤ wn the
weights on the leaves of M (we have w1 = 1). The imbalance of M is CM = (

∑n
i=2 wi − 1) +

CMR
.

Let M′ be the mobile obtained as follows from the mobile MR:
replace the leaf of weight w2 by a cherry
put the weights w1 = 1 and w2 on the leaves of this subtree.

This operation adds a leaf of weight 1, a node of imbalance w2 − 1 and increases each of
the other local imbalances in MR by at most one. Since there are n − 2 nodes in MR we
have CM′ ≤ (w2 − 1) + CMR

+ n − 2.
According to Lemma 24, M contains at most two leaves of weight one. Thus, for n ≥ 3

we have (w2 − 1) + n − 2 < (
∑n

i=2 wi) − 1. Consequently CM′ < CM. However, M is an
optimal mobile (since it is irregular). This is a contradiction. ◀

We study the two possibilities of Lemma 24 in the next two sections. For each of these
cases, we show that the mobile N built by the Huffman algorithm on the same weights as M
is also optimal, which is a contradiction.

C.1 First case of the proof
We suppose that M contains a single leaf of weight one (first case of Lemma 24). Assume
without loss of generality that this leaf is in ML. According to Lemmas 23 and 25, there
exists some a ≥ 1 such that M is as follows:

MRML

1 2a
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Denote by M+ the mobile M in which the leaf of weight one has been replaced by a leaf
of weight two. Similarly, let M− be the mobile M in which the cherry with weights 1 and
2a is replaced by a leaf of weight 2a. These mobiles are as follows (M+ is on the left and
M− on the right):

MRML

2 2a

MRML

2a

▶ Lemma 26. M+ and M− cannot be irregular.

Proof. If M+ (resp. M−) is irregular then we can divide all its weights by two so as to
obtain an irregular mobile of maximum m/2, which contradicts the minimality assumptions
made on M. ◀

▶ Lemma 27. We have: CM = 1
2 CM+ + 1

2 CM− + 2a−1.

Proof. For each node ν, denote by c(ν) the local imbalance of ν in M. Similarly, let c+(ν)
and c−(ν) be the local imbalances in M+ and M−. Recall that CM is the sum of the c(ν)
for all the nodes ν of M.

Let us study how the local imbalances evolve in M+ and M− with respect to those in the
mobile M. First, note that they do not change for those nodes that are not ancestors of the leaf
of weight one: c(ν) = c+(ν) = c−(ν). Thus, for such nodes we have c(ν) = 1

2 c+(ν) + 1
2 c−(ν).

Consider now the ancestor nodes of the leaf of weight one, excluding its direct parent
ν0. For each of these nodes ν, the subtree of ν containing the leaf of weight one has an odd
weight, whereas the other subtree has an even weight. Consequently c(ν) > 0. It implies
that c+(ν) = c(ν) + 1 and c−(ν) = c(ν) − 1, or c+(ν) = c(ν) − 1 and c−(ν) = c(ν) + 1. Thus,
we must have c(ν) = 1

2 c+(ν) + 1
2 c−(ν). It is also easy to see that for the direct parent ν0 of

ν (that disappears in M−), we have c(ν0) = 1
2 c+(ν0) + 2a−1.

We sum up all the previous equalities so as to obtain CM = 1
2 CM+ + 1

2 CM− + 2a−1. ◀

Consider now the mobile N built by the Huffman algorithm on the same weights as M.
This mobile is as follows (for some b ≥ 1):

NRNL

1 2b

Once again, we define N + and N − to be the mobiles obtained from N by replacing the
weight one by two, or deleting the leaf of weight one.

▶ Lemma 28. N + and N − can be built by the Huffman algorithm.

Proof. Let w1 < w2 ≤ · · · ≤ wn be the weights of N (recall that w1 = 1 and the weights
are powers of two). Whenever the Huffman algorithm compares the weights of two (disjoint)
subsets S1 and S2 of {w1, . . . , wn}, the output of the comparison does not change if w1 is set
to 0 or 2. Indeed, assume for instance that S1 contains the weight w1. All of the other weights
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are powers of two greater than one. Thus, the weight WS1 of S1 is odd whereas WS2 is even.
It implies that WS1 and WS2 cannot be equal. Therefore, WS1 ≤ WS2 ⇔ WS1 ± 1 ≤ WS2

and WS2 ≤ WS1 ⇔ WS2 ≤ WS1 ± 1.
Consequently, the results of the comparisons performed by the Huffman algorithm during

the construction of N do not change if w1 is set to 0 or 2 (in the first case, w1 is in fact
removed). Therefore, N + and N − are correctly built by the Huffman algorithm. ◀

The reasoning carried out in the proof of Lemma 27 also applies to N :

▶ Lemma 29. We have: CN = 1
2 CN + + 1

2 CN − + 2b−1.

We can now conclude the first case of our proof. According to Lemma 26, M+ and M−

cannot be irregular. On the other hand, we have exhibited two mobiles N + an N − that have
the same leaf set as M+ and M− respectively, and that can built by the Huffman algorithm
(Lemma 28). Using Definition 20, it implies CN + ≤ CM+ and CN − ≤ CM− . Moreover, since
N and M have the same leaf set and N is built by the Huffman algorithm, 2b must be the
second smallest weight in M, thus 2b ≤ 2a. Using the equalities of Lemmas 27 and 29 we
obtain:

CN = 1
2CN + + 1

2CN − + 2b−1 ≤ 1
2CM+ + 1

2CM− + 2a−1 = CM

However, since M is irregular we must have CN > CM. This is a contradiction.

C.2 Second case of the proof
Assume now that M contains exactly two leaves of weight one (second case of Lemma 24).
We first prove that these leaves cannot be in the same subtree ML or MR of M.

▶ Lemma 30. Neither ML nor MR can contain two leaves of weight one.

Proof. Suppose for instance that there are two leaves of weight one in ML. According to
Lemma 23, we can assume that ML is built by Huffman. Thus, it must have two sibling
leaves of weight one. Replace these siblings by a single leaf of weight two. We get an irregular
mobile with fewer leaves than M and whose maximum is m. This is a contradiction. ◀

According to Lemmas 23, 25 and 30 there are some a, b ≥ 1 such that M is as follows:

ML

1 2a

MR

1 2b

Let M+ be the mobile M in which the leaf of weight one in ML has been replaced with
a leaf of weight two, and the leaf of weight one in MR has been removed. Define also M−

using the reverse operation. These mobiles are as follows (M+ is on the left and M− on the
right):

ML

2 2a

MR

2b

ML

2a

MR

2 2b
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We state several lemmas similar to the ones described in the previous section.

▶ Lemma 31. M+ and M− cannot be irregular.

▶ Lemma 32. We have: CM ≥ 1
2 CM+ + 1

2 CM− + 2a−1 + 2b−1 − 2.

Proof. We study the local imbalances as in the proof of Lemma 27. The only difference is
the root ν of M for which we can only state that c+(ν), c−(ν) ≤ c(ν) + 2. Consequently,
c(ν) ≥ 1

2 c+(ν) + 1
2 c+(ν) − 2. ◀

Define now the mobile N built by Huffman on the same weights as M. This mobile is as
follows:

NRNL

1 1

Let N ′ be the mobile obtained from N by replacing the two sibling leaves of weight one
by a single leaf of weight two (the mobiles N ′, M+ and M− have the same weights on their
leaves).

▶ Lemma 33. N ′ can be built by Huffman and CN = CN ′ .

We conclude the second case of our proof. Since M+ and M− cannot be irregular and
N ′ is optimal (Lemma 33), we have CN ′ ≤ CM+ and CN ′ ≤ CM− . According to Lemmas 32
and 33 we obtain:

CN = 1
2CN ′ + 1

2CN ′ ≤ 1
2CM+ + 1

2CM− + 2a−1 + 2b−1 − 2 ≤ CM

However, since M is irregular, CN > CM. This is a contradiction. It concludes the proof of
Theorem 6.

D Proof of Theorem 11 (Perfectly balanced mobiles)

We prove the result by induction on n. The base case n = 2 is trivial. Assume that it is true
up to n − 1 for some n ≥ 3. We want to show that is is also true for n.

We first consider a set of powers-of-two weights w1 ≤ · · · ≤ wn whose sum
∑n

i=1 wi

is also a power of two. Since the weights are coprime, we must have w1 = 1. Moreover,
since

∑n
i=1 wi is a power of two, the weight w2 is also equal to 1. Thus, there exists a

perfectly balanced mobile on weights {w1, . . . , wn} if and only if there exists one on weights
{2, w3, . . . , wn}. It is easy to see that the two conditions of the statement of Theorem 11
still hold for weights {2, w3, . . . , wn}. According to our induction hypothesis, it implies that
there exists a perfectly balanced mobile M on these weights. Finally, it suffices to replace a
leaf of weight 2 in M by two leaves of weights 1 so as to obtain a perfectly balanced mobile
on weights {w1, . . . , wn}.

We now take a perfectly balanced mobile M on some weights w1 ≤ · · · ≤ wn. We
want to show that these weights verify the two conditions of the statement of the theorem.
First remark that we can assume that the leaves of weights w1 and w2 are siblings, and
w1 = w2 (otherwise the imbalance cannot be zero). Thus, if we replace these two leaves by a
single leaf of weight 2w1 we obtain a perfectly balanced mobile on weights {2w1, w3, . . . , wn}.
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According to the induction hypothesis, both the weights in {2w1, w3, . . . , wn} and the sum
2w1 + w3 + · · · + wn are powers of two. It implies directly that the weights {w1, . . . , wn}
verify the two points of Theorem 11.

E Proofs for Section 5.1 (Integer Linear Programming)

E.1 Proof of Proposition 14
We prove by induction on n a stronger proposition Pn: for any m ≥ 1, if an assignment of
the boolean variables (ℓi,u, ri,u)1≤i≤n,1≤u≤m is proper then m = n − 1 and it is a correct
assignment.

We first show that P2 is true. Let us consider a proper assignment of the variables
(ℓi,u, ri,u)1≤i≤2,1≤u≤m that verifies the conditions of Definition 12. Suppose that m ≥ 2.
According to Conditions 1 and 3, either ℓ1,2 = 1 and r2,2 = 1, or r1,2 = 1 and ℓ2,2 = 1.
It implies that ℓ1,1 = ℓ2,1 and r1,1 = r2,1 (Condition 5). Thus, according to Condition 1,
ℓ1,1 = ℓ2,1 = 0 or r1,1 = r2,1 = 0, which contradicts Condition 3 on node u = 1. Consequently,
we must have m = 1. There are four variables ℓ1,1, r1,1, ℓ2,1, r2,1 and it is easy to see that
Conditions 1 to 3 imply only two possible assignments:

ℓ1,1 = r2,1 = 1 and r1,1 = ℓ2,1 = 0 , which is correct since it corresponds to
1

w1 w2

ℓ1,1 = r2,1 = 0 and r1,1 = ℓ2,1 = 1, which is correct since it corresponds to
1

w2 w1

Thus, proposition P2 is true.
Let us now take n > 2 and assume that Pn′ is true for all n′ < n. We consider a proper

assignment of the variables Ω = (ℓi,u, ri,u)1≤i≤n,1≤u≤m. According to Conditions 1, 2 and 3 we
can partition {1, . . . , n} into two non-empty sets L = {i : ℓi,1 = 1} and R = {i : ri,1 = 1} such
that L∩R = ∅ and L∪R = {1, . . . , n}. We define L′ = {u > 1 : ∃i ∈ L s.t. ℓi,u ≠ 0 or ri,u ̸=
0} and ΩL = (ℓi,u, ri,u)i∈L,u∈L′ . Similarly, let R′ = {u > 1 : ∃i ∈ R s.t. ℓi,u ≠ 0 or ri,u ≠ 0}
and ΩR = (ℓi,u, ri,u)i∈R,u∈R′ . Note that none of the u ∈ {2, . . . , m} can be simultaneously
in L′ and R′, otherwise it would contradict Condition 5 (ℓi,u + ri,u = ℓj,u + rj,u = 1 for some
i ∈ L, j ∈ R would imply ℓi,1 = ℓj,1 and ri,1 = rj,1, which is not possible by definition of L

and R). Thus, L′ and R′ are a partition of {2, . . . , m}.
Using our induction hypothesis, we intend to show that the restrictions of the initial

assignment to ΩL and ΩR correspond respectively to two valid mobiles ML and MR, whose
weights are indexed by L and R, and nodes by L′ and R′. Consequently, the initial assignment
of Ω will be a correct representation of the mobile M whose left and right subtrees are ML

and MR.
We carry out the proof for ML only, and |L| ≥ 2 (the case |L| = 1 is trivial). Knowing

that Conditions 1 to 6 are true for the assignment of Ω, we want to show that it is still the
case for the restriction to ΩL:

Conditions 1, 4, 5 and 6 are trivially true in ΩL (since they are for Ω)
If Condition 3 does not hold for ΩL, then there exists u ∈ L′ such that ℓi,u = 0 for all
i ∈ L, or ri,u = 0 for all i ∈ L. Assume that ℓi,u = 0 for all i ∈ L. There must exist i ∈ L

such that ri,u = 1 (by definition of L and L′). Moreover, there is j ∈ R such that ℓj,u = 1
(Condition 2). Thus, we must have ℓi,1 = ℓj,1 and ri,1 = rj,1 (Condition 5), which is a
contradiction since i ∈ L and j ∈ R. Condition 3 holds in ΩL.
Let umin be the smallest element of L′, and i ∈ L such that ℓi,umin = 1 or ri,umin = 1. For
all 1 < w < umin, we must have ℓi,w = ri,w = 0. Therefore, according to Condition 6, for
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all j ∈ L, ℓj,umin + rj,umin = 1 (since ℓi,1 = ℓj,1 = 1). In other words, for all j ∈ L, either
ℓj,umin = 1 or rj,umin = 1. Thus Condition 2 holds in ΩL (where the role of the number 1
is played by the smallest element umin of L′).

Thus we showed that Conditions 1 to 6 hold for ΩL up to a scaling of the nodes’ numbers
over {1, . . . , |L′|} (for instance umin must be interpreted as the number 1 in Definition 12).
Since |L| < n, we can apply our induction hypothesis P|L| to ΩL, which proves that
|L′| = |L| − 1 and the restriction of the initial assignment to ΩL is correct. In other words,
there exists a mobile ML (whose root is the node umin), together with a consistent numbering
of its internal nodes, that corresponds to the assignment of ΩL.

Similarly, we can prove that |R′| = |R| − 1 and the assignment of ΩR corresponds to a
mobile MR (whose root is the node vmin = min R′), together with a consistent numbering
of its internal nodes. Finally, m = 1 + |L′| + |R′| = |L| + |R| − 1 = n − 1 and our initial
assignment of Ω is correct since it corresponds to a mobile whose left subtree is ML and
right subtree is MR. Moreover, the resulting numbering of the internal node is increasing
since the root has number 1 and its two subtrees have increasing (and disjoint) numbering of
their nodes. Proposition Pn is true.

E.2 Proof of Proposition 15

Constraints 1 to 3 are easily deducted from Conditions 1 to 3 of Definition 12.
Consider the first part of Condition 4. If ℓi,u = 1 and ℓi,v = ri,v = 0 for all v > u (i.e.∑

v>u(ℓi,v + ri,v) = 0) then Constraint 4 correctly implies ℓj,u = 0. On the other hand,
assume that the first part of Condition 4 does not hold. Then, there exists i ̸= j and u such
that ℓi,u = 1 and ℓi,v = ri,v = 0 for all v > u, but ℓj,u = 1, which contradicts Constraint 4.
Thus, Condition 4 and Constraint 4 are equivalent.

Similarly, for the first part of Condition 5, if ℓi,v + ri,v = 1 and ℓj,v + rj,v = 1 then
Condition 5 implies ℓi,u ≤ ℓj,u and ℓj,u ≤ ℓi,u (we switch the role of i and j). Thus ℓi,u = ℓj,u.
The converse implication is also trivial. Consequently, Condition 5 and Constraint 5 are
equivalent.

According to Condition 4, if ℓi,u = ℓj,u = 1 (or ri,u = rj,u = 1) then there exist vi, vj > u

such that ℓi,vi + ri,vi = ℓj,vj + rj,vj = 1 and ℓi,v′
i

+ ri,v′
i

= ℓj,v′
j

+ rj,v′
j

= 0 for all u < v′
i < vi

and u < v′
j < vj . Thus, Condition 6 must only express the fact that vi = vj . According to

Constraint 6, if ℓi,u = ℓj,u = 1 (or ri,u = rj,u = 1) and ℓi,w + ri,w = 0 (for all u < w ≤ u′)
then ℓj,u′ + rj,u′ = 0. It implies correctly that vi = vj .

F Proof of Proposition 19 (Enumeration of trees)

The algorithm is based on a bijection between leaf-labeled, unordered, full binary trees
with n leaves, and perfect matchings over N = 2(n−1) vertices [8, 3]. The number of perfect
matchings over N vertices is known to be (N−1)!!, where is N !! = N · (N−2) · · · 3 · 1 when
N is odd, and N !! = N · (N−2) · · · 4 · 2 when N is even. Our algorithm proceeds as follows.

Generate all perfect matchings over N vertices, using a standard backtracking algorithm.

For each matching, use the bijection to generate a mobile, and evaluate it (in linear time)

Return the minimal value obtained.
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1 2 3 4 5 6 7 8 9 10 11 12

−→
2 4

3 6
5 1 7

12 11
10 9

8
−→

w2 w4

w3 w6

w5 w1 w7

Figure 10 An example of how to obtain a mobile with n = 7 leaves from a matching on 2n−2 = 12
vertices. Vertices 1–7 in the matching represent leaves, and vertices 8–12 represent internal nodes of
the tree, excluding the root. Pairs in the matching are siblings in the tree. The pairs are assigned a
parent in the following order: (11, 12), (2, 10), (4, 9), (5, 8), (1, 7), (3, 6).

We describe how to obtain a mobile from a perfect matching, using the bijection in [8, 3].
(See Figure 10 for an example.) Let (ij , j1), . . . , (in−1, jn−1) be a perfect matching over
N = 2n−2 vertices, numbered 1, . . . , N . Vertices 1 through n represent the leaves of the
tree, and vertices n + 1, . . . , N are the internal nodes (excluding the root). Order the pairs
so that ik < jk for all k and j1 < j2 < · · · < jn−1. The children of the root are labeled by
in−1, jn−1. Taking the pairs (ik, jk) in descending order of k, assign them to be the children
of the largest vertex already in the tree (that is not a leaf) that does not have any children.
Notice that the procedure operates in linear time and space.

Altogether, the algorithm requires (2n−3)!! = O
(
2(n log n)/2) iterations, each taking linear

time. The backtracking algorithm used to generate matchings has a stack of depth of O(n)
and uses O(log n) space on each level of the stack to store one pair of vertices in the matching.
Overall the space needed is O(n log n). This algorithm is also naturally parallelizable.
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