
HAL Id: hal-04046956
https://hal.science/hal-04046956

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From understanding genetic drift to a smart-restart
parameter-less compact genetic algorithm

Benjamin Doerr, Weijie Zheng

To cite this version:
Benjamin Doerr, Weijie Zheng. From understanding genetic drift to a smart-restart parameter-less
compact genetic algorithm. GECCO ’20: Genetic and Evolutionary Computation Conference, Jul
2020, Online, Mexico. pp.805-813, �10.1145/3377930.3390163�. �hal-04046956�

https://hal.science/hal-04046956
https://hal.archives-ouvertes.fr

From Understanding Genetic Drift to a Smart-Restart
Parameter-less Compact Genetic Algorithm

Benjamin Doerr
∗

Laboratoire d’Informatique (LIX)

École Polytechnique, CNRS

Institut Polytechnique de Paris

Palaiseau, France

Weijie Zheng
∗†

Guangdong Provincial Key Laboratory of Brain-inspired

Intelligent Computation

Department of Computer Science and Engineering

Southern University of Science and Technology

Shenzhen, China

ABSTRACT

One of the key difficulties in using estimation-of-distribution algo-

rithms is choosing the population sizes appropriately: Too small

values lead to genetic drift, which can cause enormous difficulties.

In the regime with no genetic drift, however, often the runtime is

roughly proportional to the population size, which renders large

population sizes inefficient.

Based on a recent quantitative analysis which population sizes

lead to genetic drift, we propose a parameter-less version of the com-

pact genetic algorithm that automatically finds a suitable population

size without spending too much time in situations unfavorable due

to genetic drift.

We prove an easy mathematical runtime guarantee for this al-

gorithm and conduct an extensive experimental analysis on four

classic benchmark problems. The former shows that under a nat-

ural assumption, our algorithm has a performance similar to the

one obtainable from the best population size. The latter confirms

that missing the right population size can be highly detrimental

and shows that our algorithm as well as a previously proposed

parameter-less one based on parallel runs avoids such pitfalls. Com-

paring the two approaches, ours profits from its ability to abort

runs which are likely to be stuck in a genetic drift situation.

CCS CONCEPTS

• Theory of computation → Theory and algorithms for ap-

plication domains; Theory of randomized search heuristics;

KEYWORDS

Estimation-of-distribution algorithms; parameter-less algorithm;

empirical study; theory

∗
Both authors contributed equally to this work and both act as corresponding authors.

†
Also with School of Computer Science and Technology, University of Science and

Technology of China, Hefei, China.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7128-5/20/07.

https://doi.org/10.1145/3377930.3390163

1 INTRODUCTION

Estimation-of-distribution algorithms (EDAs) [26, 32] are a branch

of evolutionary algorithms (EAs) that evolve a probabilistic model

instead of a population. The update of the probabilistic model

is based on the current model and the fitness of a population

sampled according to the model. The size of this population is

crucial for the performance of the EDA. Taking the UMDA [31]

with artificial frequency margins {1/n, 1 − 1/n} optimizing the n-
dimensional DeceptiveLeadingBlocks problem as an example,

Lehre and Nguyen [27, Theorem 4.9] showed that if the population

size is small (λ = Ω(logn) ∩ o(n)) and the selective pressure is

standard (µ/λ ≥ 14/1000), then the expected runtime is exp(Ω(λ)).
The essential reason for this weak performance, quantified in Doerr

and Zheng [16] but observed also in many previous works, is that

the small population size leads to strong genetic drift, that is, the

random fluctuations of frequencies caused by the random sampling

of search points eventually move some sampling frequencies to-

wards a boundary of the frequency range which is not justified

by the fitness. Doerr and Krejca’s recent work [12] showed that

when the population size is large enough, that is, λ = Ω(n logn) and
µ = Θ(λ), the genetic drift effect is weak and with high probability,

the UMDA finds the optimum in λ(n/2+ 2e lnn) fitness evaluations.
This runtime bound is roughly proportional to the population size λ.
Assuming that this bound describes the true runtime behavior (no

lower bound was shown in [12]), we see that a too large population

size will again reduce the efficiency of the algorithm.

We refer to the recent survey paper of Krejca and Witt [25] for

more runtime analyses of EDAs. For most of the results presented

there, a minimum population size is necessary and then the run-

time is roughly proportional to the population size. In a word, for

many EDAs a too small population size leads to genetic drift, while

a too large size results in inefficiency. Choosing the appropriate

population size is one of the key difficulties in the practical usage

of EDAs.

We note that there have been attempts to define EDAs that are

not prone to genetic drift [11, 19], also with promising results, but

from the few existing results (essentially only for the OneMax,

BinVal, and LeadingOnes benchmarks) it is hard to estimate how

promising these ideas are for real-world optimization problems.

For this reason, in this works we rather discuss how to set the

parameters for the established EDAs.

Parameter tuning and parameter control have successfully been

used to find suitable parameter values. However, both approaches

1

https://doi.org/10.1145/3377930.3390163

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Weijie Zheng

will usually only design problem-specific strategies and often re-

quire sophisticated expertise to become successful.

In order to free the practitioner from the task of choosing pa-

rameters, researchers have tried to remove the parameters from

the algorithm while trying to maintain a good performance, ideally

comparable to the one with best parameter choice for the problem

to be solved. Such algorithms are called parameter-less
1
. This paper

will address the problem of designing a parameter-less cGA. In an

early work, Harik and Lobo [21] proposed two strategies to remove

the population size of crossover-based genetic algorithms. One ba-

sic strategy is doubling the population size and restarting when all

individuals’ genotypes have become the same. The drawback of this

strategy is long runtime when genetic drift becomes detrimental,

which is hard to detect. Harik and Lobo proposed a second strategy

in which multiple populations with different sizes run simultane-

ously, smaller population sizes may use more function evaluations,

but are removed once their fitness value falls behind the one of

larger populations. Their experimental results showed that the al-

gorithm with this second strategy only had a small performance

loss over the regular genetic algorithm with optimal parameter

settings. Many extensions of this strategy and applications with

other optimization algorithms have followed, giving rise to the

extended compact genetic algorithm [29], the hierarchical Bayesian

optimization algorithm [33], and many others.

Goldman and Punch [20] proposed the parameter-less population

pyramid, called P3, to iteratively construct a collection of popula-

tions. In P3, the population in the pyramid expands iteratively by

first adding a currently not existing solution obtained by some local

search strategy into the lowest population, and then utilizing some

model-building methods to expand the population in all hierarchies

of the pyramid. Since initially no population exists in the pyramid,

this algorithm frees the practitioner from specifying a population

size. For EDAs, Doerr [6] recently proposed another strategy build-

ing a parallel EDA running with exponentially growing population

size. With a careful strategy to assign the computational resources,

he obtained that under a suitable assumption this parallel EDA only

had a logarithmic factor performance loss over the corresponding

original EDA using the optimal population size.

Our contribution: The above parameter-less strategies use

clever but indirect ways to handle the possibly long wasted time

caused by genetic drift. In this work, we aim at a more direct ap-

proach by exploiting a recent mathematical analysis which predicts

when genetic drift arises. Doerr and Zheng [16] have theoretically

analyzed the boundary hitting time caused by the genetic drift.

In very simple words, their result indicates that genetic drift in a

bit position of the cGA occurs when the runtime of the algorithm

exceeds 4µ2, where µ is the hypothetical population size of the cGA.

We use this insight to design the following parameter-less version

of the cGA. Our parameter-less cGA, called smart-restart cGA, is
a simple restart process with exponentially growing population

size. It stops a run once the risk of genetic drift is deemed too high,

based on the analysis in [16].

1
Not surprisingly, many mechanisms to remove parameters have themselves some pa-

rameters. The name parameter-less might still be justified when these meta-parameters

have a less critical influence on the performance of the algorithm.

Since Doerr and Zheng [16] proved that a neutral frequency

reaches the boundaries of the frequency range in an expected num-

ber of 4µ2 generations, via Markov’s inequality we know that with

probability at least 1/2 a boundary is reached in 8µ2 generations.
Since genetic drift affects neutral bits stronger than those subject to

a clear fitness signal, we can pessimistically take 8µ2 generations
as the termination budget for a cGA run with population size µ.

This heuristic builds only a single frequency. Since there are

n frequencies, one may speculate that the first of these reaches a

boundary already in Θ(µ2/lnn) generations. We do not have a fully

rigorous analysis showing that the first of the frequencies reaches a

boundary in O(µ2/lnn) iterations, but the tail bound in [16] shows

that this does not happen earlier and our experiments suggest that

taking this smaller budget is indeed often profitable. For this reason,

we work with both termination criteria, where for the latter we

choose the implicit constant as c = 0.5, based on our experimental

investigation how the cGA with varying population sizes optimizes

various benchmark problems.

For our algorithm, we prove a mathematical runtime guarantee.

For this we assume that there are numbers µ̃ and T such that the

cGA with all population size µ ≥ µ̃ solves the given problem in

time µT with sufficiently high probability. Such a runtime behavior

is indeed often observed, see, e.g., [25]. We theoretically prove that

under this assumption, our smart-restart cGA solves the problem

in expected time max{O(µ̃2),O(T 2)} when a termination budget

of 8µ2 is used, and in expected time max{O(µ̃2/lnn),O(T 2
lnn)}

when a termination budget of Θ(µ2/lnn) is used. Together with the

known results that the cGA with all µ = Ω(
√
n logn) ∩O(poly(n))

optimizes the OneMax function and the Jump with jump size k ≤
1

20
lnn−1 in timeO(

√
nµ)with probability 1−o(1) [6, 35], this shows

that our algorithm with the second termination rule optimizes the

Jump and OneMax benchmark in time O(n logn), which is the

asymptotically best performance the cGA can have with an optimal

choice of µ.
For an algorithm with the two generation budgets as well as the

original cGA and the parallel-run cGA as comparison, we conduct

an extensive experimental analysis on the OneMax, LeadingOnes,

Jump, and DeceptiveLeadingBlocks functions. Our experimental

results indicate that the better runtime of our smart-restart cGAs

against parallel-run cGA appears on OneMax and LeadingOnes

functions nomatter using 8µ2 or 0.5µ2/lnn generation budgets, and
the better runtime on Jump andDeceptiveLeadingBlocks function

when using 0.5µ2/lnn generation budget. Our experimental results

also show that indeed missing the right population size can be

detrimental.

The remainder of this paper is structured as follows. Section 2

introduces the preliminaries including a detailed description of the

cGA and the parallel-run cGA. Our proposed smart-restart cGA

will be stated in Section 3. Sections 4 and 5 show the theoretical

result and experimental analysis respectively. Section 6 concludes

our paper.

2 PRELIMINARIES

In this paper, we consider algorithms maximizing pseudo-boolean

functions f : {0, 1}n → R. Since our smart-restart cGA is based

on the original cGA of Harik, Lobo, and Goldberg [22] and since

2

From Understanding Genetic Drift to a Smart-Restart Parameter-less cGA GECCO ’20, July 8–12, 2020, Cancún, Mexico

we will compare our algorithm with the parallel-run cGA [6], this

section will give a brief introduction to these algorithms.

2.1 The Compact Genetic Algorithm

The compact genetic algorithm (cGA) with hypothetical population

size µ samples two individuals in each generation and moves the

sampling frequencies by an absolute value of 1/µ towards the bit

values of the better individual. Usually, in order to avoid frequencies

reaching the absorbing boundaries 0 or 1, the artificial margins 1/n
and 1 − 1/n are utilized, that is, we restrict the frequency values to

be in the interval [1/n, 1 − 1/n]. The following Algorithm 1 shows

the details. As common in runtime analysis, we do not specify

a termination criterion. When talking about the runtime of an

algorithm, we mean the first time (measured by the number of

fitness evaluations) an optimum was sampled.

Algorithm 1 The cGA to maximize a function f : {0, 1}n → R
with hypothetical population size µ

1: p0 = (1
2
, 1

2
, . . . , 1

2
) ∈ [0, 1]n

2: for д = 1, 2, . . . do

%%Sample two individuals Xд
1
, Xд

2

3: for i = 1, 2 do

4: for j = 1, 2, . . . , n do

5: Xд
i, j ← 1 with probability pд−1j and Xд

i, j ← 0 with probability

1 − pд−1j .

6: end for

7: end for

%%Update of the frequency vector
8: if f (Xд

1
) ≥ f (Xд

2
) then

9: p′ = pд−1 + 1

µ (X
д
1
− Xд

2
);

10: else

11: p′ = pд−1 + 1

µ (X
д
2
− Xд

1
);

12: end if

13: pд = min{max{ 1n , p
′ }, 1 − 1

n };

14: end for

2.2 The Parallel-run cGA

The parallel EDA framework was proposed by Doerr [6] as a side

result when discussing the connection between runtime bounds that

hold with high probability and the expected runtime. For the cGA,

this framework yields the following parallel-run cGA. In the initial

round ℓ = 1, we start process ℓ = 1 to run the cGA with population

size µ = 2
ℓ−1

for 1 generation. In round ℓ = 2, 3, . . . , all running

processes j = 1, . . . , ℓ − 1 run 2
ℓ−1

generations and then we start

process ℓ to run the cGA with population size µ = 2
ℓ−1

for

∑ℓ−1
i=0 2

i

generations. The algorithm terminates once any process has found

the optimum. Algorithm 2 shows the details of the parallel-run

cGA.

Based on the following assumption, Doerr [6] proved that the ex-

pected runtime for this parallel-run cGA is at most 6µ̃T (log
2
(µ̃T) +

3).

Assumption [6]: Consider using the cGA with population size

µ to maximize a given function f . Assume that there are unknown

µ̃ and T such that the cGA for all population sizes µ ≥ µ̃ optimizes

this function f in µT fitness evaluations with probability at least
3

4
.

Algorithm 2 The parallel-run cGA to maximize a function f :

{0, 1}n → R

1: Process 1 runs cGA (Algorithm 1) with population size µ = 1 for 1

generation.

2: for Round ℓ = 2, . . . do

3: Processes 1, . . . , ℓ − 1 continue to run for another 2
ℓ−1

generations,

one process after the other one.

4: Start process ℓ to run cGA (Algorithm 1) with population size µ =
2
ℓ−1

and run it for

∑ℓ−1
i=0 2

i
generations.

5: end for

3 THE SMART-RESTART CGA

In this section, we introduce our parameter-less cGA, called smart-
restart cGA. In contrast to the parallel-run cGA it does not run

processes in parallel, which is an advantage from the implemen-

tation point of view. The main advantage we aim for is that by

predicting when runs become hopeless, we can abort these runs

and save runtime.

To detect such a hopeless situation, we use the first tight quan-

tification of the genetic drift effect of the EDAs by Doerr and

Zheng [16]. Detailedly, they proved that in a run of the cGA with

hypothetical population size µ a frequency of a neutral bit will

reach the boundaries of the frequency range in expected number of

at most 4µ2 generations, which is asymptotically tight. By Markov’s

inequality the probability that a boundary is reached in 8µ2 gener-
ations is at least 1/2.

This suggests the restart scheme described in Algorithm 3. We

start with a small population size of µ = 2. We then repeat running

the cGA with population size µ for 8µ2 generations and doubling

the population size. As before, we do not specify a termination

criterion since for our analysis we just count the number of fitness

evaluations until a desired solution is found.

We consider two variations of this process. As discussed in the

introduction already, we also regard a second criterion for stopping

a run of a cGA, namely when a smaller generation budget of B =
0.5µ2/ln(n) iterations is used. Second, since the runtimes of the

runs with either termination criterion are Θ(µ2), doubling µ after

each run implies that the costs of the iterations increase by a factor

of 4. To have the possibly more desired property that the costs only

double, we also use the update factor

√
2 instead of 2.

Algorithm 3 The smart-restart cGA to maximize a function f :

{0, 1}n → Rwith update factorU and generation budget B. For the

update factor, we propose to use the valueU = 2 orU =
√
2. For the

generation budget, we propose to use B = 8µ2 or B = 0.5µ2/ln(n).

1: for Round ℓ = 1, 2, . . . do

2: Run the cGA (Algorithm 1) with population size µ = 2U ℓ−1
for B

iterations.

3: end for

4 THEORETICAL ANALYSIS

We follow the approach of [6] of building a theoretical analysis

based on a runtime behavior often observed. Our Assumption (L)

is the same as the one in [6] except that we ask for a slightly

higher success probability of 7/8 instead of 3/4. Since most existing

3

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Weijie Zheng

runtime analyses give bounds with success probability 1−o(1), this
change is not too important.

Assumption (L): Consider using the cGA with population

size µ to maximize a given function f . Assume that there are

unknown µ̃ and T such that the cGA for all population sizes µ ≥ µ̃
optimizes this function f in µT fitness evaluations with probability

at least
7

8
.

Under this assumption, we obtain the following theoretical result.

It is easy to see that the asymptotic order of magnitude of the

runtime is independent of U (as long as it is a constant), so we

exemplarily make the constants explicit forU = 2. One may refer

to [15, Appendix] for the details of the proof.

Theorem 4.1. Consider using the smart-restart cGA with update
factorU = 2 optimizing a function f satisfying Assumption (L). With
a generation budget of B = 8µ2, the expected runtime is at most
max{ 112

3
µ̃2, 7

12
T 2} fitness evaluations. With B = 0.5µ2/lnn, the ex-

pected runtime is at most max{ 7
3
µ̃2/lnn, 28

3
T 2

lnn} fitness evalua-
tions.

We recall that the complexity of the parallel-run cGA un-

der the original assumption [6] and also our Assumption (L) is

O (µ̃T log(µ̃T)). Hence, the asymptotic relationships among T , µ̃,
and n as well as the constants in these asymptotic notations matter

in the actual performance comparison between these algorithms.

To apply our result, we recall that the cGA with all population

sizes µ ≥ K
√
n ln(n) for a suitable constant K optimizes the One-

Max function and the Jump function with jump size k < 1

20
lnn

in time O(µ
√
n) with probability 1 − o(1). Hence we have Assump-

tion (L) satisfied with µ̃ = K
√
n ln(n) andT =

√
n. Consequently, by

our result above, our smart-restart cGA with B = 0.5µ2/logn finds

the optimum of Jump and OneMax in timeO(n logn), which is also

the runtime the classic cGA has with optimal parameter choice.

With B = 8µ2, we obtain a slightly inferior runtime of O(n log2 n),
which is also the runtime of the parallel-run cGA of [6].

5 EXPERIMENTAL RESULTS

In this section, we experimentally analyze the smart-restart cGA

proposed in this work. Since such data is not available from previ-

ous works, we start with an investigation how the runtime of the

classic cGA depends on the population size µ. This will in particular

support the basic assumption underlying the smart-restart cGA

(and the parallel-run cGA from [6]) that the runtime is excessively

large when µ is below some threshold, and moderate and linearly

increasing with µ when µ is larger than this threshold.

Since the choice of the right population size is indeed critical

for a good performance of the cGA, we then analyze the perfor-

mance of the two existing approaches to automatically deal with

the problem of choosing µ. Our focus is on understanding how one

can relieve the user of an EDA from the difficult task of setting

this parameter, not on finding the most efficient algorithm for the

benchmark problems we regard. For this reason, we do not include

other algorithms in this investigation.

5.1 Test Problems

Based on the above goals, we selected the four benchmark functions

OneMax, LeadingOnes, Jump, and DeceptiveLeadingBlocks as

optimization problems. For most of them also some mathematical

runtime analyses exist, which help to understand and interpret the

experimental results.

All four problems are defined on binary representations (bit

strings) and we use n to denote their length. The OneMax prob-

lem is one of the easiest benchmark problems. The OneMax fitness

of a bit string is simply the number of ones in the bit string. Having

the perfect fitness-distance correlation, most EAs find it easy to

optimize OneMax, a common runtime is Θ(n logn). Also, math-

ematical runtime analyses are aided by its simple structure (see,

e.g., [1, 13, 24, 30, 36]), though apparently for EDAs the runtime

of OneMax is highly non-trivial. The known results for EDAs are

the following. The first mathematical runtime analysis for EDAs

by Droste [17] together with a recent refinement [35] shows that

the cGA can efficiently optimize OneMax in time Θ(µ
√
n) when

µ ≥ K
√
n ln(n) for some sufficiently large constant K . As the proofs

of this result show (and the same could be concluded from the

general result [16]), in this parameter regime there is little genetic

drift. Throughout the runtime, with high probability, all bit fre-

quencies stay above
1

4
. For hypothetical population sizes below the

√
n logn threshold, the situation is less understood. However, the

lower bound of Ω(µ1/3n) valid for all µ = O
(√

n
ln(n) ln ln(n)

)
proven

in [28] together with its proof shows that in this regime the cGA

suffers from genetic drift, leading to (mildly) higher runtimes.

The LeadingOnes benchmark is still an easy unimodular prob-

lem, however, typically harder than OneMax. The LeadingOnes

value of a bit string is the number of ones in it, counted from left to

right, until the first zero. How simple EAs optimize LeadingOnes is

extremely well understood [2, 4, 18, 24, 34, 36], many EAs optimize

this benchmark in time Θ(n2). Surprisingly, no theoretical results

are known on how the cGA optimizes LeadingOnes. However, the

runtime of another EDA, the UMDA, with population sizes µ = Θ(λ)
with suitable implicit constants and λ = Ω(logn) was shown to

be O(nλ log(λ) + n2) [3] and, recently, Θ(nλ) for λ = Ω(n logn) [9].
Without going into details on this EDA not discussed so far in this

work, we remark that [16] for this situation shows that genetic

drift occurs when λ is below a threshold of Θ(n). Consequently,
these results show a roughly linear influence of λ on the runtime

when λ is (roughly) at least linear in n, but below this value, there is

apparently no big penalty for running the EDA in the genetic drift

regime. For the cGA, we will observe a different behavior, which

also indicates that translating general behaviors from one EDA to

another, even within the class of univariate EDAs, has to be done

with caution.

The Jump benchmark is a class of multimodal fitness landscapes

of scalable difficulty. For a difficulty parameter k , the fitness land-
scape is isomorphic to the one of OneMax except that there is a

valley of low fitness of width k around the optimum. More precisely,

all search points in distance 1 to k − 1 from the optimum have a

fitness lower than all other search points. Recent results [5, 6, 23]

show that when µ is large enough (so that the genetic drift is low,

that is, all bit frequencies stay above
1

4
), then the cGA can optimize

Jump functions quite efficiently and significantly more efficient than

4

From Understanding Genetic Drift to a Smart-Restart Parameter-less cGA GECCO ’20, July 8–12, 2020, Cancún, Mexico

many classic EAs. We omit some details and only mention that for k
not too small, a runtime exponential in k results from a population

size µ that is also exponential in k . This is much better than the

Ω(nk) runtime of many classic EAs [7, 14, 18]. It was not known

whether the runtime of the cGA becomes worse in the regime with

genetic drift, but our experimental results now show this.

The DeceptiveLeadingBlocks benchmark was introduced

in [27]. It can be seen as a deceptive version of the LeadingOnes

benchmark. In DeceptiveLeadingBlocks, the bits are partitioned

into blocks of length two in a left-to-right fashion. The fitness

is computed as follows. Counting from left to right, each block

that consists of two ones contributes two to the fitness, until the

first block is reached that does not consist of two ones. This block

contributes one to the fitness if it consists of two zeros, otherwise it

contributes zero. All further blocks do not contribute to the fitness.

The main result in [27] is that when µ = Θ(λ) and λ = o(n), the
runtime of the UMDA on DeceptiveLeadingBlocks is exponential

in λ. With λ as small as o(n) and a runtime that is at least quadratic,

this result holds in a regime with strong genetic drift according

to [16]. When λ = Ω(n logn), a runtime of approximately
1

2
λn was

shown in [12]. Hence for this function and the UMDA as optimizer,

the choice of the population size is again very important. This was

the reason for including this function into our set of test problems

and the results indicate that indeed the cGA shows a behavior

similar to what the mathematical results showed for the UMDA.

5.2 Experimental Settings

We ran the original cGA (with varying population sizes), the parallel-

run cGA, and our smart-restart cGA (with two generation budgets

and two update factors) on each of the above-described four prob-

lems. For each experiment we conducted 20 independent trials

expect that for reasons of extremely large runtimes in the regime

with genetic drift only 10 independent trials were conducted for the

original cGA on the Jump and DeceptiveLeadingBlocks functions.

The detailed settings for our experiments were as follows.

• Benchmark functions: OneMax (problem size n = 500),

LeadingOnes (n = 50), Jump (n = 50 and the jump size

k = 10), and DeceptiveLeadingBlocks (n = 30).

• Maximum number of generations of the original cGA: n5

for OneMax and LeadingOnes, nk/2 for Jump, and 10n5 for
DeceptiveLeadingBlocks.

• Population size of the original cGA: µ = 2
[2..10]

for OneMax

and LeadingOnes, µ = 2
[2..18]

for Jump, and µ = 2
[1..14]

for

DeceptiveLeadingBlocks. Since for all µ = 2
[2..8]

, none of

10 trials of the original cGA in the Jump experiments reached

the optimumwithinnk/2 generations, we do not report these
values below.

• Generation budget B for the smart-restart cGA: 8µ2 and

0.5µ2/lnn. As explained in the introduction, B = 8µ2 and
Θ(µ2/lnn) are two proper choices. We chose the constant

0.5 based on the experimental results on Jump and Decep-

tiveLeadingBlocks in Figure 1. We ignored the results for

OneMax and LeadingOnes since for these functions larger

ranges of population sizes all gave a good performance.

• Update factor U for the smart-restart cGA: 2 and

√
2. Dou-

bling the parameter value after each unsuccessful run (U = 2)

is a natural choice for a sequential parameter search. Since

with the above generation budget the runtime of a cGA run

depends quadratically on µ, we were wondering if a dou-

bling scheme is not too aggressive (as it would be a factor-4

increase scheme in terms of runtime). Hence, we also exper-

imented withU =
√
2.

5.3 Experimental Results and Analysis I: The

cGA with Different Population Sizes

Figure 1 shows the runtime (measured by the number of fitness

evaluations) of the classic cGAwith different population sizes when

optimizing our four test functions. To allow an estimate in which

iteration the smart-restart cGA would have found the optimum, we

also plotted the two generation budgets 8µ2 and 0.5µ2/lnn (2 ∗ 8µ2

and 2 ∗ 0.5µ2/lnn for the fitness evaluation numbers). We make the

precise runtimes explicit in Table 1 for the value of µ which gave

the best average runtime.

As a side result, this data confirms that the cGA has a good

performance on Jump functions, not only in asymptotic terms as

proven in [6, 23], but also in terms of actual runtimes for concrete

problem sizes. On a Jump function with parameters n = 50 and

k = 10, a classic mutation-based algorithm would run into the

local optimum and from there would need to generate the global

optimum via onemutation. For standard bit mutation withmutation

rate
1

n , this last step would take an expected time of nk (n
n−1)

n−k
,

which for our values of n and k is approximately 2.2 · 1017. With

the asymptotically optimal mutation rate of
k
n determined in [14],

this time would still be approximately 7.3 · 1010. In contrast, the

median optimization time of the cGA with µ ∈ 2[15..18] is always
below 4 · 106.

The results displayed in Figure 1 generally show that indeed the

runtime of the cGA is large both for small values of µ and for large

values. The efficient middle regime is relatively wide for OneMax.

On the small end only a population size of µ = 4 led to larger

(but then truly huge) runtimes. For µ ≥ 2
7
, the runtime increases

roughly linearly with µ.
For all other functions, there is one clear optimal population size.

Above this value, the runtime increases in a regular manner and

the runtimes are strongly concentrated.

Below this value, the runtimes quickly raise (much steeper than

on the large side) and are less concentrated. We note that for runs

that were stopped because the maximum number of generations

was reached, we simply and bluntly counted this maximum number

of generations as runtime. Clearly, there are better ways to handle

such incomplete runs, but since a fair computation for these inef-

ficient parameter ranges is not too important, we did not start a

more elaborate evaluation.

Let us regard the increase of the runtime for smaller popula-

tion sizes in more detail. For OneMax, it appears only for µ = 4,

which clearly is a population size too small to give any significant

information. For the remaining values before the start of the linear

increase of the runtime, the runtime is always very small. Since it

is clear that for small values like µ = 8 there will be genetic drift,

that is, frequencies that reach the lower boundary, this shows that

the cGA can optimize OneMax also in the presence of genetic drift.

For LeadingOnes, there is already a unique value for µ, namely

5

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Weijie Zheng

2 3 4 5 6 7 8 9 10

10
4

10
6

10
8

O
p

ti
m

iz
at

io
n

 T
im

e
(F

it
n

es
s

E
v

al
u

at
io

n
s) OneMax, n=500

2*8
2

2*0.5
2
/ln n

2 3 4 5 6 7 8 9 10

10
4

10
6

10
8

O
p

ti
m

iz
at

io
n

 T
im

e
(F

it
n

es
s

E
v

al
u

at
io

n
s) LeadingOnes, n=50

2*8
2

2*0.5
2
/ln n

9 10 11 12 13 14 15 16 17 18
10

4

10
6

10
8

10
10

O
p
ti

m
iz

at
io

n
 T

im
e

(F
it

n
es

s
E

v
al

u
at

io
n
s) Jump, (n,k)=(50,10)

2*8
2

2*0.5
2
/ln n

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
4

10
6

10
8

10
10

O
p
ti

m
iz

at
io

n
 T

im
e

(F
it

n
es

s
E

v
al

u
at

io
n
s) DeceptiveLeadingBlocks, n=30

2*8
2

2*0.5
2
/ln n

Figure 1: Runtimes of the classic cGA with different popula-

tion sizes.

Table 1: Runtime details for the classic cGA. Best-µ is the

value of µ leading to the smallest mean runtime. For this µ,
the mean, median, minimum, and maximum runtimes are

given.

OneMax LeadingOnes Jump DLB

Best-µ 64 32 32,768 1,024

Mean 6,970 17,061 620,658 51,219

Median 6,736 14,706 545,285 49,279

Min 5,202 7,698 364,110 39,346

Max 9,632 44,958 1,201,142 63,410

Note: DLB for DeceptiveLeadingBlocks.

µ = 2
5
that gives a clearly visibly unique minimummedian runtime.

Reducing µ further leads to a clear increase of the runtime, roughly

by a factor of 6 for each halving of µ. For Jump and Deceptive-

LeadingBlocks, reducing the population size below the efficient

values leads to a catastrophic increase of the runtime by factors of

more than 100 just by having the last reasonable runtime (a further

increase from reducing the runtime could not be observed because

these experiments took so long that they had to be stopped). We

also observe a drastic increase of the variance of the runtime when

leaving the efficient regime. This indicates that some runs were

very lucky to not suffer from genetic drift and then finished early (at

a runtime as if the linear regimes was continued), whereas others

suffered from genetic drift and thus took very long. We note that

when some frequencies reach the lower boundary (genetic drift),

then it takes longer to move them back into the middle regime.

During this longer runtime, of course, the remaining frequencies

are still are prone to genetic drift (recall that the quantitative anal-

ysis [16] shows that genetic drift is more likely the longer the run

takes). These mathematical considerations and the experimental

results indicate that for objective functions which could suffer from

genetic drift, there are two very distinct extremal regimes: either

no frequency reaches the wrong boundary and the optimization is

efficient, or many frequencies reach the wrong boundary and the

optimization is highly inefficient.

We note that for DeceptiveLeadingBlocks, the runtime de-

creases again when further decreasing the population size. We have

no explanation for this. Apart from this single observation, our

results indicate that all four test problems show a runtime behavior

as described in Assumption (L). To make this more visible, we com-

puted the ratio of the median runtimes for the highest and second-

highest population size in the data displayed in Figure 1. Since the

highest population size is twice the second-highest one, a ratio of

two would indicate a perfect linear behavior (note that we regard

the two highest population sizes to be as much as possible in the

linear regime). The ratios we observed are 1.95, 1.82, 1.93, and 1.87

for OneMax, LeadingOnes, Jump, and DeceptiveLeadingBlocks

respectively, which supports our theory that Assumption (L) is a

runtime profile often observed for the cGA.

6

From Understanding Genetic Drift to a Smart-Restart Parameter-less cGA GECCO ’20, July 8–12, 2020, Cancún, Mexico

Table 2: Runtime comparison between the parallel-run cGA and the four variants of the smart-restart cGA

OneMax LeadingOnes Jump DeceptiveLeadingBlocks

Parallel-run cGA Mean(Std-dev) 62,705(2,241) 183,992(81,499) 6,964,249(8,647,270) 365,757(317,466)

Median 63,150 147,456 3,888,671 169,445

Min 59,380 64,466 384,826 65,416

Max 68,440 319,074 37,466,078 1,159,150

Smart-restart cGA Mean(Std-dev) 12,559(1,264)+ 28,359(12,983)+ 2,506,117,742(5,170,078,482)- 2,798,567(2,363,710)-

with B = 8µ2 Median 12,376 31,661 268,907,524 1,434,478

andU = 2 Min 10,568 11,668 16,785,876 7,408

Max 15,528 47,564 17,180,765,184 5,656,524

Smart-restart cGA Mean(Std-dev) 18,297(4,683)+ 42,202(18,221)+ 368,933,280(530,770,847)- 1,766,550(1,927,353)-

with B = 8µ2 Median 15,690 46,248 134,412,883 1,070,238

andU =
√
2 Min 13,820 14,028 528,240 1,832

Max 27,168 80,620 2,148,950,634 8,453,288

Smart-restart cGA Mean(Std-dev) 41,966(431)+ 90,777(36,745)+ 6,870,179(8,709,131)= 83,694(61,514)+

with B = 0.5µ2/lnn Median 42,082 77,842 1,997,966 54,070

andU = 2 Min 40,978 52,544 14,026 14,730

Max 42,658 176,806 23,530,502 167,804

Smart-restart cGA Mean(Std-dev) 41,247(298)+ 132,115(36,457)+ 7,872,212(15,051,482)= 120,973(77,923)+

with B = 0.5µ2/lnn Median 41,193 123,155 4,454,652 103,718

andU =
√
2 Min 40,768 66,848 160,766 30,384

Max 41,648 224,416 69,217,910 360,656

Note: A Wilcoxon rank sum test with significance level 0.05 is conducted between parallel cGA and fours variants of the smart-restart cGA, and “=”, “-”, and “+” represent that the

variant has similar, worse, and better performance than the parallel-run cGA. A Wilcoxon rank sum test (not displayed in the table) between the variant of the smart-restart cGA

with smallest mean runtime and the other variants of the smart-restart cGA in all cases showed the other variants to be significantly inferior apart from the case B = 0.5µ2/lnn
andU =

√
2 for Jump and DeceptiveLeadingBlocks.

5.4 Experimental Results and Analysis II:

Comparison Between Parallel-run cGA and

Smart-restart cGA

5.4.1 Runtimes. Table 2 shows the runtimes of the parallel-run

cGA and smart-restart cGA (with two generation budgets and two

update factors). We see that for the easy functions OneMax and

LeadingOnes, the smart-restart cGA in any setting has a smaller

runtime than the parallel-run cGA. This can be explained from the

data in Figure 1: Since the runtimes are similar for several pop-

ulation sizes, the parallel-run cGA with its strategy to assign a

similar budget to different population sizes just wastes computa-

tional power, which the smart-restart cGA saves by aborting some

processes early. For both functions, the larger generation budget is

superior. This fits again to the plots in Figure 1 and to our interpre-

tation that genetic drift here is not so detrimental. Consequently, it

is better to let the current run continue than to abort it and start a

new one.

More interesting are the results for Jump and DeceptiveLead-

ingBlocks. We recall that here a wrong choice of the population

size can be catastrophic, so these are the two functions where not

having to choose the population size is a big advantage for the

user. What is clearly visible from the data is that here the smaller

generation budget is preferable for the smart-restart cGA. This

fits to our previously gained intuition that for these two functions,

genetic drift is detrimental. Hence there is no gain from continuing

a run that is suffering from genetic drift (we note that there is no

way to detect genetic drift on the fly – a frequency can be at a

(wrong) boundary value due to genetic drift or at a (correct) bound-

ary value because of a sufficiently strong fitness signal). Concerning

the update factor, there is no clear picture.

What is clear as a general rule is that both algorithms, the parallel-

run cGA and the smart-restart cGA with the small generation bud-

get, clearly do a good job in running the cGA with a reasonable

population size – recall that for both of the difficult functions, a

wrong choice of the population size can easily imply that the cGA

does not find the optimum in 10
8
iterations.

5.4.2 Population Sizes. Table 3 collects the population size µ
which first finds the optimum (stopping population size) for the
parallel-run cGA and smart-restart cGA (with two generation bud-

gets and two update factors). For the parallel-run cGA, we also give

the round ℓ in which the optimum is found. Before we look at the

data in Table 3, we go back to Figure 1 to figure out what our exper-

iments on the cGA with different population sizes could indicate on

the stopping population size. Focusing on the intersection points

of the two generation budget lines with the boxes and whiskers

and the positional relations between two lines and the outliers, we

obtain the following prior guesses on the ranges of the stopping

population sizes.

• OneMax: [16, 32] for B = 8µ2 and [256, 512] for B =
0.5µ2/lnn.
• LeadingOnes: [16, 64] for B = 8µ2 and [256, 1024] for B =
0.5µ2/lnn.
• Jump: [2048, 16384] for B = 8µ2 and [1024, 32768] for B =
0.5µ2/lnn.

7

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Weijie Zheng

Table 3: Population size µ that found the optimum (“stop-

ping population size”) in runs of the parallel-run cGA and

smart-restart cGA

Parallel-run cGA OneMax LO Jump DLB

Round ℓ Mean 12 13 17 14

Median 12 13 17 13

Min 12 12 14 12

Max 12 14 20 16

µ Mean 14 41 12,288 236

Median 16 32 6,144 128

Min 8 16 1,024 4

Max 32 128 65,536 1024

Smart-restart cGA OneMax LO Jump DLB

B = 8µ2 Mean 32 50 8,550 477

andU = 2 Median 32 64 4,096 512

Min 32 32 1,024 64

Max 32 64 32,768 1,024

B = 8µ2 Mean 26 39 3,834 278

andU =
√
2 Median 23 45 2,896 256

Min 23 23 181 8

Max 32 64 11,585 724

B = 0.5µ2/lnn Mean 512 589 7,027 640

andU = 2 Median 512 512 4,096 512

Min 512 512 256 256

Max 512 1,024 16,384 1,024

B = 0.5µ2/lnn Mean 362 536 4,330 529

andU =
√
2 Median 362 512 4,096 512

Min 362 362 724 256

Max 362 724 16,384 1,024

Note: LO for LeadingOnes and DLB for DeceptiveLeadingBlocks.

• DeceptiveLeadingBlocks: [64, 1024] for both B = 8µ2 and
0.5µ2/lnn.

Now together with Table 3, we find that the experimental stopping

population sizes almost perfectly match our guesses. The most

striking exceptions are the minimum values of 181 and 8 for the

Jump and DeceptiveLeadingBlocks function in the case (B,U) =
(8µ2,

√
2). Here apparently some run with very small population

size was very lucky to not suffer from genetic drift and thus reach

the optimum quickly.

We note that the maximum value for the smart-restart cGA with

B = 8µ2 and U = 2 on the Jump function is not an exception since

we took nk/2 as the maximum generation budget for a cGA run.

The outlier of log
2
µ = 14 has the runtime of 2 · 5010/2 in Figure 1,

which means that the real runtime is larger than the current one,

thus the intersection should happen at a larger population size.

Together with the “optimal” population size of the cGA from

Table 1, we can see that except LeadingOnes function the stopping

population size of the smart-restart cGA is smaller than the optimal

population size of the original cGA. The reason could be that the

optimal population size in Table 1 is based on the mean runtime,

which does not rule out that there is a good probability that the

cGA with a smaller population can reach the optimum within a

reasonable time with fair probability.

In Table 3, we also collect the round number in which the parallel-

run cGA has found the optimum. Note that in round ℓ, themaximum

population size of all processes changes from 2
ℓ−2

to 2
ℓ−1

. However,

the successful run almost always used a much smaller population.

6 CONCLUSION

Choosing the right population size for EDAs is one of the key diffi-

culties for their practical usage. In order to remove the population

size as a parameter and thus make EDAs easier to use, this paper

proposed a parameter-less framework for EDAs, using the cGA as

example. This framework is a simple restart strategy with exponen-

tially growing population size, but different from previous works it

sets a prior generation budget for each population size based on a

recent quantitative analysis estimating when genetic drift is likely

to occur and render the EDA inefficient.

Under a reasonable assumption on how the runtime depends

on the population size, we theoretically analyzed our scheme and

observed that it can lead to asymptotically optimal runtimes for

the cGA.

Via extensive experiments on OneMax, LeadingOnes, Jump,

and DeceptiveLeadingBlocks, we showed the efficiency of the

parameter-less cGA, also when compared with the parallel-run

cGA. The results for the original cGA with different population

sizes experimentally show that the population size is crucial for the

performance of the cGA.

We positively believe that our parameter-less framework for the

cGA can be also applied to other univariate EDAs, again building

on the quantitative analysis of genetic drift in [16]. The problem of

how to cope with genetic drift, naturally, is equally interesting for

multivariate EDAs. For these, however, our theoretical understand-

ing is limited to very few results such as [10, 27, 37]. In particular,

a quantitative understanding of genetic drift comparable to [16]

is completely missing. Another interesting question is if dynamic

choices of the population size in EDAs can be fruitful. In classic EAs,

dynamic parameter choices have recently been used very success-

fully to overcome the difficulty of finding a suitable static parameter

value, see, e.g., the survey [8]. How to use such ideas for EDAs is

currently not at all clear.

ACKNOWLEDGMENTS

This work was supported by a public grant as part of the Investisse-

ment d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx

LMH, in a joint call with Gaspard Monge Program for optimization,

operations research and their interactions with data sciences.

This work was also supported by Guangdong Provincial Key

Laboratory (Grant No. 2020B121201001), the Program for Guang-

dong Introducing Innovative and Enterpreneurial Teams (Grant

No. 2017ZT07X386); Guangdong Basic and Applied Basic Re-

search Foundation (Grant No. 2019A1515110177); Shenzhen Pea-

cock Plan (Grant No. KQTD2016112514355531); and the Program

for University Key Laboratory of Guangdong Province (Grant No.

2017KSYS008).

The authors are thankful to an anonymous reviewer for propos-

ing the name smart-restart cGA.

8

From Understanding Genetic Drift to a Smart-Restart Parameter-less cGA GECCO ’20, July 8–12, 2020, Cancún, Mexico

REFERENCES

[1] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet. 2018. Runtime

analysis for the (µ + λ) EA optimizing OneMax. In Genetic and Evolutionary
Computation Conference, GECCO 2018. ACM, 1459–1466.

[2] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal fixed and

adaptive mutation rates for the LeadingOnes problem. In Parallel Problem Solving
from Nature, PPSN 2010. Springer, 1–10.

[3] Duc-Cuong Dang and Per Kristian Lehre. 2015. Simplified runtime analysis of

estimation of distribution algorithms. In Genetic and Evolutionary Computation
Conference, GECCO 2015. ACM, 513–518.

[4] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochastic

domination. Theoretical Computer Science 773 (2019), 115–137.
[5] BenjaminDoerr. 2019. An exponential lower bound for the runtime of the compact

genetic algorithm on jump functions. In Foundations of Genetic Algorithms, FOGA
2019. ACM, 25–33.

[6] Benjamin Doerr. 2019. A tight runtime analysis for the cGA on jump functions:

EDAs can cross fitness valleys at no extra cost. In Genetic and Evolutionary
Computation Conference, GECCO 2019. ACM, 1488–1496.

[7] Benjamin Doerr. 2020. Does comma selection help to cope with local optima?.

In Genetic and Evolutionary Computation Conference, GECCO 2020. ACM. To

appear.

[8] Benjamin Doerr and Carola Doerr. 2020. Theory of parameter control for discrete

black-box optimization: provable performance gains through dynamic parameter

choices. In Theory of Evolutionary Computation: Recent Developments in Discrete
Optimization, Benjamin Doerr and Frank Neumann (Eds.). Springer, 271–321.

Also available at https://arxiv.org/abs/1804.05650.

[9] Benjamin Doerr and Martin Krejca. 2020. A simplified run time analysis of the

univariate marginal distribution algorithm on LeadingOnes. CoRR abs/2004.04978

(2020). arXiv:2004.04978

[10] Benjamin Doerr and Martin S. Krejca. 2020. Bivariate estimation-of-distribution

algorithms can find an exponential number of optima. InGenetic and Evolutionary
Computation Conference, GECCO 2020. ACM. To appear.

[11] Benjamin Doerr and Martin S. Krejca. 2020. Significance-based estimation-of-

distribution algorithms. IEEE Transactions on Evolutionary Computation (2020),

To appear. https://doi.org/10.1109/TEVC.2019.2956633

[12] Benjamin Doerr and Martin S. Krejca. 2020. The univariate marginal distribution

algorithm copes well with deception and epistasis. In Evolutionary Computation
in Combinatorial Optimization, EvoCOP 2020. Springer, 51–66.

[13] Benjamin Doerr and Marvin Künnemann. 2015. Optimizing linear functions with

the (1 + λ) evolutionary algorithm—Different asymptotic runtimes for different

instances. Theoretical Computer Science 561 (2015), 3–23.
[14] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.

Fast genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2017. ACM, 777–784.

[15] Benjamin Doerr and Weijie Zheng. 2020. From understanding genetic drift to a

smart-restart parameter-less compact genetic algorithm. CoRR abs/2004.07141

(2020). arXiv:2004.07141

[16] Benjamin Doerr andWeijie Zheng. 2020. Sharp bounds for genetic drift in estima-

tion of distribution algorithms. IEEE Transactions on Evolutionary Computation
(2020), Accepted. https://doi.org/10.1109/TEVC.2020.2987361

[17] Stefan Droste. 2006. A rigorous analysis of the compact genetic algorithm for

linear functions. Natural Computing 5 (2006), 257–283.

[18] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.
[19] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. 2016. EDAs cannot be

balanced and stable. In Genetic and Evolutionary Computation Conference, GECCO
2016. ACM, 1139–1146.

[20] Brian W. Goldman and William F. Punch. 2014. Parameter-less population pyra-

mid. In Genetic and Evolutionary Computation Conference, GECCO 2014. ACM,

785–792.

[21] Georges R. Harik and Fernando G. Lobo. 1999. A parameter-less genetic algorithm.

In Genetic and Evolutionary Computation Conference, GECCO 1999. 258–265.
[22] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. 1999. The compact

genetic algorithm. IEEE Transactions on Evolutionary Computation 3 (1999),

287–297.

[23] Václav Hasenöhrl and Andrew M. Sutton. 2018. On the runtime dynamics of

the compact genetic algorithm on jump functions. In Genetic and Evolutionary
Computation Conference, GECCO 2018. ACM, 967–974.

[24] Thomas Jansen, Kenneth A. De Jong, and IngoWegener. 2005. On the choice of the

offspring population size in evolutionary algorithms. Evolutionary Computation
13 (2005), 413–440.

[25] Martin Krejca and Carsten Witt. 2020. Theory of estimation-of-distribution

algorithms. In Theory of Evolutionary Computation: Recent Developments in
Discrete Optimization, Benjamin Doerr and Frank Neumann (Eds.). Springer,

405–442. Also available at https://arxiv.org/abs/1806.05392.

[26] Pedro Larrañaga and José Antonio Lozano (Eds.). 2002. Estimation of Distribution
Algorithms. Springer.

[27] Per Kristian Lehre and Phan Trung Hai Nguyen. 2019. On the limitations of

the univariate marginal distribution algorithm to deception and where bivariate

EDAs might help. In Foundations of Genetic Algorithms, FOGA 2019. 154–168.
[28] Johannes Lengler, Dirk Sudholt, and Carsten Witt. 2018. Medium step sizes

are harmful for the compact genetic algorithm. In Genetic and Evolutionary
Computation Conference, GECCO 2018. ACM, 1499–1506.

[29] Cláudio F. Lima and Fernando G. Lobo. 2004. Parameter-less optimization with

the extended compact genetic algorithm and iterated local search. In Genetic and
Evolutionary Computation Conference, GECCO 2004. Springer, 1328–1339.

[30] Heinz Mühlenbein. 1992. How genetic algorithms really work: mutation and

hillclimbing. In Parallel Problem Solving from Nature, PPSN 1992. Elsevier, 15–26.
[31] Heinz Mühlenbein and Gerhard Paass. 1996. From recombination of genes to the

estimation of distributions I. Binary parameters. In Parallel Problem Solving from
Nature, PPSN 1996. Springer, 178–187.

[32] Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. 2015. Estimation of

distribution algorithms. In Springer Handbook of Computational Intelligence,
Janusz Kacprzyk and Witold Pedrycz (Eds.). Springer, 899–928.

[33] Martin Pelikan and Tz-Kai Lin. 2004. Parameter-less hierarchical BOA. In Genetic
and Evolutionary Computation Conference, GECCO 2004. Springer, 24–35.

[34] Dirk Sudholt. 2013. A new method for lower bounds on the running time of

evolutionary algorithms. IEEE Transactions on Evolutionary Computation 17

(2013), 418–435.

[35] Dirk Sudholt and Carsten Witt. 2019. On the choice of the update strength in

estimation-of-distribution algorithms and ant colony optimization. Algorithmica
81 (2019), 1450–1489.

[36] Carsten Witt. 2006. Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean

functions. Evolutionary Computation 14 (2006), 65–86.

[37] Qingfu Zhang and Heinz Mühlenbein. 2004. On the convergence of a class

of estimation of distribution algorithms. IEEE Transactions on Evolutionary
Computation 8 (2004), 127–136.

9

https://arxiv.org/abs/1804.05650
http://arxiv.org/abs/2004.04978
https://doi.org/10.1109/TEVC.2019.2956633
http://arxiv.org/abs/2004.07141
https://doi.org/10.1109/TEVC.2020.2987361
https://arxiv.org/abs/1806.05392

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Compact Genetic Algorithm
	2.2 The Parallel-run cGA

	3 The Smart-Restart cGA
	4 Theoretical Analysis
	5 Experimental Results
	5.1 Test Problems
	5.2 Experimental Settings
	5.3 Experimental Results and Analysis I: The cGA with Different Population Sizes
	5.4 Experimental Results and Analysis II: Comparison Between Parallel-run cGA and Smart-restart cGA

	6 Conclusion
	Acknowledgments
	References

