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The ability to control the properties of twisted bilayer transition metal dichalcogenides in situ
makes them an ideal platform for investigating the interplay of strong correlations and geometric
frustration. Of particular interest are the low energy scales, which make it possible to experimentally
access both temperature and magnetic fields that are of the order of the bandwidth or the correlation
scale. In this manuscript we analyze the moiré Hubbard model, believed to describe the low energy
physics of an important subclass of the twisted bilayer compounds. We establish its magnetic and
the metal-insulator phase diagram for the full range of magnetic fields up to the fully spin polarized
state. We find a rich phase diagram including fully and partially polarized insulating and metallic
phases of which we determine the interplay of magnetic order, Zeeman-field, and metallicity, and
make connection to recent experiments.

Introduction. The correlation-driven Mott metal-
insulator transition –in other words, under what circum-
stances can electrons move through a material– is one
of the central issues in modern day condensed matter
physics. Developments over the past five years in moiré
transition metal dichalcogenides, including the observa-
tion of a continuous Mott transition [1] and quantum
criticality [2], have opened a new experimental frontier
in this area [3–6]. Moiré materials consist of two or more
atomically thin layers, perhaps with slightly different lat-
tice constants, stacked at a small twist angle. The lat-
tice mismatch and twist angle, combined with a weak
but nonzero interlayer tunnelling, produce experimental
platforms whose low energy physics is described by a few-
band model with a very large unit cell and therefore very
low bandwidth and interaction scales, which moreover
are tunable by twist angle, pressure, and the choice of
materials in which the moiré system is embedded [3, 5].
One particularly widely studied class of moiré materials
are bilayers comprised of transition metal dichalcogenide
materials such as WSe2 and MoTe2 which in appropriate
circumstances realize the moiré Hubbard model: a two-
dimensional triangular lattice hosting a single band of
electrons correlated by an interaction that to a good ap-
proximation may be taken to be site-local. Importantly,
the magnitude and form of the interaction and the elec-
tronic band structure can be varied over wide ranges in
situ by changing gate potentials and twist angles [4–8]
while all electronic scales are small enough that temper-
atures and magnetic fields spanning the whole range from
very low to higher than the effective bandwidth are ex-

perimentally accessible.
While the metal-insulator transition in two dimen-

sional Hubbard models has been studied, both in general
[9–16] and in connection to moiré systems [17, 18], the
effect of a magnetic field seems (apart from one notable
exception [19]) not to have been investigated, perhaps in
part because for most conventional materials the experi-
mentally accessible fields are a tiny fraction of the band-
width so that linear response theory suffices. Motivated
by the wide range of field strengths experimentally acces-
sible in moiré systems, in this paper we use state of the
art single-site and cluster dynamical mean-field methods
to study the metal-insulator phase diagram of the moiré
Hubbard model over the full magnetic field range, assum-
ing that the primary coupling is the Zeeman-coupling to
the electronic spin. Orbital effects will be considered in
a forthcoming paper. We reveal full and partially po-
larized insulating and metallic phases, as well as canted
antiferromagnetically ordered phases.

Model and methods. We study the moiré Hubbard
model (MHM), a modification of the well-known Hub-
bard model [20–23], the fruit fly of electronic correlations
[24, 25]. The Hamiltonian is

H =−
∑

〈ij〉,σ=↑↓
c†i,σt

ij
σ cj,σ + U

∑

i

ni,↑ni,↓

−gµBB
∑

i,α,β

c†i,ασ
α,β
z ci,β . (1)

Here, i, j represent nearest-neighbor sites on a two-
dimensional triangular lattice, U is the (purely local)
Coulomb interaction, and tijσ = |t| eiσφij is a spin-
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FIG. 1. Phase diagram of the moiré Hubbard model (Eq. 1)
for φ = π/6 at half-filling and zero external magnetic field
B = 0 calculated by the dynamical mean-field methods in-
dicated in the legends. Solid reddish lines denote magnetic
phase transition lines from a paramagnetic to a 120◦ ordered
antiferromagnetic state, solid blueish lines denote a crossover
from a metallic to an insulating region. Dashed blueish lines
mark a metal-insulator crossover when the calculation is re-
stricted to a non-magnetic (metastable) solution.

dependent hopping parameter [26], which can be param-
eterized by a complex phase φ arising from the strong
spin-orbit coupling of the constituent layers and a mag-
nitude t. g is the gyromagnetic factor of an electron,
µB is the Bohr magneton, and B an externally applied
field in z-direction. The structure of the model is such
that at φ = π/6 at half-filling the model has a particle-
hole symmetry, a nested Fermi surface, and a third-order
van Hove point, implying that at T =B = 0 the system
is a 120◦−antiferromagnetic insulator at even infinites-
imal coupling; while for φ 6= π/6 the model at T = 0
is a paramagnetic metal at small interaction strengths,
with a first order magnetic and metal-insulator transi-
tion as the relative interaction U/t is increased above a
critical value [26]. Both t and φ may be experimentally
tuned in situ by the application of appropriate gate volt-
ages. In this work we analyze the half-filled situation
〈n↑〉+〈n↓〉= 1, considering both paramagnetic and 120◦

magnetically ordered states.

We investigate this model by means of the dynam-
ical mean-field theory (DMFT [9, 27, 28]), in its sin-
gle site and cluster forms. We employ two flavors of
cluster DMFT: the cellular DMFT (CDMFT [29] with
center-focused post-processing [15]) and the dynamical
cluster approximation (DCA [29]). We use cluster sizes
Nc ∈ {1, 3, 7, 9}. For our calculations at non-zero tem-
peratures we use continuous-time quantum Monte Carlo
in its interaction expansion (CT-INT), using the TRIQS

package [30], to solve the dynamical mean-field equations
[31, 32]. These methods provide results only above a cer-
tain low temperature limit, which is typically low enough
that a reliable extrapolation to the T = 0 physics is possi-
ble. For some of our calculations we employ the recently
developed Variational Discrete Action (VDAT) method
[33] which provides an extremely computationally effi-
cient estimate of ground state properties of the single-
site model. Details of the solvers, cluster geometries and
implementations are given in the Supplemental Material
[34].

Zero field phase diagram. For orientation and to
demonstrate the robustness of our methods we present
in Fig. 1 the zero-field phase diagram of the fully nested
(φ = π/6) model in the temperature (T )-interaction (U)
plane obtained from single-site and cluster dynamical
mean-field methods. Paramagnetic insulator, paramag-
netic metal and antiferromagnetic insulator phases are
found. The phase boundaries determined by the different
methods are quantitatively similar almost everywhere,
strongly suggesting that the results we find are insensitive
to cluster effects. The only important difference is that,
as is well known, the single-site DMFT method strongly
overestimates the low T critical U needed to drive a para-
magnetic metal-paramagnetic insulator phase transition;
but it is important to note that the region of large dif-
ference occurs within the 120◦-antiferromagnetic phase
(i.e., below TN ) where the paramagnetic phase single-site
DMFT calculation is irrelevant.

We remark that the calculations involve a mean-field
approximation, so at finite Nc the calculations do not
capture the long-wavelength fluctuations that convert the
transition to one of the Kosterlitz-Thouless type (for φ 6=
0) or push the transition temperature to zero (for the
Heisenberg-symmetry φ = 0 case [35]). The mean-field
temperature found here should be interpreted as setting
the scale at which magnetic fluctuations become both
strong and long ranged.

Applied magnetic field at T = 0. Turning now to the
effects of a magnetic field, in panel (a) of Fig. 2 we show
the phase diagram in the magnetic field-interaction plane.
This phase diagram was obtained at T = 0 using the
VDAT method to solve the single-site DMFT equations
in the paramagnetic phase; however, spot checking the
result with cluster methods and by allowing for magnetic
order reveals that the VDAT/single-site result for the full
polarization line is quantitatively accurate. A fully spin
polarized, trivially insulating high-field phase is sepa-
rated from a partially polarized phase by a transition line
(sharp at T = 0). At small-to-intermediate interaction
the transition is continuous in the sense that the magne-
tization mz in the paramagnetic phase evolves smoothly
up to the saturation value m = 1, and our computed
phase boundary agrees precisely with the Hartree-Fock
result [26] and results from exact diagonalization [37].
At larger interactions U/t & 6 the transition changes to
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FIG. 2. (a) Zero temperature phase diagram for the half-filled perfectly nested MHM (φ = π/6), calculated in the interaction
strength (U)-magnetic field (B) plane in the single-site dynamical mean-field approximation at T = 0 using the VDAT method
in the paramagnetic phase, i.e., without permitting spontaneous ordering. A phase boundary separates a large B, fully spin-
polarized trivially insulating phase (green shaded region) from a small B partially spin-polarized phase. For U/t . 6 and
U/t & 12 the transition to the fully polarized phase is second order (green circles) while for (6 . U/t . 12) the transition
is first order (green squares). The dashed line shows the Hartree-Fock approximation to the full-polarization transition line.
The dotted line shows the mean-field approximation to the full polarization transition of a nearest-neighbor Heisenberg model
with J ∝ t2/U . Also shown is the critical coupling Uc of the Mott-Hubbard metal-insulator transition, which is seen to be
reentrant as a function of field (purple pentagons). The vertical line at U/t = 4 indicates B fields at which a dynamical mean-
field calculation at a temperature T/t = 1/17 ≈ 0.06 leads to an antiferromagnetic insulator (red triangles), paramagnetic
metal (blue stars) or trivial fully spin-polarized insulator (green circles). (b)-(g) Single-site dynamical mean-field results for the
Matsubara frequency dependence of the imaginary part of the Green function (averaged over spin) and the two spin components
of the dynamical self energy ∆Σ = Σ(ω) − Σ(ω→∞) obtained at the nonzero temperature T/t = 1/17 for several magnetic
fields along the vertical U/t = 4 line of (a).

first order (meaning that mz jumps from a value less than
1 to the saturated value) while the line deviates from the
Hartree-Fock result and rolls over to the ∼ t2/U satura-
tion field expected for a Heisenberg magnet.

Also shown in the phase diagram is the paramagnetic
(Mott) metal-insulator phase boundary. At the φ = π/6
value used to construct Fig. 2 the metallic phase is reen-
trant: in the small range 12.5 . U/t . 14 the zero
B-field Mott insulator becomes metallic as the field is
increased, before again becoming insulating. This reen-
trance is absent for φ = 0 (see [34] for the corresponding
phase diagram) and it should be noted that cluster ef-
fects substantially change the single-site results for the
Mott transition.

Applied field at nonzero temperatures. We now in-
corporate magnetic ordering and non-zero temperatures
in the analysis. We focus on the interaction strength
U/t= 4, believed to be a suitable value for the descrip-
tion of the homobilayer WSe2 [18]. Panels (b)-(g) of

Fig. 2 show the Green functions and self-energies (minus
their Hartree contributions) on the Matsubara axis, ob-
tained from single-site DMFT at T/t = 1/17. At low field
strengths gµBB/t=1, the system is insulating, indicated
by the decrease in the imaginary part of the Green func-
tion at low Matsubara frequencies. This gap is opened
by a strongly spin-dependent self-energy. At large field
strengths gµBB/t&3.4 the system is fully polarized, the
lower σ =↑ band is completely filled, and the combina-
tion of the magnetic field and the interaction opens a gap
between the spin up and spin down bands. In between,
e.g., at gµBB/t=3 and temperature T/t = 1/17, the xy-
ordering is suppressed by the magnetic field, however,
the system is not yet fully z-polarized, and, hence, the
system is metallic.

We now turn to physical observables that can be ob-
tained from these raw Green function data. Panel (a) of
Fig. 3 shows that as the Zeeman-field is increased from
zero the staggered magnetization mxy decreases and the



4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

gµBB/t

0.0

0.2

0.4

0.6

0.8

1.0
m

ag
ne

tiz
at

io
n

(a)

mz

mxy

mz

mxy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

gµBB/t

2

1

0

Ξ

(b)

xy-ordered metallic fully z-polarized
1 0 1ω

0

1

A(
ω
) (c)

gµBB/t= 0.0

1 0 1ω
0.0

0.2

0.4

A(
ω
)

(d)

gµBB/t= 0.9

1 0 1ω
0.00

0.05

0.10

0.15

A(
ω
)

(e)

gµBB/t= 3.1

1 0 1ω
0.00

0.03

0.06

0.09

A(
ω
)

(f)

gµBB/t= 3.4

FIG. 3. (a) Magnetic field (B) dependence of antiferromagnetic order parameter mxy (blue triangles) and spin polarization
mz (orange squares). (b) shows Ξ = −dA/dT which is positive (negative) in metallic (insulating) phases (see text). The local
spectral functions (c)-(f), obtained with MaxEnt analytic continuation [36], confirm this classification. All quantities were
computed at perfect nesting (φ = π/6) for U/t = 4 and T/t=1/17 with single-site DMFT.

uniform magnetization mz increases, indicative of the
spin canting expected for a Heisenberg-symmetry magnet
and sketched on the figure. At the value gµBB/t = 2.8
the staggered magnetization vanishes, but at this field
the uniform magnetization mz < 1, indicating at this
temperature a small window of paramagnetic partially
polarized phase separating the antiferromagnet from the
fully polarized state.

Panel (b) of Fig. 3 examines the evolution of the elec-
tronic properties of these states, plotting Ξ :=−dA/dT ,
where A=− 1

πTG(τ = β/2) is an estimate for the many-
body density of states at the Fermi level. For the metallic
state Ξ > 0, whereas for the gapped states Ξ < 0. The
magnetic state at different fields is shown as colored sym-
bols. Densities of states obtained by analytically contin-
uing the Matsubara axis Green function are shown for
several points in panels (c)-(f), confirming the identifi-
cation of the different phases. We see that at this value
of U insulating and magnetically ordered behavior are
closely linked.

T − B phase diagrams and generalizations. Fig. 4
presents the phase diagram in the field-temperature plane
at U/t = 4 for a different phase angle (φ = π/8), for
which the nesting is imperfect and the van Hove singu-
larity is removed from the Fermi surface. The analogous
phase diagram for perfect nesting can be found in the
Supplemental Material [34]. Although some quantitative
features change compared to φ=π/6 (like a smaller onset
of the magnetic ordering temperature at zero B-field),
the two phase diagrams are qualitatively very similar:
both show two types of magnetic ordering as well as an
intermediate metallic phase (see inset of the right panel
for a zoom into this regime).

The ordering temperature TN (red triangles), denot-
ing the second order phase transition from a param-

agnetic metal to a 120◦ ordered insulator, is reduced
upon the application of the external field. Interest-
ingly, as already pointed out before (and in contrast to
T = 0), at finite temperatures an intermediate metallic
phase (blue stars) appears with partial z-polarization.
At even larger fields, the system enters the fully po-
larized regime, which is insulating (green circles). At
non-zero temperatures the z-magnetization is never com-
pletely saturated, hence we distinguish the partially po-
larized state from a ‘fully polarized’ one using the cri-
terion mz(B, Tpol) = 0.997, which defines the boundary
curve Tpol(B) shown in Fig. 4.

We have found that as the temperature is decreased,
the range ofB over which an intermediate metallic regime
is observed decreases; the available evidence implies that
at T = 0 the entire range from B = 0 up to the satu-
ration field is xy-ordered and insulating, consistent with
previous Hartree-Fock [26] and exact diagonalization re-
sults [37]. Finally, let us note that non-local (spatial)
correlations, neglected by DMFT, do not change the pic-
ture drastically. This can be inferred from the compar-
ison (and qualitative agreement) of DMFT with 9-site
CDMFT calculations in panel (b) of Fig. 4.

Conclusions and outlook. In this paper we have inves-
tigated the full magnetic field dependence of the metal-
insulator and magnetic field phase diagram of the moiré
Hubbard model (two dimensional triangular lattice Hub-
bard model with xy-magnetic anisotropy and nontrivial
hopping phase). Our results refine, extend and gener-
alize the important early work of Laloux and Georges
on the infinite dimensional Hubbard model [19]. Our
comparison of single-site and cluster dynamical mean-
field approximations confirms that once magnetic order-
ing is allowed for, the single-site approximation provides
a reasonably accurate solution even though the model is
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two-dimensional and that the VDAT method provides an
extremely computationally efficient and highly accurate
solution for ground state properties. Within this approx-
imation we generally find, for both nested and non-nested
cases, that at T = 0, the B = 0 magnetic order and insu-
lating behavior persists over the entire B > 0 field range
until the system becomes fully polarized, with the order
parameter and transition temperature being gradually
reduced by the spin canting. Metallic behavior is only
found at nonzero temperatures for magnetic fields that
suppress the magnetically ordered state to lower temper-
atures but are too weak to yield a fully spin-polarized
state. Our results may be qualitatively compared to re-
cent experiments on twisted WSe2 which indicate that
as the field is increased from zero the half filled mate-
rial undergoes an insulator to metal transition at a field
of about 2T, and becomes a fully polarized insulator at
a field of ≈ 30T [38]. A precise comparison is difficult
because the bandwidth cannot be unambiguously deter-
mined, but estimates from band theory [4] and quantum
oscillation measurements on a sample with a Moire lat-
tice constant of 6.3nm suggest at low hole density a mass
of ≈ 0.4me implying t ≈ 2meV. Use of the band theory
g-factor ≈ 6 and U/t = 4 would then lead to a fully po-
larized state at about 30T , consistent with experiment.
However, the wide field range yielding metallic behavior
is inconsistent with the theory. Whether this calls for
a multi-orbital or non-local interaction extension of the
MHM (analogously to an extended Hubbard model, see,
e.g., [39, 40]) is to be clarified by future studies, as well as
the role of superconductivity [41, 42] and its connection
to experiments.

Acknowledgements. The authors are grateful for fruit-
ful discussions with Sabine Andergassen, Laura Classen,
Lorenzo Del Re, Antoine Georges, Henri Menke, Michael
Scherer, and Nils Wentzell. T.S., M.K., and M.F. ac-
knowledge the hospitality of the Center for Computa-
tional Quantum Physics at the Flatiron Institute. The
authors acknowledge the computer support teams at
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tivity in the Moiré Hubbard model, Phys. Rev. Res. 4,
043048 (2022).

[38] A. Ghiotto, L. Song, L. Wei, L. Wang, C. Dean, and

A. Pasupathy, personal communication.
[39] N. Gneist, L. Classen, and M. M. Scherer, Competing in-

stabilities of the extended Hubbard model on the trian-
gular lattice: Truncated-unity functional renormalization
group and application to moiré materials, Phys. Rev. B
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Magnetism and Metallicity in Moiré Transition Metal Dichalcogenides
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Patrick Tscheppe, Jiawei Zang, Marcel Klett, Seher Karakuzu, Armelle Celarier, Zhengqian Cheng,

Thomas A. Maier, Michel Ferrero, Andrew J. Millis, and Thomas Schäfer

In this Supplemental Material we detail our calculation procedures and show additional data. In Sec. I we define
different magnetizations and show how we calculated the magnetic ordering temperatures. Sec. II gives the non-
interacting dispersion for different φs. Sec. III details the procedure of determining the interaction-driven metal-
insulator crossover. Sec. IV defines the procedure for calculations with applied field. Sec. V gives details about the
used algorithms, especially cluster layouts. Sec. VI shows additional phase diagrams referred to in the main text.
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I. MAGNETIC ORDER

At half-filling and for φ = π/6 the low temperature magnetic ground state is characterized by a 120◦ antiferromag-
netic ordering pattern [1–3]. As a consequence of broken SU(2) symmetry of the model the spins always align in the
bilayer xy-plane and we define a corresponding staggered magnetization

mxy = e−iQ·Rj
(〈
Sxj
〉

+ i
〈
Syj
〉)
. (1)

Here Q = (−4π/3aM, 0) and aM denotes the moiré lattice spacing. Treatment of this order is greatly simplified by

first applying a unitary transformation c†j,σ → eiσϑj/2c†j,σ mapping Sxj + iSyj → eiϑj (Sxj + iSyj ). We choose the phases

ϑj such that Q = 0 after the transformation, which is implemented by the replacement φ→ φ+π/3 [2]. Competition

between xy-order and strong z-polarization is then captured by the simpler order parameters m2
xy =

〈
Sxj
〉2

+
〈
Syj
〉2

and mz =
〈
Szj
〉
.

At finite temperatures we use a response calculation to an externally applied field within the single-site DMFT and
CDMFT approximations to obtain the ordering temperature TN for the 120◦ state. The temperature dependence of
the static susceptibility is well described by a mean-field exponent χ ∝ |T − TN |−1 for all cluster sizes considered
in this study. We therefore compute the staggered magnetization mxy at weak applied staggered fields Bxy and at
various temperatures and determine the susceptibility from the slope χ = dmxy/dBxy. The Néel temperature can
then be extracted by linear extrapolation of χ−1. In Fig. 1 we show data for a 3-site CDMFT calculation to illustrate
this procedure.
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FIG. 1: Extraction of the Néel temperature TN for xy ordering (we show data at B = 0). (a) Staggered magnetization mxy as
a function of applied in-plane field Bxy for three different temperatures at U/t = 7 in 3-site CDMFT. From the slopes
χ = dmxy/dBxy we extract the static susceptibility χ. (b) Close to the transition the behavior of χ is well captured by a
mean-field exponent χ−1 ∝ |T − TN |. By linear extrapolation we obtain the Néel temperature TN .
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II. DISPERSION

Fig. 2 shows the non-interacting dispersion εk,σ of the MHM over the Brillouin zone for several values of φ. At
φ = 0 we recover the nearest-neighbor tight-binding dispersion on a triangular lattice. However, as φ is increased
toward φ = π/6 nesting develops in the spin up and down Fermi surfaces, which are now no longer identical and are
related by time reversal symmetry. At φ = π/6 there is both perfect nesting and a third-order van Hove singularity
directly on the Fermi surface [2, 3]. For this reason the 120◦ magnetic state persists down to infinitesimally small
U → 0.

(a) φ = 0
σ = ↑ σ = ↓

(εk,σ − εF)/t

(b) φ = π/8
σ = ↑ σ = ↓

(εk,σ − εF)/t
(c) φ = π/6

σ = ↑ σ = ↓

(εk,σ − εF)/t

FIG. 2: Non-interacting dispersion εk,σ − εF of the moiré Hubbard model for (a) φ = 0, (b) φ = π/8 and (c) φ = π/6 at
half-filling. The Fermi surface εk,σ = εF is indicated in white.
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III. METAL-INSULATOR CROSSOVER

For all temperatures above the magnetic dome (see Fig. 1 in the main text) there is no sharp transition between
the metallic and insulating state but rather a smooth crossover. As a criterion for this crossover we use the inflection
point of the local (spin-summed) spectral function at zero frequency

Aloc(ω = 0) = − 1

π

∑

σ=↑/↓
ImGloc,σ(ω = 0) (2)

as a function of the interaction strength U . This quantity is not directly accessible from our imaginary time data,
but it can be approximated by

Aloc(ω = 0) ≈ − 1

πT
Gloc(τ = β/2), (3)

which we found to agree well with a direct Matsubara frequency extrapolation iωn → i0+ of Gloc(iωn). In Fig. 3 we
show this quantity both for the single site DMFT and 3-site CDMFT. Inside the magnetic dome the true solution of
these methods is always insulating, which necessitates a restriction to the metastable paramagnetic solution in order
to track the evolution of the crossover line to lower temperatures. In this study we compute Uc2 only, i.e. the critical
interaction strength obtained by gradually increasing U . At low temperatures the metal-insulator crossover can turn
into a first-order transition, characterized by a hysteresis behavior of Aloc(ω = 0). We then expect to find a different
value Uc1 for the transition when decreasing the interaction U .
While there is good quantitative agreement between all cluster sizes (including Nc = 1) as to the location of the
high temperature crossover, larger differences become apparent at lower temperatures. In particular, the slope of the
crossover line Uc2(T ) has a different sign in DMFT as compared to all clusters with Nc > 1 (see Fig. 1 of the main
text).
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FIG. 3: Metal-insulator crossover at finite temperature in the perfectly nested moiré Hubbard model from single-site DMFT
and 3-site CDMFT. (a) Zero-frequency spectral weight in DMFT computed using Eq. (3). (b) On the triangular 3-site cluster
Eq. (3) is applied to the local Green function of an arbitrary site since they are all equivalent by symmetry. In both cases the
position Uc2 of the inflection point is used as a criterion for the metal-insulator crossover at finite temperature (vertical
dashed lines). We observe that the inclusion of non-local correlations reverses the temperature-dependence of Uc2.
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IV. METALLICITY IN THE POLARIZED STATE

While at half filling the zero temperature ground state of the moiré Hubbard model is always insulating, we observe
a reentrant insulator-metal-insulator transition as a function of the applied Zeeman-field at finite temperatures (Fig. 4
of the main text). As described in the main text we determine the metallic region by considering the temperature
dependence of the zero-frequency spectral weight Eq. (3). In Fig. 4 this quantity is shown for applied Zeeman-fields
B close to the fully z-polarized region and at different temperatures. While the spectral weight decreases for small
and very large values of B when the temperature is lowered, we observe the opposite behavior in a small intermediate
window at around gµBB/t ≈ 3.1. Below a temperature of T/t ≈ 0.033 this metallic phase is absent for φ = π/6 in
agreement with our zero temperature calculations which show no signs of metallicity.
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FIG. 4: Metallicity in single-site DMFT at U/t = 4. (a) Local spectral weight at the Fermi energy for φ = π/6 and four
representative temperatures. For low and very large values of the applied Zeeman-field B the spectral weight decreases
monotonically with temperature. There is an intermediate metallic region around gµBB/t ≈ 3.1 where the spectral weight
increases as the temperature is lowered. However, this region vanishes when T/t < 0.033. (b) Shows the same quantity at
φ = π/8, off of the perfect nesting condition. The qualitative behavior remains unchanged, while the metallic phase persists
until lower temperatures.
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V. NUMERICAL METHODS

A. Cellular dynamical mean-field theory (CDMFT)

The single-site DMFT includes all local dynamical correlations between electrons. In order to systematically study
the corrections due the to non-local correlations we here employ its cellular cluster extension CDMFT [4, 5] for three
different cluster sizes having Nc = 3, 7 and 9 sites, respectively. In this approach the cluster degrees of freedom take
the place of the DMFT single-site impurity, which is used to self-consistently approximate the lattice dynamics. We
show the geometry of these clusters along with their corresponding superlattice vectors A1,A2 in Fig. 5.
Local quantities (such as magnetization and spectral weight) extracted from the center converge faster with cluster
size [6]. For this reason we show only data at the central site of the 7-site and 9-site clusters in the main text.
We solved the self-consistent cluster impurity model using the interaction expansion based continuous time quantum
Monte Carlo solver CT-INT as implemented in the TRIQS framework [7].

B. Dynamical cluster approximation (DCA)

DCA is an embedding method where an infinite size lattice is mapped onto a finite size cluster embedded in a
dynamic mean-field, which is determined self-consistently [8]. In contrast to the CDMFT, this mapping is performed
in momentum space by tiling the first Brillouin zone into Nc patches as shown in Fig. 6. This leads to an approxima-
tion in which short-range correlations within the cluster are treated accurately while longer-ranged correlations are
approximated at the mean-field level. Here we use an Nc=3× 3=9 cluster, for which the momentum space patches
are shown in Fig. 6. To solve the effective cluster problem, we use a continuous-time auxiliary field quantum Monte
Carlo (CT-AUX) solver [9] as described in Ref. [10]. Unlike the CDMFT cluster, the DCA cluster is translationally
invariant and the local single-particle Green function used to determine the critical Uc shown in Fig. 1 in the main
text is calculated as an average over the momentum space Green function.

C. Variational discrete action theory DMFT (VDAT)

VDAT directly solves the ground state of the Hubbard model in d =∞ without mapping to the Anderson impurity
model. VDAT uses a variational ansatz for the many-body density matrix, known as the sequential product density
matrix (SPD), and the accuracy of the SPD is controlled by an integer N . The details are described in Ref. [11].

FIG. 5: Illustration of the various cluster geometries of size Nc ∈ {3, 7, 9} used in the CDMFT calculations. (a) Due to lattice
symmetry all sites in the three-site cluster are equivalent. (b), (c) In the seven and nine-site geometries there is a central site
(red dots) whose nearest neighbors all belong to the cluster. By periodic repetition along superlattice vectors A1,A2 (dark
red arrows) the clusters form a tiling of the triangular lattice.
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FIG. 6: Illustration of the triangular lattice Brillouin zone and the Nc=3× 3=9 momentum space patches used in the DCA
calculations.
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VI. ADDITIONAL PLOTS

In Fig. 7 we compare the zero temperature phase diagram of the perfectly nested moiré Hubbard model [φ = π/6,
panel (b)] with the spin-symmetric limit of the model [φ = 0, panel (a)]. Please note that, unlike in the perfect
nesting situation discussed in the main text, the Mott transition as a function of the applied magnetic field is not
reentrant at φ = 0. Still, in both cases the boundary of the fully z-polarized state follows the mean-field Heisenberg
result Bpol = U2/6t for U beyond the Mott transition.
Fig. 8 shows the analogous plot to panel (a) of Fig. 4 of the main text also for φ = π/6, i.e., the B−T phase diagram
at U = 4t. Qualitatively the fully nested situation is very similar to the phase diagram at φ = π/8. However, closer
inspection reveals that the intermediate metallic phase is already completely suppressed at temperatures T/t < 0.033,
while it persists down to the lowest investigated temperature T/t = 0.025 for φ = π/8.
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FIG. 7: Zero temperature phase diagram in the U −B-plane for the triangular lattice Hubbard model (φ = 0) and the
perfectly nested moiré Hubbard model (φ = π/6).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
gµBB/t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T/
t

φ= π/6

TN

Tpol(a)

metallic (Ξ> 0)
xy-ordered
fully z-polarized

0.0 0.5 1.0 1.5 2.0 2.5 3.0
gµBB/t

Tpol

φ= π/8

TN

(b)

FIG. 8: Magnetic and metallic phases in the presence of an externally applied Zeeman-field B for fixed U/t=4 and two
different values of φ=π/6 and φ=π/8, calculated by DMFT.
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