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PRIME DECOMPOSITION AND THE IWASAWA

MU-INVARIANT

by

Farshid Hajir & Christian Maire

Abstract. — For Γ = Zp, Iwasawa was the first to construct Γ-extensions over number
fields with arbitrarily large µ-invariants. In this work, we investigate other uniform pro-p
groups which are realizable as Galois groups of towers of number fields with arbitrarily large
µ-invariant. For instance, we prove that this is the case if p is a regular prime and Γ is a
uniform pro-p group admitting a fixed-point-free automorphism of odd order dividing p−1.
Both in Iwasawa’s work, and in the present one, the size of the µ-invariant appears to be
intimately related to the existence of primes that split completely in the tower.
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Introduction

Let p be a prime number. Let K be a number field and let L/K be a uniform p-extension:
L/K is a normal extension whose Galois group Γ := Gal(L/K) is a uniform pro-p group
(see section 1.1.1). We suppose moreover that the set of places of K that are ramified in
L/K is finite.
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If F/K is a finite subextension of L/K, let us denote by A(F) the p-Sylow subgroup of
the class group of F and put

X := lim
←
F

A(F),

where the limit is taken over all number fields F in L/K with respect the norm map. Then
X is a Zp[[Γ]]-module and, thanks to a structure theorem (see section 1.1.2), one attaches
a µ-invariant to X , generalizing the well-known µ-invariant introduced by Iwasawa in
the classical case Γ ≃ Zp. Iwasawa showed that the size of the µ-invariant is related to the
rate of growth of p-ranks of p-class groups in the tower. For the simplest Zp-extensions,
i.e. the cyclotomic ones, he conjectured that µ = 0; this was verified for base fields which
are abelian over Q by Ferrero and Washington [9] but remains an outstanding problem
for more general base fields. Iwasawa initially suspected that his µ-invariant vanishes for
all Zp-extensions, but later was the first to construct Zp-extensions with non-zero (indeed
arbitrarily large) µ-invariants. It is natural to ask what other p-adic groups enjoy this
property. Our present work leads us to the following conjecture:

Conjecture 0.1. — Let Γ be a uniform pro-p group having a non-trivial fixed-point-free
automorphism σ of order m co-prime to p (in particular if m = ℓ is prime, Γ is nilpotent).
Then Γ has arithmetic realizations with arbitrarily large µ-invariant, i.e. for all n ≥ 0,
there exists a number field K and an extension L/K with Galois group isomorphic to Γ
such that µL/K ≥ n.

Our approach for realizing Γ as a Galois group is to make use of the existence of so-
called p-rational fields. See below for the definition, but for now let us just say that the
critical property of p-rational fields is that in terms of certain maximal p-extensions with
restricted ramification, they behave especially well, almost as well as the base field of
rational numbers. As we will show, Conjecture 0.1 can be reduced to finding a p-rational
field with a fixed-point-free automorphism of order m co-prime to p. These considerations
lead us to formulate the following conjecture about p-rational fields.

Conjecture 0.2. — Given a prime p and an integer m ≥ 1 co-prime to p, there exist a
totally imaginary field K0 and a degree m cyclic extension K/K0 such that K is p-rational.

Although we will not need it, we believe K0 in the conjecture may be taken to be imaginary
quadratic; see Conjecture 4.16 below. Our key result is:

Theorem 0.3. — Conjecture 0.2 for the pair (p, m) implies Conjecture 0.1 for any uni-
form pro-p group Γ having a fixed-point-free automorphism of order m.

One knows that if m is an odd divisor of p − 1, where p is a regular prime, then for any
n ≥ 1, the cyclotomic field Q(ζpn) provides a positive answer to the previous question.
We therefore have

Corollary 0.4. — Assume p is a regular prime and that the uniform group Γ has a
fixed-point-free automorphism σ of odd order m dividing p − 1. Then Conjecture 0.1 is
true for Γ.

This circle of ideas is closely related to the recent work of Greenberg [15] in which he
constructs analytic extensions of number fields having a Galois group isomorphic to an
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open subgroup of Glk(Zp). The idea of studying pro-p towers equipped with a fixed-
point-free action of a finite group of order prime to p occurs also in Boston’s papers [2]
and [3].

Our work raises the following purely group-theoretical question.

Question 0.5. — Let Γ be a nilpotent uniform pro-p group. Does there exist a uniform
nilpotent pro-p group Γ′ having a fixed-point-free automorphism of prime order ℓ 6= p such
that Γ′ ։ Γ ?

A positive answer to this question would imply that for all nilpotent uniform pro-p groups
Γ, there exist arithmetic realizations with arbitrarily large µ-invariant.

In his recent work [12], Gras gave some conjectures about the p-adic regulator in a fixed
number field K when p varies. In our context, one obtains:

Theorem 0.6. — Let P be an infinite set of prime numbers and let m be an integer
co-prime to all p ∈ P. Let (Γp)p∈P be a family of uniform pro-p groups of fixed dimension
d, all having a fixed-point-free automorphism σ of order m. Assuming the Conjecture of
Gras (see Conjecture 4.13), there exists a constant p0, such that for all p ≥ p0, there exist
Γp-extensions of number fields with arbitrarily large µ-invariants.

In another direction, a conjecture in the spirit of the heuristics of Cohen-Lenstra con-
cerning the p-rationality of the families FG of number fields K Galois over Q, all having
Galois group isomorphic to a single finite group G, seems to be reasonable (see [31]).
When the prime p ∤ |G|, the philosophy here is that the density of p-rational number
fields in FG is positive. This type of heuristic lends further evidence for conjecture 0.1.

Notations

Let G be a finitely generated pro-p group. For two elements x, y of G , we denote by
xy := y−1xy the conjugate of x by y and by [x, y] := x−1y−1xy = x−1xy the commutator
of x and y. For closed subgroups H1, H2 of G , let [H1, H2] be the closed subgroup
generated by all commutators [x1, x2] with xi ∈ Hi. Let G ab := G /[G , G ] be the maximal
abelian quotient of G , and let d(G ) := dimFp G ab be its p-rank.

Denote by (Gn) the p-central descending series of G :

G1 = G , G2 = G
p[G , G ], · · · , Gn+1 = G

p
n [G , Gn]·

The sequence (Gn)n forms a base of open neighborhoods of the unit element e of G .

If K is a number field, let A(K) be the p-Sylow subgroup of the class group of K. Let
Sp := {p ⊂ OK : p|p} be the set of primes of K of residue characteristic p. If S is
any finite set of places of K, denote by KS the maximal pro-p extension of K unramified
outside S and put GS := Gal(KS/K) as well as AS := G ab

S .

1. Arithmetic background

1.1. Formulas in non-commutative Iwasawa Theory. —
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1.1.1. Algebraic tools. — Two standard references concerning p-adic analytic and in par-
ticular, uniform, pro-p groups are the long article of Lazard [25] and the book of Dixon,
Du Sautoy, Mann and Segal [8].

Let Γ be an analytic pro-p group: we can think of Γ as a closed subgroup of Glm(Zp) for
a certain integer m. The group Γ is said powerful if [Γ, Γ] ⊂ Γp ([Γ, Γ] ⊂ Γ4 when p = 2);
a powerful pro-p group Γ is said uniform if it has no torsion.
Let us recall two important facts.

Theorem 1.1. — Every p-adic analytic pro-p group contains an open uniform subgroup.

Theorem 1.2. — A powerful pro-p group Γ is uniform if and only if for i ≥ 1, the map
x 7→ xp induces an isomorphism between Γi/Γi+1 and Γi+1/Γi+2.

Let us make some remarks.

Remark 1.3. — Let dim(Γ) be the dimension of Γ as analytic variety.
1) If Γ is uniform then dpΓ = dim(Γ) = cdp(Γ), where cdp(Γ) is the p-cohomological
dimension of Γ.
2) [24, Corollary 1.8] Suppose Γ is a torsion-free p-adic analytic group, p ≥ dim(Γ) and
d(Γ) = dim(Γ). Then the group Γ is uniform.
3) For p ≥ 2, the pro-p-group 1n + Mn(Zp) is uniform, where Mn(Zp) is the the set of
n × n matrices with coefficients in Zp.

Now let us fix a uniform pro-p group Γ of dimension d. Recall that (Γn) is the p-descending
central series of Γ. By Theorem 1.2, one has [Γ : Γn] = pdn, for all n.

Let Zp[[Γ]] := lim
←−

U ⊳OΓ

Zp[Γ/U ] be the complete Iwasawa algebra, where U runs along the

open normal subgroups of Γ. Put Ω := Fp[[Γ]] = Zp[[Γ]]/p. The rings Ω and Zp[[Γ]] are
local, noetherien and without zero divisor [8, §7.4]: each of them has a fractional skew
field. Denote by Q(Ω) the fractional skew field of Ω. If X is a finitely generated Ω-
module, the rank rkΩ(X ) of X is the Q(Ω)-dimension of X ⊗Ω Q(Ω). For more details,
we refer the reader to Howson [19] and Venjakob [34].

Definition 1.4. — Let X be a finitely generated Zp[[Γ]]-module. Put

r(X ) = rkΩX [p] and µ(X ) =
∑

i≥0

rkΩX [pi+1]/X [pi].

Remark 1.5. — One has µ(X ) ≥ r(X ) and, r(X ) = 0 if and only if µ(X ) = 0.

There is a large and growing literature on the study of Zp[[Γ]]-modules in the context of
Iwasawa theory. We recall a result of Perbet [30], where, by making use of the work of
Harris [17], Venjakob [34] and Coates-Schneider-Sujatha [5], among others, he manages
to estimate the size of the coinvariants (XΓn)n of X . Recall that XΓn is the largest
quotient of X on which Γn, the nth element of the p-central series, acts trivially.

Theorem 1.6 (Perbet, [30]). — Suppose that X is a torsion Zp[[Γ]]-module where Γ
is a uniform pro-p group of dimension d. Then for n ≫ 0:

dimFp XΓn = r(X )pdn + O
(
pn(d−1)

)
,
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and

#(XΓn/pn) = pµ(X )pdn+O(npn(d−1)).

We now turn to applying these formulas in the arithmetic context.

1.1.2. Arithmetic. — Let L/K be a Galois extension of number fields with Galois group
Γ, where Γ is a uniform pro-p group. We assume that the set of primes of K ramified in
L/K is finite. Let (Γn)n be the p-central descending series of Γ and put Kn := LΓn for
the corresponding tower of fixed fields.

Now let X be the projective limit along L/K of the p-class group A(Kn) of the fields Kn.
Then, X is a finitely generated torsion Zp[[Γ]]-module. For the remainder of this work,
X will denote this module built up from the p-class groups of the intermediate number
fields in L/K. In particular, we put µL/K = µ(X ) and rL/K = r(X ). For this module,
by classical descent, Perbet proved:

Theorem 1.7 (Perbet [30]). — For n ≫ 0, one has:

log |A(Kn)/pn| = µL/Kpdn log p + O
(
npd(n−1)

)

and

dpA(Kn) = rL/Kpdn + O
(
pn(d−1)

)
.

One then obtains immediately the following corollary:

Corollary 1.8. — (i) Along the extension L/K, the p-rank of A(Kn) grows linearly with
respect to the degree [Kn : K] if and only if µL/K 6= 0.
(ii) If there exists a constant α such that for all n ≫ 0, dpA(Kn) ≥ αpdn, i.e. dpA(Kn) ≥
α[Kn : K], then µL/K ≥ α.

At this point, we should recall some standard facts from commutative Iawasawa theory.
First, for the cyclotomic Zp-extension, Iwasawa conjectured that the µ-invariant is 0 for
all base fields, and this has been shown to be the case when the based field is abelian over
Q. When the base field K contains a primitive pth root of unity, the reflection principle
allows one to give some estimates on the µ-invariant [30].

1.2. On the p-rational number fields. — A number field K is called p-rational
if the Galois group GSp of the maximal pro-p-extension of K unramified outside p is
pro-p free. From the extensive literature on p-rational fields, we refer in particular to
Jaulent-Nguyen Quang Do [22], Movahhedi-Nguyen Quang Do [27], Movahhedi [28],
and Gras-Jaulent[14]. A good general reference is the book of Gras [11].

Definition 1.9. — If G is a pro-p group, let us denote by T (G ) the torsion of G ab.
When G = GS, put TS := T (GS) ; when S = Sp, put Tp := TSp .

A standard argument in pro-p group theory shows the following:

Proposition 1.10. — A pro-p group G is free if and only if T (G ) and H2(G , Qp/Zp)
are trivial.
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Proof. — Indeed, the exact sequence 0 −→ Z/pZ −→ Q/Z −→ Q/Z −→ 0 gives the se-
quence

0 −→ H2(G , Z)/p −→ H2(G , Fp) −→ H1(G , Z)[p] −→ 0,

and to conclude, recall that H1(G , Z) ≃ G ab and H2(G , Z) ≃ H2(G , Q/Z)∗.

Remark that if G is pro-p free then G ab ≃ Zd
p, where d is the p-rank of G . This observa-

tion shows in particular that if the group G corresponds to the Galois group of a pro-p
extension of number fields, then necessarily this extension is wildly ramified.

We now explain how the Schur multiplier of GS is related to the Leopoldt Conjecture.

Proposition 1.11. — Let S be a set of places of K, and for v ∈ S, let Uv be the pro-p
completion of the local units at v. If the Zp-rank of the diagonal image of O

×
K in

∏
v∈S Uv

is maximal, namely r1 + r2 − 1, then H2(GS, Qp/Zp) = 0. Moreover if Sp ⊆ S, these
conditions are equivalent. In particular, assuming the Leopoldt Conjecture for K at p,
GSp is free if and only if Tp is trivial.

Proof. — For the case of restricted ramification, see [26]. For the general case, see [29,
Corollaire 1.5].

Remark 1.12. — Some examples of free quotients of GS with splitting conditions are
given in §4.3 below.

Proposition 1.13 (A ‘numerical’ p-rationality criterion)
Let Am be the p-Sylow subgroup of the ray class group of modulus m =

∏

p|p

pap of K, where

ap = 2ep + 1, and ep is the absolute index of ramification of p (in K/Q). Assume that K
verifies the Leopoldt Conjecture at p. Then K is p-rational if and only if dpAm = r2 + 1.

Proof. — First, as one assumes Leopoldt Conjecture for K at p, then the Zp-rank of
ASp = G ab

Sp
is exactly r2 + 1. Hence GSp is free if and only if Tp = {1}, which is equivalent

to dpASp = r2 + 1. Now, by Hensel’s lemma, every unit ε ≡ 1(modπ
ap

p ) is a p-power in
K×

p and so dpAm = dpASp.

Example 1.14. — Take K = Q(ζ7) and p = 37. Then, p is not ramified in K/Q and
ap = 3. A simple computation gives dpASp = 4 = r2 + 1, so K is 37-rational.

Example 1.15. — One can check easily that Q(ζ7) is not 2-rational but Q(ζ13) is 2-
rational.

Here is a very well-known case of the situation.

Proposition 1.16 (A ‘theoretical’ p-rationality criterion)
Suppose that the number field K contains a primitive pth root of unity. Then K is p-
rational if and only if there exists exactly one prime of K above p and the p-class group
of K (in the narrow sense if p = 2) is generated by the unique prime dividing p.

Proof. — See for example Theorem 3.5 of [11].

Remark 1.17. — In particular, when p is regular, Q(ζpn) is p-rational for all n ≥ 1.
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Now we will give some more precise statements by considering some Galois action.
Let K/K0 be a Galois extension of degree m, with p ∤ m. Put ∆ = Gal(K/K0). Let
r = r1(K0) + r2(K0) be the number of archimedean places of K0. Let S be a finite set
of places of K0. The arithmetic objects that will use have a structure of Fp[∆]-modules.
Then for a such module M , one notes by χ(M) its character. Let ω be the Teichmüller
character, let 1 be the trivial character and let χreg be the regular character of ∆.

Proposition 1.18. — Suppose the field K is p-rational and that the real infinite places
of K0 stay real in K (this is always the case when m is odd). Then

χ(ASp) = r2(K0)χreg + 1·

Proof. — It is well-known. The character of the ∆-module
∏

v∈Sp

(
Uv/µp∞(Kv)

)
is equal

to [K0 : Q]χreg and by Dirichlet’s Unit Theorem, the character of O
×
K /µ(K) is equal to(

r1(K0) + r2(K0)
)
χreg − 1. Then, as K is p-rational,

χ(ASp) = [K0 : Q]χreg −
((

r1(K0) + r2(K0)
)
χreg − 1

)
= r2(K0)χreg + 1·

1.3. Genus Theory. — The literature on Genus Theory is rich. The book of Gras
[11, Chapter IV, §4] is a good source for its modern aspects. All we will need in this
work is the following simplified version of the main result.

Theorem 1.19 (Genus Theory). — Let F/K be a Galois degree p extension of num-
ber fields L/K. Let S be the set of places of K ramified in F/K (including the infinite
places). Then

dpA(L) ≥ |S| − 1 + dpO
×
K.

We will also need the following elementary fact.

Proposition 1.20. — Let K be a number field containing a primitive pth root of unity,
and let p1, . . . , pt be distinct prime ideals of OK. Then there exists a cyclic extension F/K
of degree p in which the primes p1, . . . , pt all ramify.

Proof. — Choose a prime ideal p0 of OK in the inverse of the ideal class of the product
p1 · · · pt, so that p0p1 . . . pt is a principal ideal in OK, generated by some algebraic integer
α, say. Then F = K(α1/p) is a cyclic degree p extension of K totally ramified at all the
primes p1, . . . , pt.

2. Background on automorphisms of pro-p groups

For this section, our main reference is the book of Ribes and Zalesskii [32, Chapter 2
and Chapter 4]. If Γ is a finitely generated pro-p group, denote by Aut(Γ) the group of
continuous automorphisms of Γ. Recall that the kernel of gΓ : Aut(Γ) → Aut(Γ/Γ2) is a
pro-p group and that Aut(Γ/Γ2) ≃ Gld(Fp), where d is the p-rank of Γ.
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2.1. Fixed points. —

Definition 2.1. — Let Γ be a finitely generated pro-p group and let σ ∈ Aut(Γ). Put
Fix(Γ, σ) := {x ∈ Γ : σ(x) = x}.

Remark 2.2. — (i) Obviously, Fix(Γ, σ) is a closed subgroup of Γ.
(ii) For integers n, Fix(Γ, σ) ⊂ Fix(Γ, σn) with equality when n is co-prime to the order
of σ.

Definition 2.3. — For σ ∈ Aut(Γ), σ 6= e, one says that Γ	σ

is fixed-point-free if
Fix(Γ, σ) = {e}. More generally, if ∆ is a subgroup of Aut(Γ), one says that the action

Γ	∆

of ∆ on Γ is fixed-point-free if and only if
⋃

σ 6=e

σ∈∆

Fix(Γ, σ) = {e}.

In others words, ∆ is fixed-point-free if and only if, for all non-trivial σ ∈ ∆, Γ	σ

is
fixed-point-free.

Remark 2.4. — Clearly if Γ	〈σ〉 is fixed-point-free then Γ	σ

is fixed-point-free; it is an
equivalence when σ is of prime order ℓ.

We are interested in instances of groups with fixed-point-free action that arise in arith-
metic contexts. Let us recall the Schur-Zassenhaus Theorem for a profinite group G :

Theorem 2.5 (Schur-Zassenhaus). — Let Γ be a closed normal pro-p subgroup of a
profinite group G . Assume that the quotient ∆ := G /Γ is of order co-prime to p. Then
the profinite group G contains a subgroup ∆0 isomorphic to ∆. Two such groups are
conjugated by an element of Γ and G = Γ ⋊ ∆0.

Proof. — See Theorem 2.3.15 of [32] or proposition 1.1 of [10].

As first consequence, one has the following:

Proposition 2.6. — Let Γ be a finitely generated pro-p group and let ∆ ⊂ Aut(Γ) of

order m, p ∤ m. If Γ	∆

is fixed-point-free then
(
Γ/Γ2

)	∆

is fixed-point-free, where we

recall that Γ2, the 2nd step in the p-central series of Γ, is the Frattini subgroup.

Proof. — Let σ ∈ ∆. The group 〈σ〉 acts on Γ, on Γ2 and on Γ/Γ2. By the Schur-
Zassenhaus Theorem (applied to Γ2⋊〈σ〉), the non-abelian cohomology group H1(〈σ〉, Γ2)
is trivial and then the nonabelian cohomology of the exact sequence 1 −→ Γ −→ Γ ⋊
〈σ〉 −→ 〈σ〉 −→ 1 allows us to obtain:

H0(〈σ〉, Γ) ։ H0(〈σ〉, Γ/Γ2),

which is exactly the assertion of the Proposition. See also [4], [15], [35].

A main observation for our paper is the converse of the previous proposition when Γ is
uniform:

Proposition 2.7. — Let Γ be a uniform pro-p group. Let σ ∈ Aut(Γ) of order m co-
prime to p. Then (Γ/Γ2)

	σ

is fixed-point-free if and only if Γ	σ

is fixed-point-free.
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Proof. — One direction is taken care of by Proposition 2.6. For the other direction, we
first note that

ϕ : Γn−1/Γn → Γn/Γn+1

x 7→ xp

is a 〈σ〉-isomorphism for n ≥ 2. We thus obtain a 〈σ〉-isomorphism from Γ/Γ2 to Γn/Γn+1.
If (Γ/Γ2)

	σ

is fixed-point-free, then (Γn/Γn+1)
	σ

is fixed-point-free for all n ≥ 1. Sup-
pose y ∈ Γ satisfies σ(y) = y. As the action of Γ/Γ2 is fixed-point-free, we have
y(modΓ2) ∈ Γ/Γ2 is trivial, so y ∈ Γ2. Continuing in this way, we in fact conclude

that y ∈
⋂

n

Γn = {e}.

Corollary 2.8. — Let Γ be a uniform pro-p group and let σ ∈ Aut(Γ) of order m co-
prime to p. Denote by χ the character of the semi-simple action of 〈σ〉 on Γ/Γ2. Then
Γ	σ

is fixed-point-free if and only, 〈χ, 1〉 = 0.

Proof. — Indeed, one has seen (Proposition 2.7) that Γ	σ

is fixed-point-free if and only(
Γ/Γ2

)	σ

is fixed-point-free, which is equivalent to 〈χ, 1〉 = 0.

Remark 2.9. — Suppose that Γ is uniform of dimension d. The restriction of σ ∈
Aut(Γ) to Γ/Γ2 ≃ Fd

p is an element of Gld(Fp). Denote by Pσ ∈ Fp[X] its characteristic

polynomial. Then the action Γ	σ

is fixed-point-free if and only if Pσ(1) 6= 0.

Remark 2.10. — When Γ is uniform and ∆ ⊂ Aut(Γ) is of order m co-prime to p,
testing that the action of ∆ is fixed-point-free on Γ is equivalent to testing this condition
on the quotient M := Γ/Γ2. Let χ be the character resulting from the action of ∆ on M.

Then Γ	∆

is fixed point-free on M if and only if, for all e 6= σ ∈ ∆, Res|〈σ〉(χ) does not
contain the trivial character, where here Res|〈σ〉 is the restriction to 〈σ〉. By Frobenius

Reciprocity, this condition is equivalent to 〈χ, Ind∆
〈σ〉1〉 = 0, where Ind∆

〈σ〉 is the induction
from 〈σ〉 to ∆.

We need also of the following proposition which will be crucial for our main result.

Proposition 2.11. — Let Γ be a finitely generated pro-p group. Let σ and τ be two
elements in Aut(Γ) of order m co-prime to p. If σ = τ on Γ/Γ2, then Γ	σ

is fixed-point-
free if and only if, Γ	τ

is fixed-point-free. More precisely, Fix(Γ, σ) = g · Fix(Γ, τ) for a

certain element g ∈ ker
(
Aut(Γ) → Aut(Γ/Γ2)

)
.

One needs the following lemma:

Lemma 2.12. — Let Γ be a finitely generated pro-p group. Let σ and τ be two elements
of Aut(Γ) of order m, p ∤ m, satisfying σ = τ on Γ/Γ2. Then there exists g ∈ Aut(Γ)
such that τ = σg.

Proof. — This is to be found in Lemma 3.1 of [18]. Since σ and τ coincide as elements

of Aut(Γ/Γ2), there exists γ in the pro-p group ker
(
Aut(Γ) → Aut(Γ/Γ2)

)
such that

σ = γτ . Consider the group 〈τ, γ〉 : 〈γ, γτ , · · · , γτm−1〉 ⋊ 〈τ〉. Since 〈γ, γτ , · · · , γτm−1〉 ⊂
ker

(
Aut(Γ) → Aut(Γ/Γ2)

)
, 〈τ, γ〉 is a semi-direct product of a pro-p-group and a group

of order m. As τ and σ are both in 〈τ, γ〉, the subgroups 〈τ〉 and 〈σ〉 are conjugate to

each other (by the Schur-Zassenahus Theorem 2.5): there exists g ∈ 〈γ, γτ , · · · , γτm−1〉
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such that τk = σg for a certain integer k, (k, m) = 1, since σ and τ have the same order.
Moreover, in Γ/Γ2, τk = σg = σ = τ , and so we can take k = 1.

Proof of Proposition 2.11. — By the previous lemma, τ = σg, for some g in ker(Aut(Γ) →
Aut(Γ/Γ2)). We have that y is a fixed point of τ if and only if g(y) is a fixed point
of σ.

2.2. Lifts. — Given a uniform pro-p group Γ equipped with an automorphism σ of
order m prime to p, the central question of this subsection is to realize Γ⋊〈σ〉 as a Galois
extension over a number field.

Proposition 2.13. — Let F be a free pro-p-group on d generators, and let gF be the
natural map Aut(F) → Aut(F/F2). Consider a subgroup ∆ ⊂ Aut(F/Fp[F, F]) of order
m co-prime to p. Then there exists a subgroup ∆0 ⊂ Aut(F) isomorphic to ∆ such
that gF(∆0) = ∆. Moreover, any two such subgroups are conjugated by an element g ∈
ker

(
Aut(F) → Aut(F/F2)

)
.

Proof. — First of all the natural map gF : Aut(F) → Aut(F/F2) is onto (Proposition 4.5.4

of [32]). Put ∆̃ = g−1
F (∆) and recall that ker(gF) is a pro-p group. Then, ∆ ≃ ∆̃/ker(gF )

which has order co-prime to p. By the Schur-Zassenhaus Theorem 2.5, there exists a
subgroup ∆0 ⊂ Aut(F), such that (∆0kergF)/ker(gF) ≃ ∆. Moreover, two such subgroups
are conjugate to each other.

In fact, one needs a little bit more. The following proposition can be found in a recent
paper of Greenberg [15] and partially in an unpublished paper of Wingberg [35].

Proposition 2.14 (Greenberg, [15], Proposition 2.3.1). — Let G = F ⋊ ∆ be a
profinite group where F is free pro-p on d′ generators and where ∆ is a finite group of
order m co-prime to p. Let Γ be a finitely generated pro-p group on d generators, with
d′ ≥ d. Suppose that there exists ∆′ ⊂ Aut(Γ), with ∆′ ≃ ∆, such that the module ∆′

|Γ/Γ2

is isomorphic to a submodule of ∆|F/F2
. Then there exists a normal subgroup N of F,

stable under ∆, such that F/N is ∆-isomorphic to Γ and so we have a surjection

G ։ Γ ⋊ ∆ ≃ Γ ⋊ ∆′·

Since this result is essential for our construction, we include a proof.

Lemma 2.15 (Wingberg, [35], lemma 1.3). — Let F be a free pro-p-group on d gen-
erators and let Γ be a pro-p groups generated by d generators. Let ϕ be a morphism on
pro-p groups ϕ : F ։ Γ. Assume that there exists a finite group ∆ ⊂ Aut(Γ) of order m
co-prime to p. Then the action of ∆ lift to F such that ϕ becomes a ∆-morphism.

Proof following [35]. — For a finitely generated pro-p group N, denote by gN the natural
map gN : Aut(N) → Aut(N/N2). Recall that ker(gN) is a pro-p group.
Let 1 −→ R −→ F −→ Γ −→ 1 be a minimal presentation of Γ. Denote by AutR(F) :=
{σ ∈ Aut(F) : σ(R) ⊂ (R)}. The natural morphism f : AutR(F) → Aut(Γ) is onto

(see [32, Proposition 4.5.4]). Put ∆̃ := f−1(∆) ⊂ AutR(F). Then f(∆̃) = ∆. Now
the isomorphism between F/F2 and Γ/Γ2 induces an isomorphism f ′ between Aut(F/F2)
and Aut(Γ/Γ2). Hence on AutR(F) ⊂ Aut(F), one has: gΓ ◦ f = f ′ ◦ gF. In particular

ker
(
AutR(F) → Aut(Γ/Γ2)

)
is a pro-p group. Now let f̃ : ∆̃ → ∆. Then: (i) ker(f̃)
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is a pro-p group and (ii) ∆̃/ker(f̃) ≃ ∆ which has order co-prime to p. By the Schur-

Zassenhaus Theorem 2.5, there exists ∆0 ⊂ AutR(F) such that ∆0 ∩ ker(f̃), i.e. f(∆0) =
∆ and we are done.

Proof of Proposition 2.14. — As d′ ≥ d, let ϕ be a surjective morphism F ։ Γ. Put
R = ker(ϕ). As p ∤ m, the action of ∆ on F/F2 is semi-simple. Let us complete the
Fp[∆]-module Γ/Γ2 with a submodule M such that Γ/Γ2 ⊕ M ≃ F/F2 as ∆-module. Let

Γ′ be the pro-p group Γ′ = Γ×Γ0, where Γ0 ≃ (Zp/pZp)
d′−d is generated by an Fp-basis of

M. By Lemma 2.15, there exists ∆0 ⊂ AutR(F) isomorphic to ∆, such that the morphism
ϕ : F ։ Γ′ is a ∆0-morphism. By Proposition 2.13, there exists g ∈ Aut(Γ) such that
∆0 = ∆g. We note that ∆0 ⊂ AutR(F) is equivalent to ∆ ⊂ Autg(R)(F). Then we take
N = 〈g(R), g(M)〉 and observe that F/N is ∆-isomorphic to Γ.

2.3. Frobenius groups. — We now review a group-theoretic notion that we need for
our study of the µ-invariant.

Definition 2.16. — Let G be a profinite group. One says that G is a Frobenius group
if G = Γ⋊∆, where Γ is a finitely generated pro-p group, ∆ is of order m co-prime to p,
and such that the conjugation action of ∆ on Γ is fixed-point-free.

The notion of a Frobenius group is a very restrictive one, as illustrated in the following
Theorem:

Theorem 2.17 (Ribes-Zalesskii, [32], corollary 4.6.10). — Let G = Γ ⋊ ∆ be a
Frobenius profinite group. Then the subgroup Γ of G is nilpotent. Moreover if 2 | |∆|, Γ
is abelian, if 3 | |∆|, Γ is nilpotent of class at most 2, and more generaly of class at most

(ℓ − 1)2ℓ−1−1 − 1

ℓ − 2
if the prime number ℓ divides |∆|.

Proposition 2.18. — Let G = Γ ⋊ ∆, where Γ is a uniform pro-p group and such that
p ∤ |∆|. Then G is a Frobenius group if and only if the action of ∆ is fixed-point-free on
Γ/Γ2.

Proof. — It is a consequence of Proposition 2.7.

3. Proof of the main result

Let us recall the motivating question of this paper. Given a uniform group Γ of dimension
d, equipped with a fixed-point-free automorphism of finite order co-prime to p, can one
realize an arithmetic context for Γ as Galois group with arbitrarily large associated µ-
invariant?

3.1. The principle. — Here we develop our strategy, which is simply to emulate Iwa-
sawa’s original construction for Γ = Zp. Given a uniform pro-p group Γ, our claim is that
it suffices to produce a Galois extension L of a number field K such that

(i) Gal(L/K) is isomorphic to Γ;
(ii) there are only finitely many primes that are ramified in L/K;

(iii) there exist infinitely many primes of K which split completely in L/K.

We now explain why such a construction suffices to answer our key question for Γ.

11



Proposition 3.1. — Suppose Γ is a uniform pro-p group and L is a Galois extension
of a number field K such that:

(i) Gal(L/K) is isomorphic to Γ;
(ii) there are only finitely many primes that are ramified in L/K;

(iii) there exist infinitely many primes of K that split completely in L/K.

Then there exist Γ-extensions of number fields with arbitrarily large associated µ-
invariant.

Proof. — We may assume, without loss of generality, that K contains ζp, a primitive pth
root of unity, for if we replace K by K(ζp) and L by L(ζp), then conditions (i), (ii), (iii) still
hold – we merely observe that K(ζp)/K has degree co-prime to p whereas L/K is a pro-p
extension. Choose an integer t ≥ 1, as well as distinct prime ideals p1, . . . , pt of OK which
split completely in L. Let K′/K a cyclic degree p extension in which each of the primes
pi ramifies for i = 1, . . . , t (see Proposition 1.20). Letting L′ = K′K, we see immediately
that L′/K′ is a Galois extension with Galois group isomorphic to Γ. Put Kn = LΓn where
Γn is the nth term in the p-central series of Γ = Gal(L/K). Let K′

n : K′Kn. Then using
the genus theory estimate Theorem 1.19 to the cyclic degree p extension K′

n/Kn, we get
the following lower bound for the p-rank of the p-class group of K′

n:

dpA(K′
n) ≥ [K′

n : K] (t − r2(K′) − 1) .

We conclude from Corollary 1.8 that µL′/K′ ≥ t − r2(K′) − 1. Since we can take t to be as
large as desired, and noting of course that r2(K

′) is fixed as t → ∞, we have shown that
Γ-extensions with arbitrarily large µ-invariant can be constructed over base fields which
are cyclic of degree p over K (if K contains ζp), and over K(ζp) otherwise.

To produce a tower L/K satisfying the hypotheses of the Proposition, we realize Γ, along
with its fixed-point-free automorphism, inside the maximal pro-p extension KSp/K of a
p-rational field K; in particular the condition (ii) will be automatically satisfied in our
situation as the ramification in the tower will be restricted to the primes dividing p.

3.2. The case Γ = Zp. — We now review Iwasawa’s strategy in [21] (see also Serre
[33, §4.5]) for finding arithmetic situations with large µ-invariant.

Let K/Q be an imaginary quadratic field. Let us denote by σ the generator of Gal(K/Q).
Suppose p is a rational prime which splits in OK into two distinct primes p1 and p2. Let
us suppose further that p does not divide the class number of K. Then for i = 1, 2, the
maximal pro-p extension K{pi} of K unramified outside pi has Galois group Γi isomorphic
to Zp. The automorphism σ permutes the fields K{pi}. Thus inside the compositum of
these two Zp-extensions, if we denote by 〈ei〉 the subgroup fixing the field K{pi}, then the
subfield L fixed by 〈e1 + e2〉 is Galois over Q with Galois group isomorphic to Zp, and the
action σ(e1) = e2 ≡ −e1(mod〈e1 + e2〉) is dihedral.

Corollary 3.2. — Under the preceding conditions, Gal(L/Q) = Gal(L/K)⋊ 〈σ〉 ≃ Zp ⋊
Z/2Z, where the action of σ satisfies xσ = x−1, x denoting a generator of Gal(L/K).
Thus, all primes ℓ of Q which remain inert in K/Q subsequently split completely in L/K.

Proof. — The first part of the corollary follows from the observations preceding it. For
the second part, remark that the non-trivial cyclic subgroups of Gal(L/Q) are of the form

〈xpk〉 ≃ Zp, k ∈ N, or of the form 〈σxpk〉 ≃ Z/2Z. Hence let ℓ be a prime which is
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unramified in L/Q. If ℓ is inert in K/Q, then the Frobenius automorphism σℓ of ℓ in L/Q

is of the form σxpk
. As σℓ is of order 2 (or equivalently, 〈σℓ〉 ∩ Gal(L/K) = {e}), the

prime ℓ splits totally in L/K.

By applying Proposition 3.1 to the extension L/K, this construction allows us to produce
Zp-extensions with µ-invariant as large as desired.

Remark 3.3. — We can say a bit more in the example 3.2. Let us show that a place
of K above a prime ℓ splits totally in L/K if and only if ℓ is inert in K/Q. For a prime
q ∤ p, denote by σq the Frobenius of q in the compositum of the Zp-extensions of K. Let
ℓ a prime that splits in K/Q; let us write ℓOK = L L ′. If we write σL = ae1 + be2, then
by conjugation, σL ′ = be1 + ae2. The key point is that the maximal pro-p extension of K
unramified outside p and totally split at L and L ′ is finite, see [11]. Then a2 6= b2. Note
that when ℓ is inert in K/Q then σℓ = a(e1 + be2). By reducing the Frobenius modulo
〈e1 + e2〉, we note that in the case when ℓ is inert, σℓ ≡ 0 (mod 〈e1 + e2〉) but when ℓ
splits in K/Q, σL ≡ (a − b)e1 (mod 〈e1 + e2〉) 6= 0 (mod 〈e1 + e2〉).
Remark 3.4. — One can generalize the above discussion for Γ = Zr

p, by considering a
large CM-extension abelian over Q. See Cuoco [7, Theorem 5.2])

Remark 3.5. — We observe that the basic principle in the constructions above is that
there is a positive density of primes of a field K0 which are inert in K, and that all of
these subsequently split (thanks to the fact that the action Γ	σ

is fixed-point-free) in the
Γ-extension. This is the starting point for the general case.

3.3. The general case. — We will consider a uniform pro-p group Γ of dimension d
having a fixed-point-free automorphism σ of order m co-prime to p. We assume that
m ≥ 3; indeed for m = 2, Γ ≃ Zd

p (by Theorem 2.17 of Ribes and Zaleskii).

Proposition 3.6. — Let Γ be a uniform pro-p group of dimension d having an automor-
phism τ of order m with fixed-point-free action, where m ≥ 3 is co-prime to p. Suppose
F0 is a totally imaginary number field admitting a cyclic extension F/F0 of degree m
such that F is p-rational. Let n be an integer such that pn[F0 : Q]· ≥ 2d, and let K0,
respectively K be the nth layer of the cyclotomic Zp-extension of F0, respectively F. Then
there exists an intermediate field K ⊂ L ⊂ KSp such that L is Galois over K0 with Galois
group isomorphic to Γ ⋊ 〈τ〉. In particular, if τ acts fixed-point-freely on Γ/Γ2 and if
m = ℓ is prime, then Gal(L/K0) is a Frobenius group.

Proof. — The extension K/K0 is cyclic of degree m and the number field K is p-rational,
hence G := Gal(KSp/K) is a free pro-p group on r2(K) + 1 ≥ d generators. Put
Gal(K/K0) = 〈σ〉 The extension KSp/K0 is a Galois extension with Galois group G0 =
Gal(KSp/K0) isomorphic to G ⋊ 〈σ〉. By Proposition 1.18, the character of the action of

σ on G /G2 is pn([F0 : Q]/2) · χreg + 1. Now let χ(Γ/Γ2) =
∑

χ∈Irr(〈σ〉)

λχχ be the character

of the action of τ on Γ/Γ2. Then
∑

χ χ(1)λχ = d and, for all χ, λχ ≤ d/χ(1) ≤ d.
In particular since [F0 : Q] · pn ≥ 2d, then necessarily, the 〈τ〉-module Γ/Γ2 is isomor-
phic to a submodule of G /G2. By Proposition 2.14, there exists a normal subgroup N
of G , stable under σ, such that G /N is 〈σ〉-isomorphic to Γ, and we have a surjection
G0 ։ Γ ⋊ 〈σ〉 ≃ Γ ⋊ 〈τ〉.
We now state the key arithmetic proposition we need.

13



Proposition 3.7. — Let L/K0 be a Galois extension of Galois group Γ ⋊ 〈σ〉, where Γ
is a uniform group of dimension d and where σ is of order m co-prime to p. Suppose
that Γ	σ

is fixed-point-free. Then every place p which is (totally) inert in K/K0 and is
not ramified in L/K splits completely in L/K.

Proof. — Let p a prime of K inert in K/K0 which is not ramified in L/K. Let us fix a prime
P|p of L (see P as a system of coherent primes in L/K). Denote by σ̃p be the Frobenius
of p in K/K0 and let σP ∈ Gal(L/K0) be an element of order m of the decomposition
group of P in L/K0 lifting σ̃p. Then σP = σi in Aut(Γ/Γ2), for an integer i, (i, m) = 1.

By Proposition 2.11, there exists g ∈ ker
(
Aut(Γ) → Aut(Γ/Γ2)

)
such that Fix(Γ, σP) =

g · Fix(Γ, σi) = {e}, the last equality coming from Remark 2.2. Let σ̂P := FrobP(L/K).
As p ∈ Σ, the prime P is unramified in K/K0 and then the decomposition group of P in
L/K0 is cyclic: the elements σP and σ̂P commute or, equivalently, σ̂P

σP = σ̂P. Hence if
σ̂P 6= e, the element σP ∈ Aut(Γ) has a fixed-point. Contradiction, and then σ̂P = e.

Assembling our forces, we can now formulate our main theorem.

Theorem 3.8. — Let Γ be a uniform pro-p group having an automorphism τ of order
m with fixed-point-free action, where m ≥ 3 is co-prime to p. Suppose F0 is a totally
imaginary number field admitting a cyclic extension F/F0 of degree m such that F is
p-rational. Then there exists a finite p-extension K/F unramified outside p and a Γ-
extension L/K with the following property: for any given integer µ0, there exists a cyclic
degree p extension K′ over K(ζp) such that L′ = LK′ is a Γ-extension of K′ whose µ-
invariant satisfies µL′/K′ ≥ µ0.

Proof. — We simply follow the rubric of Proposition 3.6. Choose an integer n large
enough so that pn[F0 : Q] ≥ 2 dim(Γ), then let K0 and K by the nth layer of the cyclotomic
Zp-extensions of F0 and F respectively. Since F is p-rational, so is K. By Proposition 3.6,
we are guaranteed of the existence of a Galois extension L/K0 with Galois group Γ⋊ 〈τ〉
and K = LΓ. By Proposition 3.7, every inert place in K/K0 splits completely in L/K.
Now we simply apply the construction described in the proof of Proposition 3.1.

Remark 3.9. — Let us remark that in the construction of Theorem 3.8 (in fact of
Proposition 3.6), we start with a p-rational field F and pass to another p-rational field K
whose maximal p-ramified p-extension is of large enough rank to have Γ as a quotient.
However, the cyclic degree p extension K′ of K(ζp) over which we construct a tower with
large µ-invariant is not itself p-rational (see [11, Chapter IV, §3]).

Remark 3.10. — In his original treatment [21], Iwasawa was able to treat the case
p = 2 alongside odd primes p. The elements of finite order of Aut(Z2) are of order 2.
Then the Question 0.5 is essential for applying our previous “co-prime to p” strategy for
Z2. Indeed, let us consider the uniform pro-2 group Γ := Z2

2 instead of Z2 by noting that
Aut(Z2

2) has a fixed-point-free automorphism τ of order 3. By example 1.15, one knows
that the field K = Q(ζ13) is 2-rational; the Galois group GS2 is free on 7 generators.
Moreover, GS2 has an automorphism of order 3 coming from the unique cyclic sub-
extension K/K0 of degree 3. The character of this action contains the character of the
action of τ on Γ/Γ2. Hence by Proposition 3.6, there exists a Galois extension L/K with
Gal(L/K) ≃ Γ = Z2

2 in which every odd inert place p in K/K0 splits completely in L/K.
In particular every such place splits in every Z2-quotient of Γ and then the Proposition
3.1 apply for Z2.
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4. Complements

4.1. A non-commutative example. — Assume p > 3. The nilpotent uniform groups
of dimension ≤ 2 are all commutative. In dimension 3 they are parametrized, up to
isomorphism, by s ∈ N and represented (see [23, §7 Theorem 7.4]) by:

Γ(s) = 〈x, y, z | [x, z] = [y, z] = 1, [x, y] = zps〉.

Here the center of Γ(s) is the procyclic group 〈z〉 and one has the sequence:

1 −→ Zp −→ Γ(s) −→ Z2
p −→ 1.

Proposition 4.1. — Let s ∈ N and let p ≡ 1(mod 3). The group of automorphisms of
Γ(s) contains an element σ of order 3 for which the action is fixed-point-free.

Proof. — To simplify the notation, put Γ = Γ(s). First, let us remark that for a, b ∈ N,
one has xayb = zabps

ybxa. Indeed,

xay = xa−1zps

yx = zps

xa−1yx = zaps

yxa,

and the same holds for xyb.
Let ζ be a primitive third root of the unity and let ζ (n) ∈ N be the truncation at level n
of the p-adic expansion of ζ : ζ (n) ≡ ζ(mod pn). Let us consider σ defined by:

σ : Γ → Γ
x 7→ xζ

y 7→ yζ

z 7→ zζ2

Then σ ∈ Aut(Γ). Indeed one has to show that the relations defining Γ are stable under
the action of σ, which is obvious for the relations [x, z] = 1 and [y, z] = 1. Let us look at
the last relation. First, as Γ is uniform, let us recall that Γn+1 = Γpn

. We have:

σ([x, y]) = σ(xyx−1y−1) ≡ xζ(n)

yζ(n)

x−ζ(n)

y−ζ(n)

(mod Γn) ≡ z(ζ(n))
2
ps

(mod Γn) −→n zζ2ps

.

To finish, let us show that the automorphism σ is fixed-point-free. Indeed the eigenvalues
of the action of σ on the Fp-vector space Γ/Γ2 ≃ F3

p are ζ (with multiplicity 2) and ζ2,

so Γ/Γ	σ

2 is fixed-point-free and we conclude with Proposition 2.7.

Remark 4.2. — If p 6≡ 1(mod 3), there is no element σ ∈ Aut(Γ(s)) of order 3 with
fixed-point-free action. Indeed, let σ ∈ Aut(Γ(s)/Γ(s)2) ≃ Gl3(Fp), and suppose that σ
is fixed-point-free. The eigenvalues of σ in Fp are ζ and/or ζ2 with multiplicity. But, as
the trace of σ is in Fp, then necessarily ζ ∈ Fp and 3 | p − 1.

Corollary 4.3. — Assume p ≡ 1(mod 3) and p regular. For each s ∈ N, there exist
Γ(s)-extensions of numbers fields with arbitrarily large µ-invariant.

Remark 4.4. — For p = 37, which is the smallest irregular prime, we may not resort
to the construction above with F = Q(ζ37), but we can still realize Γ(s)-extensions with
arbitrarily large µ-invariant by applying Theorem 3.8 for F/F0 = Q(ζ7)/Q(

√
−7).
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4.2. Counting the split primes in uniform extensions. — Let L/K be a Galois
extension with p-adic analytic Galois group Γ of dimension d. Denote by Σ the set of
primes of OK unramified in L/K. Assume Σ finite. For p ∈ Σ, let Cp be the conjugacy
class of the Frobenius of p in L/K and put

πsplit
L/K(x) =

∣∣∣{p ∈ Σ, Cp = {1}, N(p) ≤ x}
∣∣∣,

where N(p) :=
∣∣∣OK/p

∣∣∣.
In [33, Corollary 1 of Theorem 10], under GRH, Serre shows that for all ε > 0, πsplit

L/K(x) =

O
(
x

1
2

+ε
)
. Without assuming GRH, πsplit

L/K(x) = O
(
x/ log2−ε(x)

)
.

Proposition 4.5. — Let p be a regular prime and let Γ be a uniform pro-p group having
a non-trivial fixed-point-free automorphism σ of prime order ℓ | p − 1. Then there exists
a constant C > 0 and a Γ-extension L over a number field K such that

πsplit
L/K(x) ≥ C

x1/ℓ

log x
, x ≫ 0.

Proof. — One use the construction of section 3.3. Put K = Q(ζpn) where n is the smallest
integer such that pn(p − 1) ≥ 2ℓd. Let K/K0 be the unique cyclic extension of degree ℓ;
Gal(K/K0) = 〈σ〉. Let L/K be a uniform Galois extension with group Γ constructed by
the method of Proposition 3.6. Let E (L/K) be the set of conjugacy classes of Gal(K/Q)
of the elements σi with (i, ℓ) = 1. By Proposition 3.7, a prime q of K for which the
Frobenius conjugacy class σq ∈ K/Q is in E (L/K), splits totally in L/K. Hence

πsplit
L/K(x) ≥

∣∣∣{q ∈ Σ, σq ∈ E (L/K), N(q) ≤ x}
∣∣∣

=
∣∣∣{q ∈ Σ, ∃(i, ℓ) = 1, Cq(K/Q) = σi, qℓ ≤ x}

=
∣∣∣{q ∈ Σ, ∃(i, ℓ) = 1, Cq(K/Q) = σi, q ≤ x1/ℓ}

∣∣∣

where Cq(K/Q) is the conjugacy class of the Frobenius of q in Gal(K/Q). By using
Chebotarev Density Theorem, one concludes that

πsplit
L/K(x) ≫ x1/ℓ

log x
·

Example 4.6. — For the uniform group Γ(s) of dimension 3 discussed in §4.1, one

obtains Γ(s)-extensions L/K with πsplit
L/K(x) ≫ x1/3

log x
.

4.3. On p-rational fields with splitting. — For all this section, assume that p > 2.
By making use of fixed-point-free automorphisms, we have produced some uniform ex-
tensions with infinitely many totally split primes. Using Class Field Theory it is also
possible to produce some free-pro-p extensions with some splitting phenomena, but we
do not know if it is possible to construct free pro-p extensions in which infinitely many
primes of the base field split completely. In fact this question is related to the work of
Ihara [20] and the recent work of the authors [16].

Let us show how to produce some free pro-p extensions with some splitting. Let S and
T be two finite sets of places of number field K such that S ∩ T = ∅. Recall that
Sp = {p ∈ K : p|p}. Let (r1, r2) be the signature of K. Let KT

S be the maximal pro-p
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extension of K unramified outside S and totally decomposed at T . Put G T
S = Gal(KT

S /K);

AT
S := G T

S
ab

and AT
S /p := G T

S
ab

/G T
S

ab,p
. Of course, one has dpA

T
S = dpG

T
S and for

S = T = ∅, A∅
∅(K) = A(K).

We are interested in constructing an example where the group G T
S is a free pro-p group

and T is not empty.

The following is a fundamental and classical result about the Euler characteristics of G T
S .

Proposition 4.7 (Shafarevich and Koch). — Suppose that K contains the p-roots of
the unity. Then,

dpH2(G T
S , Fp) ≤ dpAS

T + |S| − 1

and

dpG
T
S = dpA

S
T + |S| − |T | − (r1 + r2) +

∑

v∈S∩Sp

[Kv : Qp]·

Proof. — See for example [11, Corollary 3.7.2, Appendix] for the bound for the H2 and
[11, Theorem 4.6, Chapter I, §4] for the H1.

The first inequality of the previous proposition would allow us to produce a free pro-p
extension with complete splitting at the primes in T if dpA

S
T + |S| − 1 = 0. On the other

hand, if we apply the second line , let us read the second of Proposition 4.7 with the role
of S and T reversed, we find that

dpA
S
T ≥ |T | − (r1 + r2 + |S|).

We conclude that, under this strategy, |T | ≤ r1 + r2 + 1, so this method is rather limited
in scope.

Let us take K = Q(ζp) when p is regular and S = Sp. Then the group G T
S will be pro-p

free when AS
T is trivial. As the p-class group of K is trivial, one has:

AS
T ≃ (

∏

v∈T

Uv)/O
S
K,

where Uv is the pro-p completion of the local units at v and where OS
K is the group of

S-units of K. Now, there are several types of scenarios where the quotient (
∏

v∈T Uv)/OS
K

is trivial. Let us give one. Suppose that T = {ℓ} where ℓ is inert in K/Q. Then Uℓ is
isomorphic to the p-part of F×

ℓ . Hence, the global pth roots of unity will kill this part
when |Uℓ| = p i.e. when ℓp−1 − 1 is exactly divisible by p. When this is the case, the
group G T

S is free on (p − 3)/2 generators.

4.4. Incorporating the Galois action. — We can take these ideas a bit further by
studying the Galois action. Throughout this subsection, we fix the following notation and
assumptions (we still assume p > 2). Let K0 be a number field, K/K0 a cyclic extension
of integer m co-prime to p. Put ∆ = Gal(K/K0). Let r = r1(K0) + r2(K0) be the number
of archimedean places of K0. Let S and T be two finite sets of places of K0 such that
S ∩ T = ∅ and S contains Sp. By abuse of notation, the set of places of K above S and
T are again called S and T respectively. Denote by Ssplit (resp. Tsplit) the set of places of
S (resp. of T ) splitting in K/K0 an by Sinert (resp. Tinert) the set of places of S (resp. of
T ) not splitting in K/K0. As in §1.2, the arithmetic objects of interest have a structure
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as Fp[∆]-modules. We recall the following mirror identity from the book of Gras [13,
Chapter II, §5.4.2]:

Theorem 4.8. — Assume that Sp ⊂ S and that K contains a primitive pth root of unity.
Then:

ωχ−1(AT
S ) − χ(AS

T ) = rχreg + ω − 1 + |Sinert|1 + |Ssplit|χreg − |Tsplit|χreg − |Tinert|ω.

Proposition 4.9. — Suppose that K, which is a cyclic degree p extension of K0, contains
a primitive pth root of unity and is p-rational. Then K0, as well as every number field
Kn in the cyclotomic extension K∞ of K is also p-rational.

Proof. — It is an obvious extension of Proposition 1.16.

Now we assume that K0 is totally imaginary and we take S = Sp.
By hypothesis, there is no abelian unramified p-extension of K in which p splits completely.
Then for T = ∅, by Theorem 4.8, one has:

ωχ−1(AS) = rχreg + ω.

The group AS(K0) corresponds by Class Field Theory to the Galois group of the maximal
abelian pro-p extension of K0 unramified outside S. The Galois group GS(K0) is free on
r+1 generators. The action of ∆ on AS/p being semi-simple, the Fp[∆]-module AS(K0)/p
is isomorphic to AT

S /p on which the ∆ action is trivial.

By the Chebotarev Density Theorem, we can choose a set T := {p0, · · · , pr} of places of
K0 all inert in K/K0, with |T | = dpAS(K0) = r + 1, such that the Frobenius symbols σpi

,
i = 0, · · · , r, generate the p-group AS(K0) ⊗ Fp. By the choice of T , one has χ(AT

S ) =
χ(AS) − |T |1. Thanks to Theorem 4.8 one then obtains:

χ(AS
T ) = ωχ−1(AT

S ) − ωχ−1(AS) − |T |ω = 0.

Then the maximal pro-p-extension of K unramified outside T and splitting at S, is trivial.
One then uses Proposition 4.7 to obtain:

Proposition 4.10. — Under the conditions of Proposition 4.9, and with S = Sp and T
as above, the pro-p-group G T

S is free on r(ℓ − 1) generators and

χ(AT
S ) = r(χreg − 1).

Remark 4.11. — (i) The main point of Proposition 4.10 is that the action of σ on AT
S

is fixed-point-free, where ∆ = 〈σ〉.
(ii) By Proposition 4.9, the degree r can be taken arbitrarily large.

As corollary, one obtains:

Corollary 4.12. — Assume the conditions of Proposition 4.10. Let L/K0 be a sub-
extension of KT

S/K0 such that Γ = Gal(L/K) is a uniform pro-p group. Then every
(totally) inert (odd) prime p ⊂ OK in K/K0 splits completely in L/K.
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4.5. Some heuristics on p-rationality. — Here we exploit some conjectures on p-
rationality to get further heuristic evidence in direction of Conjecture 0.1. These are of
two types. The first is in the spirit of the Leopoldt Conjecture – in a certain sense this
is a transcendantal topic; the main reference is the recent work of Gras [12]. The second
one is inspired by the heuristics of Cohen-Lenstra [6].

Conjecture 4.13 (Gras, Conjecture 8.11 of [12]). — Let K be a number field.
Then for p ≫ 0, the field K is p-rational.

Proposition 4.14. — Let P be an infinite set of prime numbers and m an integer co-
prime to all p ∈ P. Let (Γp)p∈P be a family of uniform pro-p groups all of dimension
d and all having a fixed-point-free automorphism of order m. If Conjecture 4.13 is true
for some number field K of degree mn, then for all but finitely many primes p ∈ P, the
groups Γp have arithmetic realizations as Galois groups with arbitrarily large µ-invariant.

Proof. — Let us take K0 be a totally imaginary abelian number field of degree n over Q

and let K1/Q be a degree m cyclic extension with K0 ∩ K1 = ∅. Let K = K0K1 be the
compositum. Put 〈σ〉 = Gal(K/K0). Under Conjecture 4.13, one knows that for large p
depending only on K, the field K is p-rational. One then applies Theorem 3.8.

Example 4.15. — Let us fix s ∈ N and let P be the set of primes p ≡ 1 mod 3. Let
Γ(s, p) be the pro-p group Γ(s) of dimension 3 introduced in §4.1. One can apply Propo-
sition 4.14 to the family of groups (Γ(s, p))p∈P

.

Let us consider another idea for studying p-rationality, in the spirit of the Cohen-Lenstra
Heuristics [6]. For a prime number p ≥ 5 and an integer m > 1 not divisible by p, let
us consider the family Fm(K0) of cyclic extensions of degree m over a fixed p-rational
number field K0. Following the idea of Pitoun and Varescon [31], it seems reasonable to
make the following conjecture:

Conjecture 4.16. — Let us fix p and m as above. If K0 is a p-rational quadratic imag-
inary field, the proportion of number fields K in Fm(K0) which are p-rational (counted
according to increasing absolute value of the discriminant) is positive.

Obviously, Conjecture 4.16 implies Conjecture 0.1.
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