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Abstract: Since the pioneer reports of Akiyama and Terada groups 

on Brønsted acid organocatalysis, this field never stopped growing 

with the development of ingenious strategies for the activation of 

challenging poorly reactive substrates. The development of 

superacidic organocatalysts is an important way to selectively 

functionalize reluctant electrophiles and other approaches have also 

emerged such as the combination of Lewis and Brønsted acids as 

well as the consecutive organocatalysis and superacid activation. This 

concept aims to highlight these different strategies and demonstrate 

their complementarity. 

1. Introduction 

While nature is able to generate highly complex molecules from 

simple substrates, 1  this challenge is still faced by chemists, 

despite the growing demand. In this context, producing 

enantioenriched molecules from simple substrates is especially 

appealing and enantioselective catalysis is the most attractive 

way to attain this objective. Over the past decades, 

enantioselective catalysis by small organic molecules (so-called 

organocatalysis) confirmed its synthetic potential and emerged as 

a powerful strategy offering operational simplicity and overcoming 

difficulties encountered by other strategies in this domain (mild 

reaction conditions, environmentally benign, low cost, 

accessibility of organocatalysts). 2  Since several years, this 

domain has become one major pillar of enantioselective catalysis 

and has been recently highlighted with the Nobel Prize attribution 

to MacMillan and List in 2021.3 Among the different activation 

modes that appeared throughout the years, Akiyama and Terada 

lay the foundation of Brønsted acid organocatalysis in 2004 by 

separate reports on enantioselective Mannich-type reaction 

catalyzed by a chiral Brønsted acid, which constitute the first 

examples of chiral phosphoric acid-catalyzed organic reactions 

and opened a new avenue in enantioselective organocatalysis 

(Scheme 1).[4,5] 

 
Scheme 1. Pioneer reports on the Brønsted acid organocatalysis. 

 

Strong chiral Brønsted organoacids have proven themselves to 

be highly powerful catalysts for a wide array of synthetic 

transformations, 6  also efficient in the field of total synthesis. 7 

Excellent contributions from different groups offer now a powerful 

collection of Brønsted acid organocatalysts going from BINOL-

phosphoric acids A, 8  SPINOL-phosphoric acids B, 9  N-

(thio)phosphoramides C and D, 10  bis(sulfonyl)imides E 11  and 

bis(sulfuryl)imides F12 for the main representatives (Scheme 2). 

Increasing the acidity of the catalyst allows the activation of less 

basic substrates with increased catalytic activity.13 

 
Scheme 2. Main Brønsted acid organocatalysts and reported associated 

pKa values.  

 

Despite their effectiveness, owing to their acidity14 they are mainly 

used to activate basic substrates (imines, enol ethers, certain 

carbonyl compounds).15 The activation of poorly basic substrates 

remains more challenging and the ultimate goal would be to 

efficiently activate non-polarized C=C bonds such as olefins or 

arenes, delivering elaborated enantioenriched products from the 

simplest non-functionalized substrates. As a result, to overcome 

the existing barriers related with selectivity and reactivity, new 

perspectives have been opened recently. This article highlights 

recent developments of organocatalysts that overcome the 

reactivity of commonly employed Brønsted superacids and 

capitalize on specific confinement properties, as well as new 

strategies combining organocatalysts and (super)acids. 
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2. Ultimately pushing the Yagupolskii principle 
toward superacidic organocatalysts 

Aiming at activating small unbiased substrates, recent efforts 

were especially conducted through the development of designed 

catalysts that could reach acidities realm of TfOH or Tf2NH 

superacids.16  The replacement of oxygen atoms with strongly 

electron withdrawing groups, the so-called Yagupolskii principle17 

led to promising organocatalysts that borders on molecular 

superacids. Krossing and Leito recently distinguished solid 

molecular superacids from primary superacids and conjugate 

Brønsted-Lewis strongest superacidic media.18 The proton bound 

in neutral molecular superacid is in equilibrium with the solvated 

proton in solution (at least in dichloroethane). Derived from weakly 

coordinating counter anions some of them were shown to be able 

to generate electrophilic silylium ions, 19  as shown by some 

recently developed C-H binaphthyl-allyl-tetrasulfones 

organocatalysts.20  

 

Hence, the group of Terada designed new catalysts based on a 

F10BINOL skeleton, allowing to reach very high acidities, in 

particular for the N-triflyl phosphoramide C-2 whose pKa was 

calculated by DFT at –4.95 in DMSO (Scheme 3).21 This property 

was exploited for the functionalization of non-activated alkenes 

and they reported the possible enantioselective intermolecular 

addition of azalactones to styrene derivatives affording a product 

with two vicinal stereogenic centers in good yields and moderate 

to high stereoselectivities. 

 
Scheme 3. Functionalization of non-activated alkenes. 

 

Recently, the groups of Chen, Ding and Zhao reported the 

preparation of the chiral super Brønsted acid G bearing a 

bis((trifluoromethyl)sulfonyl) methane group and compared its 

catalytic properties with other classical organocatalysts A and C 

(Scheme 4).22 The superacidic properties of catalyst G-1 allows 

its uses in difficult reactions such as enantioselective Mukaiyama-

Mannich reactions, allylic amination, three-component coupling 

between arylaldehyde, allyltrimethyl silane and Fmoc-NH2 for the 

preparation of optically active homoallylamines as well as 

protonation of silyl enol ethers. In general, shorter reaction times 

are observed with catalysts G which also surpass A and C both 

in terms of reactivity and enantiocontrol. 
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Scheme 4. Development of a chiral super Brønsted acid. 

 

In 2018, List reported the intermolecular etherification of non-

activated olefins using highly acidic imidodiphosphorimidate 

(IDPi) organocatalyst H (Scheme 5).23 This catalyst also provides 

a confined enzyme-like environment responsible of the very high 

selectivities that are usually difficult to reach for such 

transformation. This concept of confinement was further exploited 

to answer the challenging enantioselective Nazarov cyclization of 

simple acyclic alkyl-substituted divinyl ketones. 24  In this 

transformation, the confinement not only increases the catalytic 

activity but it also allows the growth of the population of reactive 

s-trans/s-trans conformation of the divinyl ketone substrate. Here, 

the confinement can be considered as much important as acidity 

to attain ultimate level of reactivity and efficiency, as a unified 

element in selective catalysis.25  

 

 

 
Scheme 5. Highly acidic and confined IDPi organocatalysts. 

 

Following this strategy, List recently reported the especially 

efficient IDPi organocatalyst H-2 that was rationally designed to 

activate gem-disubstituted olefins (Scheme 6).26 This favors the 

intramolecular cation-promoted hydroarylation to quaternary 

stereogenic center-bearing products in excellent 

enantioselectivity. Here, the activity and selectivity of the catalyst 

are especially favored by the presence of strong electron-

withdrawing perfluoronaphtalene-2-sulfonyl motifs that increase 

the acidity of the IDPi catalyst while the diphenyl substituents in 

3,3’ positions of the BINOL backbone maximize  interactions 

between the catalyst and the substrate. 

 

 
Scheme 6. IDPi-catalyzed functionalization of indoles.  

 

Capitalizing on an efficient and operationally simpler synthesis of 

imidodiphosphate, List ultimately challenged superacid 

organocatalysts synthesis and reactivity by developing an even 

more acidic IDPii catalyst H-4 (Scheme 7). 27  Here, the 

Yagupolskii concept 28  is followed by substituting the 

trifluoromethanesulfonyl group in H-3 by a N,N’-

bis(trifluoromethylsulfonyl)phenyl sulfonodiimidoyl group, that 

significantly enhanced the acidic character of the catalyst H-4 

(estimated pKa ~ 0 in MeCN). Applied to -methylation of a silyl 

ketene acetal,29 its unique reactivity overcomes the reactivity of 

TfOH and Tf2NH superacids. 

 
Scheme 7. Highly acidic and confined IDPii organocatalysts. 

3. Combining acids to enhance catalytic 
activity 

A distinct concept to increase the catalytic activity of 

organocatalysts is to combine acids through LBA (Lewis acid-

assisted chiral Brønsted Acid catalysis), LBBA (chiral Lewis Base 

assisted Brønsted Acid catalysis) or BBA strategy30 (Brønsted 

acid-assisted chiral Brønsted Acid catalysis). 

LBA strategy proved its efficiency in catalyzing reactions that are 

inherent to biocatalytic domain, as for example, the lanosterol 

biosynthesis which remained challenging to synthetic chemists. 

This concept has been pioneered by Yamamoto by combining 

BINOL and tin tetrachloride for the enantioselective protonation of 

cyclic silyl enol ethers and acyclic ketene bis(trialkylsilyl) 

acetals. 31  This approach was then successfully improved by 

Toste by using chiral Brønsted acid from a cationic gold(I) 

complex affording higher levels of enantioselectivity for a large 

array of cyclic and acyclic silyl enol ethers.32 Looking for a strong 

acidic chiral proton source for this C=C double bond activation 

initiated polycyclization, Corey showed that a combination of 

dichloro-BINOL and Lewis acid SbCl5 allowed the cyclization that 
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is initiated by enantioselective protonation of non-activated 

alkenes.33  

Following this strategy with tris(pentafluorophenyl)borane, the 

activation of 3,3’-Ar2-BINOL-derived phosphoric acid A-4 allowed 

the enantioselective and diastereoselective carbonyl-ene 

cyclization to generate functionalized unsaturated piperidines, 

tetrahydropyranes or cycloalkanes (Scheme 8).34 In this recent 

significant contribution, Ishihara confirms the potential of this 

strategy for other enantioselective carbocation-based cyclization 

from alkenes. 

 
Scheme 8. Enantioselective LBA-catalyzed carbonyl-ene cyclization. 

 

Ishihara also developed Lewis base-assisted Brønsted acids 

(LBBA) that efficiently catalyzes the biomimetic enantioselective 

cyclization of 2-geranylphenols to give the desired trans-fused 

cyclic products (Scheme 9).35 Here, the reaction between Lewis 

base I and fluorosulfonic acid gives a fluorosulfonate salt of a 

chiral BINOL-phosphonium ion. This allows for the diastereo- and 

enantioselective approach of the terminal isoprenyl group toward 

the very reactive phosphonium proton. 

 
Scheme 9. LBBA-catalyzed cyclization. 

 

Capitalizing on the strong acidity of 2-bis(triflyl)methyl-2’-hydroxy-

1,1’-binaphtyl derivatives, their combination with a Brønsted acid 

to catalyze Mannich type reaction was explored successfully by 

Yamamoto. 36  Even if such a Brønsted acid-assisted chiral 

Brønsted acid catalysis (BBA) was less explored, an example 

from Jacobsen’s group is appealing (Scheme 10). The 

enantioselective protonation of silylenol ethers was shown to 

occur in good yields in the presence of a co-catalytic system 

combining chiral sulfinamide J and sulfonic acid K. 37  It is 

suggested here that the combination of the strong acid and the 

chiral sulfonamide allows for enhancing the activity of the catalyst. 

In addition, the structurally simple sulfinamide catalysts seem 

engaged in non-covalent attractive interactions (NH–π, CH–π, or 

hydrogen bonding interactions) that might play a critical role in the 

transition state organization. TfOH generated proto-iminium ions 

were also proven to tightly interact with sulfinamide-containing 

chiral ureas, thus promoting an efficient cooperative catalyst 

system for enantioselective Povarov reactions.38 

 
Scheme 10. Brønsted acid-assisted chiral Brønsted acid (BBA) catalysis. 
 
 

Another alternative strategy to enhance the catalyst acidity, is to 

stabilize its conjugate base through intramolecular anion-binding 

with an intramolecular thiourea receptor. 39  This has been 

described notably by Seidel’s group who developed the highly 

acidic conjugate-base stabilized carboxylic acid L (pKa = 12.7 in 

MeCN), exceeding that of chiral phosphoric acid A (Scheme 11). 

Catalyst L was found to catalyze efficiently the enantioselective 

oxa-Pictet–Spengler reaction, via intramolecular trapping of a 

trisubstituted oxocarbenium ion. The enhancement of the acidity 

of the carboxylic acid function has also been realized by Maruoka 

though in situ formation of a boronate ester by reaction between 

a chiral diol, and 2-boronobenzoic acid. This strategy was 

successfully applied to enantioselective trans-aziridination.40 

 

 
Scheme 11. Highly acidic conjugate-base-stabilized carboxylic acid. 

 

4. Consecutive organocatalysis / superacid 
activation 

An alternative and complementary approach has emerged in 

recent years, consisting in the consecutive organocatalysis / 

superacid activation. In this strategy, an organocatalyzed domino 

transformation allows the elaboration of a complex 

enantioenriched molecule, which is then originally functionalized 

thanks to superacid activation. This methodology has the 

advantage to widen the application scope in the sense that the 

initial domino transformation is not limited to acid-catalyzed 

transformations and can be applied to most organocatalytic 

activation modes. The stereoselectivity is controlled in the initial 

step, while the superacid functionalization may create additional 

stereogenic elements in diastereoselective fashion. 

One of the first application of this concept was described by 

Franzén and co-workers in 2009, who reported the fast 

construction of the quinolizidine skeleton bearing three new 

stereocenters with high enantioselectivity but moderate 

diastereoselectivity (Scheme 12).41 In the presence of Hayashi-

Jørgensen catalyst M, the sequence includes an 

organocatalyzed-enantioselective Michael addition of the 1,3-

ketoamide on an enal followed by an acid-catalyzed cyclization of 

the N-acyliminium ion formed in situ.42 This transformation was 
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later applied to the preparation of corynantheine and ipecac 

alkaloids.43  

 

 
 
Scheme 12. Enantioselective synthesis of the quinolizidine skeleton. 

 

Recently, our groups have exploited this strategy for the easy 

access to enantioenriched complex fused-tricyclic azocanes 3 

and 5 or azepanes 4, by a two-step sequence involving an 

enantioselective organocascade between 1,2-ketoamide 1 and 

enal, 44  followed by superacid activation with triflic acid of the 

domino adduct (Scheme 13). The activated oxa-bridged azepane 

intermediate acts as a key hidden heptacyclic chiral N-acyl 

iminium ion 2 triggering a chemo- and diastereoselective 

intramolecular mono- or di-arylation. By careful choice of the Ar1, 

Ar2 and n, the superacid-promoted intramolecular Pictet-

Spengler45 reaction can involve Ar1, generating optically-enriched 

methylene-bridged benzazocanes 3 closely related to bioactive 

morphinan and benzomorphan scaffolds. 46  Alternatively, the 

cyclization can also involve Ar2 to afford the enantioenriched 

pyrido[1,2-a]azepane ring system 4,47  which is found in many 

biologically relevant molecules, such as banistenoside A and B.48 

Finally, a cascade cyclization involving successively Ar 1 and Ar2 

was found possible to give the complex fused-polycyclic 

azocanes 5. 
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Scheme 13. Synthetic strategies to enantioenriched polycyclic azepanes. 

5. Conclusion / Perspectives 

In conclusion, the field of Brønsted acid organocatalysis never 

stopped growing since the seminal reports of Terada and 

Akiyama in 2004 on chiral phosphoric acids. These catalysts are 

indeed very efficient for the selective activation of basic substrates 

such as imines or carbonyl compounds. The functionalization of 

non-polarized C=C bonds such as olefins or arenes remained a 

challenging goal for many years, which was solved with the 

development of various creative synthetic strategies. The 

synthesis of superacid organocatalysts is the most encountered 

one, reaching very high acidities with pKa as low as 1 (estimated 

in MeCN) for the List’s IDPii confined organocatalysts. 

Alternatively, the catalytic activity can be greatly enhanced by the 

use of combinations of acids, allowing for the efficient 

functionalization of alkenes. Finally, consecutive organocatalysis 

and superacid activation is a complementary and attractive 

alternative since it is not restricted to Brønsted acid activation 

mode. Although many progresses have been accomplished, 

many challenges remain, as for example the simple atom-

economical enantioselective hydration of alkenes. We anticipate 

that these three complementary approaches will allow to give new 

answers to yet unsolved synthetic challenges. 
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