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GEVREY WKB METHOD FOR PSEUDODIFFERENTIAL OPERATORS OF REAL PRINCIPAL TYPE

In this paper we investigate the conjugation of Fourier Integral Operators (FIOs) associated to Gevrey phases and symbols and the corresponding semiclassical pseudodifferential operators (pdos) in the Gevrey class. We obtain an Egorov theorem compatible with Gevrey FIOs and real principal part pdos with Gevrey symbols. As a consequence, we obtain a justification of the usual microlocal WKB expansion for Gevrey pdos which are of real principal part at a point in the phase space, with the natural Gevrey subexponential asymptotics with respect to the semiclassical parameter.

The use of Gevrey functions in the study of some linear and non-linear partial differential equations has experienced a significant developement in recent years. In particular, the use of Gevrey norms have been instrumental in the context of some non-linear Cauchy problems that may be ill-posed in the usual Sobolev context [START_REF] Gérard-Varet | Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows[END_REF] or the study of some singular limits difficult to describe rigorously using other topologies [START_REF] Mouhot | On Landau damping[END_REF][START_REF] Bedrossian | Landau Damping: Paraproducts and Gevrey Regularity[END_REF].

Let us recall that, as usual, for N ∈ N and s > 0 a function f ∈ C ∞ (R N ; C) is Gevrey of order s (Gevrey-s for short, or simply G s ) whenever for every compact K ⊂ R N the following holds:

(1.1)

∃C K > 0, ∀α ∈ N N , |∂ α f | L ∞ (K) ≤ C |α| K α! s .
As can be seen from (1.1), the case s = 1 coincides with the usual class of analytic functions, but the cases s > 1 may contain smooth functions which are not analytic. Hence, the Gevrey class may be understood as a class of functions in between the analytic and the smooth context. The use of pseudodifferential calculus associated to particular Gevrey classes, started by Boutet de Monvel and Kree in their seminal paper, [2, Sect. 1], has also been important in the past, for example in connexion with the study of propagation of Gevrey singularities of these pseudodifferential operators [START_REF] Lascar | Propagation des singularités Gevrey pour des opérateurs hyperboliques[END_REF][START_REF] Lascar | Propagation des singularités Gevrey pour la diffraction[END_REF] or the diffraction of waves around an obstacle [START_REF] Lebeau | Régularité Gevrey 3 pour la diffraction[END_REF]. More recently, the study of the FBI transform in the Gevrey context has risen some interesting questions related to the quantisation in the complex plane of symbols admitting only quasi-holomorphic extensions which in fact are not unique [START_REF] Hitrik | Semiclassical gevrey operators in the complex domain[END_REF] and thus introduces new aspects with respect to the analytic framework [START_REF] Sjöstrand | Singularités analytiques microlocales[END_REF][START_REF] Hitrik | Two minicourses on analytic microlocal analysis[END_REF][START_REF] Melin | Fourier Integral Operators with complex phase functions[END_REF].

In this work we are concerned with the study of Gevrey pseudodifferential operators and the resulting WKB expansion in the Gevrey class. In what follows, we introduce some definitions of these Gevrey symbols and the related pseudodifferential operators and then state our main results. We work in a semiclassical framework (cf. [START_REF] Zworski | Semiclassical analysis[END_REF]) involving a possibly small parameter h > 0.

Let us note, for n ∈ N, m ∈ R and s > 0, the set S m s (R n × R n ) of semiclassical Gevrey s symbols of order m. Following [2, Sect. 1] we write a ∈ S m s if and only if for some C > 0

(1.2) |∂ α x ∂ β θ a(x, θ, h)| ≤ C 1+|α|+|β| α! s β! s h -m , for all (x, θ) ∈ R n × R n and α, β ∈ N n .
Observe that this condition is more precise than the usual definition of the class S m 1,0 (cf. for example (cf. [START_REF] Zworski | Semiclassical analysis[END_REF]Chapter 4])) because the constant C in (1.2) is uniform with respect to the multi-indices α, β. As a consequence, we shall need a specific version of symbolic calculus adapted to the class S m s (in particular Proposition 2.3 below). Finally, recall that a pdo A is elliptic at a point (x 0 , θ 0 ) ∈ R n ×R n whenever its symbol a satisfies |a(x 0 , θ 0 )| > 0.

We consider as usual (cf. [START_REF] Zworski | Semiclassical analysis[END_REF]Chapter 4]) semiclassical pseudo-differential operators (pdo for short) defined as suitable extensions of

a(x, hD, h)u(x) = 1 (2πh) n a(x, θ, h)e i h θ•(x-y) u(y) dy dθ, u ∈ S (R n ),
for a given symbol a ∈ S m s . One has a(x, hD, h) = Op h (a) and also Op h (a) = Op 1 (a h ) with a h (x, θ) = a(x, hθ). We shall use the notation Op h (a) ∈ Ψ m s for such a pdo.

1.1. Motivations, hypothesis and main results. The motivation of our work is twofold. On the one hand, the WKB method is known to hold true in the smooth (C ∞ ) and analytic categories, which raises the natural question of its vaidity with respect to the specific Gevrey asymptotics required in the Gevrey framework (in particular of the form (1.3)). Our Theorem 1 makes this point explicit at least microlocally. On the other hand, we obtain this microlocal WKB expansion as a consequence of Theorem 2, which is a Gevrey version of the Egorov theorem, a central result in microlocal analysis, first published in [START_REF] Yu | On canonical transformations of pseudo-differential operators[END_REF], having its own independent interest. We state next our main hypothesis and the context of our results.

Let P = P (x, hD x , h) a semiclassic Gevrey-s PDO of order zero in R n , with n ≥ 2. Let p = p(x, ξ) be the principal symbol of P and let H p be the associated Hamiltonian. We assume the following hypothesis.

(H1): p is real, (H2): dp(x 0 , ξ 0 ) = 0, (H3): and p(x 0 , ξ 0 ) = 0.

If P = P (x, hD x , h) satisfies hypothesis (H1), (H2) and (H3), it is customary to say that P is of real principal type at the point

(x 0 , ξ 0 ) ∈ R n × R n (cf. [7, Definition 3.1]).
The class of real principal type operators enjoys an important property allowing to reduce a general pdo to a canonical form. This is known as Egorov theorem, which in the C ∞ class states roughly the following (cf. [START_REF] Yu | Partial Differential Equations IV: Microlocal Analysis and Hyperbolic Equations[END_REF]Proposition 3.1] for instance, among other references as [START_REF] Zworski | Semiclassical analysis[END_REF]Chapter 8], [8, Section 62], [START_REF] Lerner | Sur deux contributions de Y. V. Egorov[END_REF]): If A = A(x, D x ) and B = B(x, D x ) are two pdo of real principal part with the same principal symbol, then there exists elliptic pdo R = R(x, D x ) and S = S(x, D x ) of order zero such that the conjugation AR -SB is a smoothing operator. Of course, that this theorem is valid for a large class of pseudo-differential (possibly semiclassical) operators, including Gevrey symbols (see below for a precise definition). On the other hand, if we assume further regularity properties on the class of symbols at hand, for instance Gevrey regularity (see 1.1 for a definition), we may expect to get more precise information on the canonical transformations and the pseudodifferential calculus involved. In [START_REF] Gramchev | Classical pseudodifferential operators and Egorov's theorem in the Gevrey classes G s , s > 1[END_REF] gave a first Gevrey version, but the result is not adapted to the semiclassical pdos and in particular to the WKB asymptotics. In this paper we aim at proving a Gevrey version of Egorov theorem which is sensitive to a small parameter h. We do this by using the classical WKB approach.

1.1.1. Main results: Gevrey WKB expansion and Gevrey Egorov's theorem. Our main result is a microlocal semiclassical WKB expansion for real principal part operators in the Gevrey setting compatible with the usual required asymptotics in the Gevrey framework.

Theorem 1 (Gevrey WKB expansion). Let n ≥ 2. Let P = P (x, hD x , h) be a semiclassical G s pdo of order zero in R n of symbol p = p(x, ξ) and assume that P is of real principal type at a point

(x 0 , ξ 0 ) ∈ R n × R n . Let S ⊂ R n be a real G s -hypersurface of R n . Let ϕ ∈ G s (R n ) be given. Assume that p(x, ϕ x ) = 0 and ξ 0 = ϕ x (x 0 ).
Under these hypothesis, one may solve the WKB problem near x 0 , i.e.: If a 0 and b are given symbols in S 0 s (R n ), one may find some a ∈ S 0 s (R n ) such that

1 h e -i ϕ h P ae i ϕ h -b = O G s (h ∞ ), close to x 0 , a| S = a 0 .
The smallness condition in Theorem 1 is defined in (1.3). As mentioned before, we shall obtain Theorem 1 as a consequence of a particular version of Egorov's theorem in the Gevrey setting, according to our next result.

Theorem 2 (Gevrey Egorov theorem). Let P = P (x, hD x , h) be a G s pdo with principal symbol p = p(x, ξ). Assume that P is of real principal type at some point

(x 0 , ξ 0 ) ∈ T * R n . If p(x 0 , ξ 0 ) = 0, ∂p ∂ξ (x 0 , ξ 0 ) = 0,
then P is microlocally conjugate to hD x 1 by G s FIOs.

We give a precise definition of microlocal conjugation in Definition 3.3, after having introduced the necessary objects for the reader's convenience.

Strategy and outline.

In Section 2 we recall some non-stationary and stationary asymptotics with complex Gevrey phase and Gevrey symbols and review the symbolic calculus adapted to Gevrey pdo. We also discuss formal symbols and Carleson's theorem.

In Section 3 we introduce the class of Fourier integral operators associated to Gevrey phases and symbols that will be crucial in the proof of our main theorems.

In Section 4 we prove Theorem 2 by using a microlocal WKB expansion, involving the usual steps: reduction to an evolution equation, construction of a suitable phase as a solution to an eikonal equation and finally the construction of a suitable symbol by imposing a hierarchy of transport equations.

In Section 5 we prove Theorem 1 as a particular case of Theorem 2 proved in the previous section.

1.3. Notation. According to [START_REF] Hitrik | Semiclassical gevrey operators in the complex domain[END_REF], in this work we shall say that, for s ≥ 1 a given function g, depending on a small parameter h > 0, is a G s -small remainder, and we note

g = O G s (h ∞ ), if there exists C > 0 such that for all β ∈ N m , (1.3) |∂ β g| ≤ C 1+|β| β! s exp - h -1 s C .
As usual, we use S (R n ) to denote the space of Schwartz functions in R n .

Stationary phase and symbolic calculus in the Gevrey setting

In this section we review the some results concerning the symbolic calculus in with Gevrey pseudodifferential operators, as some of them are difficult to find in the literature. We first review the non-stationary and stationary lemmas for Gevrey phases and symbols. As usual, this allows to give a sense to the composition of pseudodifferential operators and yield suitable asymptotic expansions for the resulting symbols. Of course, all the results reviewed below are classical in the C ∞ framework, according to classical references as [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF][START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators[END_REF][START_REF] Eskin | Lectures on linear partial differential equations[END_REF][START_REF] Zworski | Semiclassical analysis[END_REF], but in the Gevrey context we need to justify that all small remainders have the particular form given in (1.3), which sometimes necessitates some modifications with respect to the smooth or analytic cases.

2.1. Non-stationary and Stationary phase method in the Gevrey setting. We consider a symbol a = a(x, y; h

) in S m 0 s (R n × R m ), m 0 ∈ R, for a small parameter 0 < h ≤ 1. Let f = f (x, y) be a phase function of class G s (R n × R m ). Consider (2.1) I f (h, y) = R n e i h f (x,y) a(x, y; h) dx, y ∈ R m ,
for a compactly-supported (in x) symbol a. The goal of this section is to adapt the usual nonstationary and stationary phase asymptotics to the Gevrey setting.

2.1.1. Non-stationary phase lemma. The following result is a non-stationary phase lemma adapted to the Gevrey asymptotics in h, which has an independent interest.

Lemma 2.1 (Non-stationary phase). Let a = a(x, y; h) in S m 0 s (R n × R m ) be compactly supported and let supp a be its support. Assume f ∈ G s (R n × R m ) is such that (1) Im f (x, y) ≥ 0, (2) f x (x, y) = 0 for every (x, y) ∈ supp a.
Then, I f (h, •) is a G s -small remainder, i.e., there exists C > 0 such that for all β ∈ N m ,

|∂ β y I f (h, •)| ≤ C 1+|β| β! s exp - h -1 s C .
Proof. As usual, as supp a is compact, upon using a suitable partition of the unity, we may reduce the result to a purely local situation. Thanks to the hypothesis on f , we may assume that supp a is a sufficiently small neighbourhood of a point around which it is possible to use a diffeomorphism κ straightening the phase f . Indeed, if supp a is sufficiently small, let (x, ỹ) = κ(x, y) with x = (x 1 , x ) and let κ be such that

x1 = f (x, y), x = x , ỹ = y, in supp a.
Observe that, as Im f (x, y) ≥ 0 and f x 1 (x, y) = 0, this mapping is indeed a local diffeomorphism. Upon changing variables, we find

I f (h, y) = R n e i h f (x,y) a(x, y; h) dx = R n e i h x1 ã(x 1 , x , y; h) dx 1 dx .
Now, taking derivatives of any order with respect to y, the usual non-stationary phase lemma gives exponential decay on h and the result follows (cf. for instance [START_REF] Zworski | Semiclassical analysis[END_REF]Lemma 3.14]).

2.1.2. Stationary phase lemma. We turn now to the stationary phase asymptotics in the Gevrey setting. Upon using a suitable partition of unity, we may consider a purely local situation. Let us pick a point (x 0 , y 0 ) ∈ R n × R m such that the following

f is real-valued, (2.2) f x (x 0 , y 0 ) = 0, (2.3) det f xx (x 0 , y 0 ) = 0, (2.4) hold. Consider (x, y) sufficiently close to (x 0 , y 0 ) in R n × R m . Then, there exists a function y → χ(y) of class G s in a neighbourhood of y 0 such that (2.5) f x (χ(y), y) = 0, χ(y 0 ) = x 0 .
We have the following stationary phase asymptotics for locally defined symbols that will be used in Proposition 2.3.

Lemma 2.2 (Stationary phase).

Assume that supp a is close to x 0 so that (2.5), (2.2), (2.3) and (2.4) hold. Then, the symbol

(2.6) b(y, h) = e -if (χ(y),y) a(x, y; h)e -if (x,y) dx
is of class G s near y 0 and enjoys the asymptotic expansion

(2.7) b(y, h) ∼ det 1 2iπh f xx (χ(y), y) -1 2 e iπ σ 4 j≥0 h j L f,j,y [a](χ(y), y),
where each L f,j,y [a] is a differential operator of degree 2j in x and σ is the signature of the matrix D 2

x f (x 0 , y 0 ).

Proof. Since f is real-valued, we can use Morse lemma. By Taylor expansion of order 2 around (x 0 , y 0 ) we find

f (x, y) = f (χ(y), y) + 1 2 Q(x, y)(x -χ(y)), x -χ(y) ,
whenever (x, y) is close to (x 0 , y 0 ), where

Q(x, y) = 2 1 0 (1 -t)f xx (χ(y) + t(x -χ(y)), y) dt.
For (x, y) close to (x 0 , y 0 ), Q(x, y) is symmetric and invertible. Setting

Q 0 = f xx (x 0 , y 0 ),
we observe there is a map (x, y) → R(x, y) such that

Q 0 = R(x, y) t Q(x, y)R(x, y), with R(x 0 , y 0 ) = Id.
Consider the substitution (x, y) → (x(x, y), y),

with x(x, y) = R(x, y)(x -χ(y)), near (x 0 , y 0 ). Write b(y, w) = e -i h f (χ(y),y) I(y, ω) = e i 2h Q 0 x,x ã(x, y, ω) dx,
for a G s symbol ã with x -supp close to zero. Next, using Plancherel's formula

b(y, w) = | det( 1 2iπh Q 0 )| -1 2 e -ih 2 Q -1 0 D,D ã(0, y).
Now, the asymptotic expansion (2.7) follows from [13, 7.6.7] as a consequence of the usual asymptotics for quadratic phases with nonnegative real part.

2.2. Symbolic calculus with Gevrey symbols. The calculus of Gevrey PDO has been established previously (where??

). Let Q = Op h (q), A = Op h (a), q ∈ S m 0 s , a ∈ S m s . The composition Q • A = Op h (q • a) can be written (2.8) (q • a)(x, ξ) = 1 (2πh) n e -i h (x-y)•(ξ-η) q(x, η)a(y, ξ) dy dη. Proposition 2.3. Let Q = Op h (q), A = Op h (a), q ∈ S m 0 s , a ∈ S m s be given. Then, the composition Q • A = Op h (q • a) satisfies, for arbitrary N ∈ N, (2.9) (q • a)(x, ξ) = |α|<N h |α| α! D α ξ q(x, ξ)∂ α x a(x, ξ) + r N (q, a)(x, ξ),
where r N (q, a) is a G s symbol of order m 0 + m -N given by

r N (q, a)(x, ξ) = h N i(2πh) n |α|=N 1 0 R 2n e y•η ih (∂ α ξ q)(x, ξ + η)∂ α x a(x + θy, ξ) dθ dy dη.
We shall use (2.9) with N = 1 in the following sections. The proof relies on the following Lemma, which folllows the lines in [18, Lemmas 4.1.2 and 4.1.5].

Lemma 2.4. For every t ∈ R, let J t be the operator defined by

J t b(x, ξ) = |t| -n R n ×R n b(x + z, ξ + ζ)e z•ξ it dz dζ, b ∈ S m s (R n × R n ). Then, J t maps S m s (R n × R n ) into itself. Moreover, for any N ∈ N, (J t b)(x, ξ) = |α|<N t |α| α! D α ξ ∂ α x b(x, ξ) + r N (t)(x, ξ) with r N (t) ∈ S m-N s and r N (t)(x, ξ) = t N 1 0 (1 -θ) N -1 (N -1)! J θt (D ξ • ∂ x ) N b (x, ξ) dθ.
Proof. Let N ∈ N. By Taylor's expansion up to order N in the variable t, we have

J t b(x, ξ) = k≤N -1 t k k! R n ×R n b(x + z, ξ + ζ)( z i • ζ) k e z•ζ it dz dζ + 1 0 R n ×R n (1 -θ) N -1 (N -1)! b(x + z, ξ + ζ)( z i • ζ) N e z•ζ
it dz dζ dθ.

As a result, we can write

J t = k<N t k k! (D ξ ∂ x ) k + 1 0 (1 -θ) N -1 (N -1)! J θt (tD ξ ∂ x ) N dθ.
Hence, J t maps S m s (R n × R n ) into itself and one has

(J t b)(x, ξ) = |α|<N t |α| α! (D α ξ ∂ α x b(x, ξ) + r N (t)(x, ξ) with r N (t)(x, ξ) = t N 1 0 (1 -θ) N -1 (N -1)! J θt (tD ξ ∂ x ) N b (x, ξ) dθ.
Proof of Proposition 2.3. From (2.8), we may write

(q • a)(x, ξ) = 1 (2πh) n e -i h z•ζ q(x, ξ + ζ)a(x + z, ξ) dz dζ,
thanks to the changes of variables x + z = y and ξ -η = ζ. For t ∈ R * set

J t 0 b = 1 (2π|t|) n b(z, ζ)e 1 it z•ζ dz dζ, b = b(z, ζ) ∈ S m s (R n × R n ).
Then, setting C x,ξ = q(x, ξ + ζ)a(x, x + ζ, ξ) one has (q • a)(x, ξ) = J h 0 C x,ξ . So thanks to Lemma 2.4 we may write

(q • a)(x, ξ) = J h C x,ξ (0, 0) = |α|<N t |α| α! D α ξ q(x, ξ)∂ α x a(x, ξ) + r N (t)(q, a)(x, ξ)
where

r N (t)(q, a)(x, ξ) = 1 0 (1 -θ) N -1 (N -1)! J θt (tD ξ ∂ x ) N C x,ξ (0, 0) dθ.
Now, expanding the remainder

r N (q, a)(x, ξ) = 1 (2πh) n |γ|=N h N N ! γ! 1 0 R 2n (1 -θ) N -1 (N -1)! e z•ζ ih D γ ξ q(x, ξ + ζ)∂ γ x a(x + θz, ξ) dz dζ dθ.
Using Gevrey stationary phase lemma one may prove that r N (q, a) is a Gevrey symbol of order m 0 + m -N and thus,

(q • a)(x, ξ) = |α|<N h |α| α! D α ξ q(x, ξ)∂ α x a(x, ξ) + r N (q, a)(x, ξ),
which ends the proof.

2.3.

Formal symbols and Borel lemma in the Gevrey setting. In this section we introduce a notion of Gevrey formal symbol of a given order and give conditions ensuring the existence of a Gevrey symbol realising a given sequence of formal symbols, based on Carleson's theorem [START_REF] Carleson | On universal moment problems[END_REF].

Definition 2.5 (Formal symbols). Let m ∈ R. Let (a j ) j≥0 be a sequence of symbols such that

a j ∈ S -j+m s (R n × R n ), ∀j ∈ N.
The sequence of (a j ) j≥0 is said to be a formal G s symbol of degree m if there exists C > 0 such that (2.10)

|∂ α x ∂ β θ a j (x, θ)| ≤ C 1+|α|+|β|+j j! s α! s β! s h j-m , ∀(x, θ) ∈ R n × R n ,
for all α, β ∈ N n and j ∈ N.

Carleson's theorem [START_REF] Carleson | On universal moment problems[END_REF] allows us to realise Gevrey s formal symbols into symbols. This result is a Gevrey Borel theorem as follows.

Theorem 3. Let m ∈ R and let (a j ) j≥0 ∈ S -j+m be a formal G s symbol of degree m. Then, there exists a ∈ S m s (R n × R n ) such that for any N > 0, α, β ∈ N n one has uniformly

|∂ α x ∂ β θ (a - j<N a j )| ≤ C 1+α+β+N N ! s α! s β! s h N -m .
Proof. Conside the sequence (a j (x, θ, h)h -j j!) j≥0 . This is a (s + 1)-sequence in the Boutet-Kree sense, according to [START_REF] Boutet De Monvel | Pseudo-differential operators and Gevrey classes[END_REF]. Using Carleson theorem we have that there exists g(t, x, θ, h) ∈ G s+1 (R + , S m s ) such that for all j ≥ 0 ∂ j t g(0, x, η, h) = j!a j (x, θ, h)h -j . Setting a(x, θ, h) = g(t, x, θ, h)| t=h>0 for h small, by Taylor's formula

|∂ α x ∂ β θ (a - j<N a j )| ≤ sup θ∈[0,1] ||∂ α x ∂ β θ ∂ j t g(θh, x, θ, h)| h N N ! .
As g is a function in G s+1 function w.r.t. t and in G s w.r.t. (x, θ), one has for some C > 0

|∂ α x ∂ β θ (a - j<N a j )| ≤ C 1+|α|+|β|+ N ! s α! s β! s h N -m ,
so the theorem is proven.

2.4.

Formal quasinorms in the class of Gevrey symbols. In the set S m s (R n × R n ) we may define, following [START_REF] Lascar | FBI transforms in Gevrey classes[END_REF], a family of quasinorms (cf. [START_REF] Boutet De Monvel | Pseudo-differential operators and Gevrey classes[END_REF]) of the form :

(2.11) N m (a, T )(x, θ) = (α,β)∈N d h m T |α|+|β| α! s β! s |∂ α x ∂ β θ a(x, θ)|,
where T > 0 is a fixed parameter. We also set

N m (a, T ) := sup (x,θ) N m (a, T )(x, θ).
By Leibniz rule, one has

N m+m (aa , T ) ≤ N m (a, T )N m (a , T ), for any a ∈ S m s (R n × R n ) and a ∈ S m s (R n × R n
). These quasinorms will be important in the proof of Theorem 2.

Fourier Integral Operators in the Gevrey setting

In this section we present some basic results concerning the specific class of Fourier Integral Operators (FIO for short) associated to Gevrey symbols and classes and how they relate to the class of Gevrey pdo.

3.1. FIO with Grevey symbols and phases. We work with a local class of Gevrey semiclassical Fourier integral operator defined in an analogous way to [8, 61.1] in the h-independent case and also to [START_REF] Zworski | Semiclassical analysis[END_REF] for the h dependent case in the smooth class. These are operators of the form

(3.1) F u(x, h) = 1 (2πh) n R n ×R n e i h (S(x,η)-y•η) a(x, η)u(y, h) dy dη,
where the phase function S = S(x, η) ∈ G s (R n × R n ) is such that det S x,η = 0 and the symbol a = a(x, η) is in some class a ∈ S m s (R n × R n ). We will sometimes use the notation F ∈ I m s (R n ) for such an operator. For a FIO F as above, define (cf. [8, Section 61.1]) its adjoint F * by

F u, v = u, F * v , so that F * u(x, h) = 1 (2πh) n R n ×R n e i h (S(y,η)-x•η)) a(y, η)u(y, h) dy dη.
Then, we have a Gevrey version of [START_REF] Eskin | Lectures on linear partial differential equations[END_REF]Lemma 62.4]. Lemma 3.1. Let F ∈ I m s and let F * be its adjoint. Then,

F F * u(x, h) = 1 (2πh) n R n ×R n e i h (S(x,ξ)-S(y,ξ)) a(x, ξ)a(y, η)u(y, h) dy dξ, ∀u ∈ D (R n ),
and for every N ∈ N we can write

F F * = K 1 + K 2 ,
where

K 1 ∈ Ψ 2N s and K 2 = O s (h ∞ ).
Proof. Using a Gevrey-s partition of the unity we may assume that supp(a) is small enough so that the mapping Σ : (y, η) → (x, ξ), ξ = S x (x, η), y = S η (x, η) is a canonical transformation on supp(a) of class G s . Let χ ∈ G s 0 (R n ) and r > 0 small enough so that supp(χ) ⊂ B(0, r) and χ = 1 on B(0, r 2 ). We can write S(x, ξ) -S(y, ξ) = Σ(x, y, ξ)(x -y).

Then, we have

F F * = K 1 + K 2 with K 1 u(x, h) = R n ×R n a(x, y, η)χ x -y δ e i h (x-y)•η |J(x, y, η)|u(y, h) dy dξ (2πh) n , (3.2) K 2 u(x, h) = R n ×R n a(x, y, η) 1 -χ x -y δ e i h (x-y)•η |J(x, y, η)|u(y, h) dy dξ (2πh) n , (3.3) where (3.4) a(x, y, η) := (x, Σ -1 (x, y, η))a(y, Σ -1 (x, y, η)), 
J = ∂ η Σ -1 .
Using Kuranishi's trick (cf. [START_REF] Zworski | Semiclassical analysis[END_REF]Chapter 8]), we deduce that K 1 is a G s PDO of order 2N .

Next, using Gevrey non stationary phase we obtain that K 2 is a Gevrey s negligeable reminder, while it is easy to compute the principal symbol of K 1 , which is of order 2N .

3.2.

Composition of FIO and PDOs in the Gevrey setting. The following result is an adaptation of [8, Lemmas 62.2 and 62.3] to the Gevrey stting, which is possible with only minor modifications thanks to Lemma 2.1. Proposition 3.2. Let F be a G s -FIO of the form (3.1) for some phase S ∈ G s and symbol a ∈ S m 0 s . Then, for every A = A(x, D) ∈ Ψ m s one has

(3.5) AF u(x) = 1 (2πh) n R 3n c(x, η)e h i S(x,η) û(η) dη, u ∈ D (R n ),
for some C ∈ S m+m 0 s whose principal symbol satisfies

c 0 (x, η) = A 0 (x, S(x, η))a(x, η),
where A 0 is the principal symbol of A. Also,

(3.6) F Au(x) = 1 (2πh) n R n c (x, η)e i h S(x,η) û(η) dη + R u, u ∈ D (R n ),
for some C ∈ S m+m 0 whose principal symbol satisfies

(3.7) C 0 (x, η) = A 0 (S(x, η), η)a(x, η),
and R ∈ Ψ m+m0 s .

Gevrey wavefront and Lagrangian distributions.

We end this section with some details on the wavefront set adapted to the Gevrey setting. If u ∈ D (R n ) is a distribution, the semiclassical G s -wavefront WF s,h (u) of u is the complementary set of the set

(x, ξ) ∈ R 2n ; ∃U × V nhd of (x, ξ) such that ψu ξ h = O s (h ∞ ), ∀ψ ∈ C ∞ 0 (U ), ξ ∈ V .
We recall next that two FIO P ∈ I m s and Q ∈ I m s are said to be equal G s -microlocally at a point

(x 0 , ξ 0 ) ∈ T * R n if there exist two open neighbourhoods U x 0 , V ξ 0 ⊂ R n of x 0 and ξ 0 respectively such that A(P -Q)B = O s (h ∞ ), for every A, B such that WF s,h (A) ⊂ U x 0 and WF s,h (B) ⊂ V ξ 0 .
This notion is analogous to the usual definition of microlocality in the smooth setting (cf. [START_REF] Zworski | Semiclassical analysis[END_REF]Section 8.4.5]). Definition 3.3 (Microlocal conjugation by Gevrey FIOs). Given P, Q ∈ Ψ m s , we say that P and Q are microlocal conjugate in the G s sense around a point (x 0 , ξ 0 ) ∈ T * R n if there exists a FIO R ∈ I m s such that RP equals QR microlocally around (x 0 , ξ 0 ).

Consider a Lagrangian distribution of the form (

for a phase φ and amplitude a satisfying

φ ∈ G s (R n × R N ), Im φ ≥ 0, dφ = 0, a ∈ S m 0 s (R n × R N ).
If WF h (u) is the semiclassical wavefront of (u(•, h)) h , then it is standard that

WF h (u) ⊂ (x, φ x ) | (x, θ) ∈ F, φ θ (x, θ) = 0 ,
with supp(a) ⊂ F . The next result is a analogue version of this fact for the Gevrey semiclassical wavefront WF s,h (u).

Lemma 3.4. Let u as in (3.8). Then, one has

WF s,h (u) ⊂ Λ = (x, φ x ) | (x, θ) ∈ F, φ θ (x, θ) = 0 ,
Proof. This is a consequence of the results in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Ch. 25] with minor modifications. The Gevrey asymptotic comes from the non-stationary phase lemma in Lemma 2.1.

Proof of Theorem 2

The goal of this section is to prove Theorem 2. We divide the proof into several steps, according to the usual WKB method.

Step 1. Setting of the problem.

We may assume w.l.g. that (x 0 , ξ 0 ) = (0, 0). Let us choose once for all a particular real coordinate and write as usual x = (x 1 , x ) ∈ R × R n-1 and ξ = (ξ 1 , ξ ) ∈ R × R n-1 . As P is of real principal type by hypothesis, we can assume that the principal symbol of P writes (cf. for instance [START_REF] Zworski | Semiclassical analysis[END_REF]Section 12.2]

) (4.1) p(x, ξ 1 , ξ ) = ξ 1 -λ(x, ξ ),
for some real symbol λ ∈ S 0 s (R n × R n-1 ) real. If λ = λ(x, ξ ) stands for the principal symbol of Q let us write (4.2)

P (x, hD x 1 , hD x ) = hD x 1 + Q(x, hD x ).
Step 2. Suitable phase using the eikonal equation.

We consider now the following Cauchy problem: Find ϕ such that (4.3)

∂ϕ ∂x 1 -λ (x, ϕ x ) = 0, ϕ| x 1 =0 = x • η ,
where λ ∈ S 0 s (R n × R n-1 ) given by (4.1). The Cauchy problem (4.3) has a solution ϕ of class G s . Moreover, since det ϕ x ,ξ = 0 the phase function ϕ generates a canonical transform.

Our goal in the following sections is to find suitable h-FIOs F, G such that (4.4)

GP F = hD x 1 + O s (h N ),
for arbitrarily large N ∈ N. We shall do this treating the case N = 1 first and then introducing an iterative scheme.

Step 3. Reducing the order of the remainder by conjugation.

Let us introduce a h-FIO of the form

F u(x, h) = 1 (2πh) n-1 e i h ϕ(x,η ) a(x, η )û(x 1 , η h )dη , u ∈ S (R n ),
where a ∈ S µ s (R n × R n-1 ), û denotes the partial Fourier transform in the variables x only and ϕ is given as before. Assume that a is elliptic when x 1 = 0, x = 0, ξ 1 = 0, ξ = 0. Now, F defined above is a h-FIO of the form (3.1) associated to a G s phase and symbol. As P ∈ Ψ m s by hypothesis, we can compose F and P using Proposition 3.2. Indeed, from (4.2) we get, for every u ∈ S (R n ),

P F u = (hD x 1 + Q)F u = hD x 1 F u + QF u
Now, as the symbol a is supposed to be elliptic at the point (x 1 , x , ξ 1 , ξ ) = 0, we may find a microlocal inverse of F near this point and thus write

P F u = F (hD x 1 ) + F -1 u,
for some F -1 ∈ Ψ s . Moreover, the symbol of F -1 , namely f, admits the expansion (as in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Theorem 7.7.7]):

f = α≥0 h |α| α! p (α) (x, ϕ x )D α y (e i h ρ a)| y=x , with ρ(x, y, η ) = ϕ(y, η ) -ϕ(x, η ) -(y -x)ϕ x (x, η
). We observe that the first term of the expansion vanishes, for

p(x, ϕ x )(e i h ρ a)| y=x = p(x, ϕ x )(e i h (ϕ(y,η )-ϕ(x,η )-(y-x)) a)| y=x = hD x 1 ϕ -λ(x, ϕ x ) = 0, thanks to (4.3). Hence, F -1 ∈ Ψ -1
s . Let now G be the microlocal inverse of the elliptic h-FIO F near zero. Then, we can write GF = I + r, microlocally near (0, 0, 0, 0), for r ∈ Ψ ∞ s and hence GP F u = GF (hD x 1 ) + GF -1 = hD x 1 + R, where R = rhD x 1 + GF -1 . Now, as G and F -1 are associated to the same generating function, we have in particular that GF -1 is a pdo and moreover GF -1 ∈ Ψ -1 s . Furthermore, as r is a regularising pdo, we also have rhD

x 1 ∈ Ψ -1 s , which guarantees that GP F u = hD x 1 + R, R ∈ Ψ -1
s , microlocally near zero. This means that P is microlocally conjugate by G s FIOs to hD x 1 up to a remainder of degree -1.

Step 4. Reducing arbitrarily the order of the remainder by conjugation.

We aim now to iterate the scheme of the previous step in order to get (4.4) for a remainder of arbitrary order. We do this thanks to the following iterative scheme, which produces a formal Gevrey symbol. Lemma 4.1. Let q ∈ S -1 s (R n × R n ). Then, there is a sequence (a j ) j≥0 of symbols such that

a j ∈ S -j s (R n × R n ) satisfying h i ∂ x 1 a 0 + qa 0 = 0, and 
a 0 | x 1 =0 is elliptic,
and for all j ≥ 0, (4.5) h i ∂ x 1 a j + qa j = r 1 (q, a j-1 ), and

a 0 | x 1 =0 = 0. Moreover, if A j = Op h (a j ), A (N ) = A 0 + • • • + A N -1 , N ≥ 1, one has (hD x 1 + Q)A (N ) = hA (N ) D x 1 + R N , with R N a G s ∈ Ψ -(N +1) s
. Finally, if q is of order m 0 small enough the above sequence of (a j ) j≥0 is a formal Gevrey s symbol in the sense of Defintion 2.5.

Proof. Equations (4.5) are solved by induction setting for j ≥ 1

a j = -i a 0 h x 1 0 r 1 a 0 (q, a j-1 ) dt.
One has a j ∈ S -j s (R n × R n ), in view of (2.9) and (4.5) we have R N is of order -N -1.

We now show that if q is of order m 0 small enough the above sequence of (a j ) j≥0 is a formal Gevrey s symbol.

In order to prove (2.10) we use the formal quasinorms for Gevrey symbols introduced in (2.11). Upon repeating the scheme of the previous step, we may assume that P = hD 1 +Q, with Q ∈ Ψ m 0 s of order m 0 small, is a microlocal conjugate to hD x 1 by G s FIOs, modulo negligeable remainders. If q is the symbol of Q, recall that Op h (q) • Op h (a) = Op h (qa + R), R = R(a, q)

with a remainder R as in Lemma 2.3. Let us define next χ ∈ G s 0 (R 2n ) such that supp χ ⊆ {(y, η); |y| + |η| ≤ r} and χ = 1 on (y, η); |y| + |η| ≤ r 2 and let us write R(a, q) = R χ (a, q) + S χ , R χ = χR(a, q), S χ = (1 -χ)R(a, q).

We deduce that S χ is Gevrey s remainder by the non-stationary phase asymptotics in Lemma 2.1. Now if α, β ∈ N n , if > 0 small enough, we also have If (a j ) j≥0 is the sequence defined by (4.5). We claim that estimate (4.6) implies, for j ≥ 0, > 0 small that for some M 0 = M 0 (r, q, n) > 0 one has (4.7) N -j (a j , T ) ≤ M j 0 -sj j sj N 0 (a 0 , 2T )T -j .

Indeed, this is true if j = 1 from (4.6). Assuming that (4.7) holds for j -1 with j ≥ 2, we have for , ˜ > 0 small N -j (a j , T ) ≤ -s M j 0 T j (j -1) s(j-1) (1 + ) s(j-1) ˜ s(j-1) N 0 a 0 , T (1 + ) s 1 + ˜ j -1 s(j-1) .

We fix δ > 0 small and choose ˜ = δ j and = δ j in the previous inequality, so that

(1 + ) s 1 + ˜ j -1 s(j-1) = 1 + δ j sj .
It remains to check that (1 + ) s(j-1) (j -1) s(j-1) ˜ -s(j-1) δ sj j ?sj ≤ δ s j s , which is (1 + δ j ) -s(j-1) ≤ 1, which is true since j ≥ 1. So this allows to prove (4.7). As a consequence, the sequence of symbols (a j ) j∈N defined by (4.5) is a formal G s symbol as desired.

Step 5. Conclusion.

Thanks to Lemma 4.1, there exists a sequence of symbols (a j ) j∈N defined by (4.5) of order zero. Using Theorem 3 we deduce that there exists a ∈ S m s realising (a j ) j∈N . As a consequence, the h-FIO associated to the symbol a and the phase ϕ satisfying (4.3) satisfies that P F = F (hD x 1 ) microlocally near zero up to negligeable remainders. This ends the proof of Theorem 1.

Proof of Theorem 1

We start by P of the form P = hD x 1 + Q(x, hD x ), where Q is a h -P DO on R n-1 depending on x 1 of order zero. Moreover S = {x 1 = 0}.

Using FIOs od a special form we reduce P to

P = hD x 1 + Q -1 (x, hD x ),
with Q -1 of order -1. Then, using the Kuranishi's trick we reduce the WKB problem to the same with x 0 = ξ 0 = 0 and ϕ = 0. Now to solve this one it is enough to solve (5.1)

h i ∂ x 1 a + e -i φ 0 h Q -1 (x, hD x )(ae i φ 0 h ) = 0, a| x 1 =0 = a 0 ,
where Q -1 is a pdo of order -1 and φ 0 is the phase x • ξ . Solving (5.1) is equivalent to an Egorov's reduction P (x, hD x )A = hAD x 1 , A| x 1 =0 is elliptic.
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 6 N m (∂ α x ∂ α θ a, T ) ≤ T -(|α|+|β|) -s(|α|+|β|) α! s β! s N m (a, T (1 + ) s ). Now, if q ∈ S m 0 s (R n × R n ) with m 0 ≤ -n, then from the previous equations, N m-1 (R χ (a), T ) ≤ τ 2n C n -s M 0 (q)T -1 N m (a, T (1 + ) s ).