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INPT-ENSEEIHT/IRIT, University of Toulouse, France
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Abstract. The correct-by-construction state-based Event-B formal me-
thod lacks the ability to express liveness properties using temporal logic.
To address this challenge, two approaches can be envisioned. First, embed
Event-B models in another formal method supporting liveness proper-
ties verification. This method is cumbersome and error-prone, and the
verification result is not guaranteed on the source model. Second, extend
Event-B to support the expression of and reasoning on liveness proper-
ties, and more generally temporal properties. Following the second ap-
proach, in [18], J.-R. Abrial and T. S. Hoang proposed an axiomatisation
of linear temporal logic (LTL) for Event-B with a set of proof obligations
(POs) allowing to verify these properties. These POs are mathematically
formalised, but are neither implemented nor generated automatically. In
this paper, using the reflexive EB4EB framework [35,36] allowing for
manipulation of the core concepts of Event-B, we propose to formalise
and operationalise the automatic generation of proof obligations asso-
ciated to liveness properties expressed in LTL. Furthermore, relying on
trace-based semantics, we demonstrate the soundness of this formalisa-
tion, and provide a set of intermediate and generic theorems to increase
the rate of proof automation for these properties. Finally, a case study is
proposed to demonstrate the use of the defined operators for expressing
and proving liveness properties.

Keywords: Proof and state-based methods · Event-B and Theories · Meta-
theory · Reflexive EB4EB framework · Temporal logic · Liveness properties ·
Traces and soundness

1 Introduction

Event-B is a formal method based on explicit state expression, refinement and
formal proof. It enables the design of complex systems using correct by construc-
tion. This method has been used successfully in the design of many complex sys-
tems in various engineering areas such as aeronautics [40], railway systems [7,8],
health and medicine [38], etc. In particular, it has shown its effectiveness in estab-
lishing properties related to system functionalities, safety, security, reachability
and compliance with some temporal requirements, and so on.
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Event-B models are machines that express state-transition systems using set
theory and first-order logic (FOL). A mechanism of proof by induction enables
the demonstration of inductive properties based on the preservation of properties
at initialization and by each transition (event). Refinement, on the other hand, is
defined by a weak simulation relation in which proof obligations guarantee the
preservation of behaviours between levels of abstraction. The Rodin platform
supports the development of Event-B models. It offers an environment for model
editing, automatic and interactive proofs, animation, model checking, etc.

However, Event-B, like all formal methods, lacks some capabilities. Event-
B supports the verification of a fragment of temporal logic properties: □ using
invariants and theorem clauses and ♢ using variants and convergence proof obli-
gations. There is a lack of composition of temporal logic operators, as well as the
ability to express and reason about liveness properties. To remedy this absence,
two solutions are possible in general. The first solution consists in embedding
an Event-B model in another formal method offering the possibility of express-
ing and reasoning about liveness properties such as TLA+ [23], NuSMV [11],
PRISM [21], PAT [41], Spin [20], Uppaal [2], ProB [25] etc. However, tracing
the verification results on the source Event-B models is difficult and care must
be taken to guarantee the correctness of this embedding. This approach is very
popular and is followed by many authors who use other formal methods allowing
to express and verify this type of property without worrying about the correct-
ness of the transformation. However, there exist several approaches to ensuring
the transformation’s correctness [24,16,33,6]. The second solution consists in ex-
tending the Event-B method to allow expressing and reasoning about liveness
properties. This second approach requires the expression of the semantics and
the proof system of the temporal logic in Event-B, as well as establishing the
soundness of this extension.

Based on the second approach, JR. Abrial and TS. Hoang [18] proposed
an axiomatisation of LTL temporal logic for Event-B in their article entitled
“Reasoning about liveness properties in Event-B”. This work has defined a set
of proof obligations allowing to establish temporal properties such as reachabil-
ity, progress, persistence or until. However, these proof obligations are mathe-
matically formalised in that paper but are neither implemented nor generated
automatically. They must be explicitly described in Event-B by the developer
for each model, thus leading to formalization errors. Moreover, their proofs are
cumbersome and require too much manual effort to proving them.

Relying on the reflexive EB4EB framework [35,36,37] defined in Event-B,
we propose to formalise and operationalise the automatic generation of proof
obligations associated with liveness properties expressed in LTL temporal logic.
We define an extension of EB4EB including a set of operators expressing these
properties on traces. In addition, we demonstrate the soundness of these prop-
erties on model traces. Finally, a set of intermediate and generic theorems are
also proposed to increase the rate of proof automation.
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Context Machine Theory

CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES
THEOREMS Tctx THEOREMS Tmch (x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1

x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS
END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Table 1: Global structure of Event-B Contexts, Machines and Theories

Note that our proposed approach is non-intrusive (self-contained) and does
not require the use of any other formal techniques or tools; it is fully formalised
in Event-B and mechanised on the Rodin platform.

This paper is organised as follows. Section 2 describes the Event-B modelling
language and its Theory plugin extension. Section 3 recalls linear temporal logic,
and the EB4EB framework is described in Section 4. Section 5 presents the trace-
based semantics of Event-B, and its soundness properties. Section 6 describes a
case study that will be used as a running example to show how to use defined
LTL operators. Section 7 presents the temporal logic proof rules encoded as
EB4EB proof obligations. Their correctness is discussed in Section 8. Section 9
summarises related work, and Section 10 concludes the paper.

2 Event-B

Event-B [1] is a state-based, correct-by-construction formal method, where sys-
tems are modelled with a set of events representing state changes, using first-
order logic (FOL) and set theory.

Contexts and machines (Tables 1.a and 1.b). Contexts (Table 1.a) en-
compass the model’s static part: carrier sets s and constants c, as well as their
properties, through axioms A and theorems Tctx . Machines (Table 1.b) describe
the model’s behaviour, using a set of events evt , each of which may be guarded
G and/or parameterized by α. An event models the evolution of a set of variables
x using a Before-After Predicate (BAP) that links the before (x) and after (x′)
value of the variables. Safety properties are encoded using invariants I(x) and
theorems Tmch(x), and variants V (x) may be defined to demonstrate the ma-
chine’s convergence. Model consistency is established by discharging a number
of automatically generated POs (Table 2).

Refinements. One strength of Event-B is its refinement operation, which is
used to transform an abstract model into a more concrete one, adding infor-
mation (refined states) and behavioural (refined events) details gradually, while
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(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)

(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)

(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 2: Relevant Proof Obligations for Event-B contexts and machines

retaining a similar observational behaviour (simulation relationship). Refinement
correctness is established with the help of a gluing invariant, and ensures prop-
erties are preserved from the abstract to the concrete model.

Extension with theories. Being based on set theory and FOL, the Event-
B formalism is mathematically low-level and thus very expressive. However, it
lacks features to build up more complex structures. The theory extension has
been proposed to address this issue [9]. A theory is a type of component that
makes it possible to define new type-generic datatypes together with constructive
and axiomatic operators, specific theorems and axioms and even proof rules (see
Table 1.c). The resulting theories consistency can be established by providing
witnesses for axioms and definitions, ensuring conservative extensions of Event-
B. Once defined, elements of a theory become seamlessly available in an Event-B
model and its proofs.

This extension is central for embedding, as data types, concepts that are
unavailable in core Event-B, similar to Coq [3], Isabelle/HOL [30] or PVS [31].
Many theories have been defined, for supporting real numbers, lists, differential
equations and so on.

Well-definedness (WD). Beyond machine-related POs, one key aspect of
model consistency is the well-definedness (WD) of the expressions involved in
it. This notion supplements the one of syntactical correctness with the idea of a
formula being “meaningful”, i.e. it can always be safely evaluated (e.g., dividing
by a constant that is provably non 0). Each formula of a model is associated to
a WD PO, usually consisting in checking that operators are correctly used and
combined. Once proven, WDs are added to set of hypotheses of other POs.

Note that theories allow designers to provide custom WD conditions for par-
tially defined operators in order to precisely characterise their proper use.

The Rodin Platform. Rodin is an open source integrated development plat-
form for designing, editing and proving Event-B models. It also supports model
checking and animation with ProB, as well as code generation. Being based
on Eclipse, it also allows the definition of plug-ins, including theory extensions.
Many provers for first-order logic as well as SMT solvers are plugged to Rodin
for helping the proof process.

3 Linear Temporal Logic

This section recalls the principles of linear temporal logic (LTL) following the
definition of Manna and Pnueli [26]. Linear temporal logic is defined syntactically
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as an extension of propositional logic. A valid LTL formula consists in literals
(usually, predicates on the state of the system), the usual logical connectors (∧,
∨, ¬ and ⇒) as well as modal operators □, ♢ and U . The semantics of LTL is
expressed in terms of traces of a system. Given a trace tr = s0 7→ s1 7→ . . ., then
tri (i ∈ N) denotes the suffix trace of tr, starting from si, tri = si 7→ si+1 7→ . . .

A state that satisfies a predicate P is called a P -state. LTL semantics are
given with the following rules:

1. For any state predicate P , tr ⊨ P iff s0 is a P-state.
2. tr ⊨ ϕ1 ∧ ϕ2 iff tr ⊨ ϕ1 and tr ⊨ ϕ2

3. tr ⊨ ϕ1 ∨ ϕ2 iff tr ⊨ ϕ1 or tr ⊨ ϕ2

4. tr ⊨ ¬ϕ iff not tr ⊨ ϕ
5. tr ⊨ ϕ1 ⇒ ϕ2 iff not tr ⊨ ϕ1 or tr ⊨ ϕ2

6. tr ⊨ □ϕ iff for all k, trk ⊨ ϕ
7. tr ⊨ ♢ϕ iff there exists a i such that tri ⊨ ϕ
8. tr ⊨ ϕ1Uϕ2 iff there exists a i such that tri ⊨ ϕ2, and for all j < i, trj ⊨ ϕ1

A machine M satisfies a property ϕ, denoted M ⊨ ϕ if and only if for all
traces tr of M , that trace satisfies ϕ (tr ⊨ ϕ).

4 The EB4EB Framework

The EB4EB framework [35,36] proposes to extend the reasoning capabilities of
Event-B by enabling the access of Event-B components as first-class citizens
within Event-B models (reflection), thereby making it possible to express new
reasoning mechanism at the meta-level.

THEORY EvtBTheo
TYPE PARAMETERS St, Ev
DATATYPES Machine ( St , Ev)
CONSTRUCTORS

Cons machine(
Event : P(Ev),
State : P(St),
Init : Ev,Progress : P(Ev)
V ariant : P(St × Z),
AP : P(St),
BAP : P(Ev × (St × St)),
Grd : P(Ev × St),
Inv : P(St) ,
. . .)

Listing 1: Machine Data type

Event WellCons <pred ica te>
(m : Machine(St, Ev))

direct def init ion
partition(Event(m), {Init(m)}, Progress(m))

. . .
Machine WellCons <pred ica te>

(m : Machine(St, Ev))
direct def init ion Event WellCons(m) ∧ . . .

Listing 2: Operators to check well-defined
data type (static semantics)

Machine structure. Event-B is formalised in an Event-B theory. A machine
is represented using the data-type Machine (see Listing 1) parameterised by
generic types with event labels (Ev) and states (St). Constructor Cons machine

gathers the components of a machine, such as Event, State, Grd, Inv, BAP, etc.

Well-Construction. A machine built using Cons machine may not be consis-
tent, despite being syntactically correct. Thus, additional operators are defined
to encode the well-construction of a machine, i.e. the consistency of its com-
ponents with regard to each others (Listing 2). For instance, Event WellCons

ensures that events are partitioned between initialisation and progress events.
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Machine Proof Obligations. For any machine expressed in the framework, its
associated proof obligations are provided under the form of operators (see List-
ing 3). Such operators are predicates that rely on the set-theoretical definition
of the machine and guarded transition system semantics.

In a particular, for a given machine m the predicate Mch INV(m) holds if and
only if the invariants of m hold with regard to m’s behaviour, corresponding to
PO INV (see Table 2). Following similar principles, every machine-related POs
of the Event-B method is formalised in the theory.

Mch INV Init <pred ica te> (m : Machine(St, Ev))
direct def init ion AP (m) ⊆ Inv(m)

Mch INV One Ev <pred ica te> (m : Machine(St, Ev), e : Ev)
well−definedness e ∈ Progress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch INV <pred ica te> (m : Machine(St, Ev))
direct def init ion

Mch INV Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch INV One Ev(m, e))
. . .

Listing 3: Well-defined data type operators (behavioural semantics)
Finally, the PO operators are all gathered in a conjunctive expression within

the check Machine Consistency operator (Listing 4), which thus encode the
correctness condition for the machine. It uses Machine WellCons as WD condi-
tion. At instantiation, it is used as a theorem to ensure machine correctness.

check Machine Consistency <pred ica te> (m : Machine(St, Ev))
well−definedness Machine WellCons(m)
direct def init ion Mch INV (m) ∧ . . .

Listing 4: Operator for Event-B machine consistency

Remark. The EB4EB framework makes accessible all the features of Event-B
machines, and thus enables the formalisation and verification of the fragment of
temporal logic properties already supported by classical Event-B machines: □
using invariants and theorem clauses and ♢ using variants and convergence proof
obligations. However, it does not support the composition of these operators nor
any of the other temporal logic properties.

Instantiation of the meta-theory is used to define specific Event-B machines
(instantiation) using the Cons machine constructor. An Event-B context where
values for the type parameters St and Ev are provided.

5 Trace-Based Semantics of Event-B

Establishing the correctness of the POs provided in the EB4EB framework
requires modelling of Event-B trace-based semantics. We express traces in an
Event-B theory and relate them to an EB4EB machine. It becomes possible to
prove that a PO defined in EB4EB encodes correctly the property it formalises.

5.1 Semantics: traces of Event-B machines in EB4EB

A machine m consists of state variables and events describing their evolution. A
trace tr of m is a sequence of states tr = s0 7→ s1 7→ . . . 7→ sn 7→ . . . such that:
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1. the initial state s0 satisfies the after predicate (AP) of the initialisation event
2. each pair of consecutive states si, si+1 corresponds to the activation of an

event e of m, i.e.: 1) si verifies the guard, and 2) si 7→ si+1 verifies the BAP
3. if tr is finite, its final state deadlocks (i.e., system cannot progress any more)

In EB4EB, traces are encoded in a theory (Listing 5) extending EvtBTheo.
They are linked to machines. A trace is a partial function tr ∈ N 7→St such that,
for any n in the domain, tr(n) = sn is the n-th state of the trace.

THEORY EvtBTraces IMPORT EvtBTheo
TYPE PARAMETERS St ,Ev
OPERATORS

IsANextState pred i ca t e (m : Machine(St,Ev) ,s : St ,sp : St )
direct def init ion ∃e · e ∈ Progress(m) ∧ s ∈ Grd(m)[{e}] ∧ s 7→ sp ∈ BAP(m)[{e}]

IsATrace pred i ca t e (m : Machine(St,Ev) , tr : P(N × St))
direct def init ion

(tr ∈ N → St ∨ (∃n · n ∈ N ∧ tr ∈ 0..n → St ∧ tr(n) /∈ Grd(m)[Progress(m)]))∧
tr(0) ∈ AP(m)∧
(∀i, j · i ∈ dom(tr) ∧ j ∈ dom(tr) ∧ j = i + 1 ⇒ IsANextState(m, tr(i), tr(j)))

. . .
END

Listing 5: Theory of Event-B Traces
The operator IsATrace captures the relation between machines and traces. A
transition associated to an event in a trace is defined by the IsANextState oper-
ator. Considering a machine m and two states s and sp, the operator checks that
there exists an event e such that: 1) s verifies the guard of e (s ∈ Grd(m)[{e}]),
and 2) the pair s 7→ sp verifies the BAP of e (s 7→ sp ∈ BAP (m)[{e}]).

5.2 Correctness Principle

Soundness properties can be expressed with the formalisation of the semantics
using traces, in particular the correctness of the newly defined POs [36]. A generic
principle can be stated as follows.

In Listing 6, each PO [PO] is associated with a thm of Correctness of [PO]

soundness theorem in the Theo4[PO]Correctness theory. It states that the [PO]
predicate definition (see Section 7) implies the PO predicate definition expressed
on traces using the PO Spec On Traces expression. Such theorems have been
proved for each PO introduced in the EB4EB framework.

THEORY Theo4 [PO] Correc tnes s IMPORT EvtBTraces , Theo4 [PO]
TYPE PARAMETERS St, Ev
THEOREMS

t hm of Correc tness o f [PO] : ∀m, tr · m ∈ Machine(St,Ev) ∧ Machine WellCons(m)∧
IsATrace(tr ,m) ∧ . . . ∧ [PO](m,args) ⇒ PO Spec On Traces(. . .)

Listing 6: Liveness Analyses Correctness

Example: Soundness of the Invariant PO (INV). The theorem of List-
ing 7 states that for any well-constructed machine m, if the invariant PO holds
(Mch INV (m)) then for any trace tr associated to this machine (IsATrace(tr ,m)),
each state of that trace is in the invariant of the machine (tr(i) ∈ Inv(m)).

It has been proved, by induction on the indexes of the traces, using the Rodin
platform provers. This principle is applied for all the newly introduced POs, in
particular for the temporal logic properties POs introduced in this paper.
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THEORY EvtBCorrectness IMPORT EvtBTraces , EvtBPO
TYPE PARAMETERS St, Ev
THEOREMS

thm of Correc tness of Invar iant PO : ∀m, tr · m ∈ Machine(St,Ev)∧
Machine WellCons(m) ∧ IsATrace(tr ,m) ∧ Mch INV (m)

⇒ (∀i · i ∈ dom(tr) ⇒ tr(i) ∈ Inv(m))
END

Listing 7: Theorem of correction of the proof obligation

6 A Case Study: A read write machine

In the original paper [18], the authors used the read-write case study to illustrate
their approach. For comparison purposes, we use the same case study.

MACHINE RdWrMch
VARIABLES r , w
INVARIANTS

inv1−2 : r ∈ N , w ∈ N
inv3−4 : 0 ≤ w − r , w − r ≤ 3

EVENTS
INITIALISATION
THEN

act1 : r, w := 0, 0
END

read
WHERE grd1 : r < w
THEN act1 : r := r + 1
END

write
WHERE grd1 : w < r + 3
THEN act1 : w := w + 1
END

END

(a)

CONTEXT RdWr
SETS Ev
CONSTANTS rdwr , init , read , write
AXIOMS

axm1 : partition(Ev , {init}, {read}, {write})
axm2 : rdwr ∈ Machine(Z × Z,Ev)
axm3 : Event(rdwr) = Ev
axm5 : State(rdwr) = Z × Z
axm6 : Init(rdwr) = init
axm7 : Inv(rdwr) = {r 7→ w | r ∈ N ∧ w ∈ N∧

0 ≤ w − r ∧ w − r ≤ 3}
axm8 : AP(rdwr) = {0 7→ 0}
axm9 : BAP(rdwr) = {e 7→ (

(r 7→ w) 7→ (rp 7→ wp)) |
(e = read ∧ rp = r + 1 ∧ wp = w)

∨(e = write ∧ rp = r ∧ wp = w + 1)}
axm10 : Grd(rdwr) = {e 7→ (r 7→ w) |

(e = read ∧ r < w)∨
(e = write ∧ w < r + 3)}

axm11 : Progress(rdwr) = {read,write}
. . .
thm1 : check Machine Consistency(rdwr)

END

(b)

Listing 8: Read write machine in Event-B (a) and instantiation with EB4EB (b)

The system requirements are: Req1 – The reader process reads data from
the buffer; Req2 – The writer process writes data to the buffer; Req3 – The
reader and the writer share the same buffer; Req4 – The shared buffer has a
fixed size of 3; Req5 – The system does not stop when data is written and not
read; and Req6 – The reader eventually reads L, L ∈ N, pieces of data.

Listing 8.a proposes the RdWrMch Event-B machine fulfilling the above re-
quirements. The reader (resp. writer) is modelled by variable r (resp. w) cor-
responding to its position in the buffer and by event read (resp. write) that
represents the associated input/output operation and increments the pointer
(Req1 and Req2). The shared buffer is captured by interval r + 1..w (Req3).
The correct formalisation of the events, i.e. data that has not been written yet
is not read and the amount of data in the buffer does not exceed 3 (Req4), is
guaranteed by invariants inv3-4. Listing 8.b shows the context obtained when
instantiating the EvtBTheo theory (Listing 1) of the EB4EB framework. The
thm1 theorem guarantees the consistency of the RdWrMch Event-B machine.
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Missing requirements. Req5 and Req6 are not safety properties in the usual
sense and are not present in the current model. Event-B does not natively provide
explicit constructs for handling them. Additional modelling effort is necessary,
like introducing variants and new theorems and altering events.

7 Temporal logic proof rules as EB4EB POs

THEORY Theo4Liveness
IMPORT EvtBTheo
TYPE PARAMETERS Ev ,St
. . .

Listing 9: Liveness
operators Theory

To support temporal logic properties and handle
the missing requirements, we propose an Event-B ex-
tension relying on the EB4EB framework. This section
presents the formalisation of the liveness properties,
introduced in [18], that are missing in core Event-B.
For this purpose, we extend the EB4EB framework to
introduce the corresponding PO definitions. All the definitions are formalised in
the Theo4Liveness theory (see Listings 9) extending the EvtBTheo theory of
EB4EB using a set of operators, defined for each proof rule defined in [18]. Each
of these definitions is introduced below. Note that each of the following tables
contain two parts, where (a) is from [18] and (b) our corresponding formalization.

Notations. For a predicate P on states of St, we define the subset P̂ of states
satisfying the property P as P̂ = {x ∈ St | P (x)}.

7.1 Liveness properties

This section presents core definitions for expressing formal definition of liveness
properties. We first describe the basic building operators.

Machine M Leads From P1 to P2, P1 ↷ P2 (TLLeads From P1 To P2 op-
erator). For a machine M , given two state formulas P1 and P2, we state
that M leads from P1 to P2 if for every trace of M with two successor states
such that si ∈ P̂1 then si+1 ∈ P̂2. The given property of Table 3(a) is for-
mally defined by the operator TLLeads From P1 To P2 with a machine m and
two set of states P̂1 and P̂2 as parameters. Its direct definition is a predicate
BAP (m)[{e}][P̂1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P̂2 stating that for all progress
events of machine m that preserve invariant, states of P̂1 lead to P̂2.

The Sequent Rule for ↷ Associated Operator in EB4EB
TLLeads From P1 To P2 <predicate>

(m : Machine(St, Ev), P̂1 : P(St), P̂2 : P(St))
P1 ↷ P2 ≡ ∀v, v′, x· direct definition

P1(v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ P2(v
′) ∀e · e ∈ Progress(m) ⇒

BAP (m)[{e}][P̂1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P̂2

(a) (b)

Table 3: Leads from P1 to P2 encoded in EB4EB

Machine M is Convergent in P , ↓ P (TLConvergent In P operator). For a
given property P , a machine M is convergent in P if it does not allow for an in-
finite sequence of P -states (i.e. states satisfying the property P ). It is formalised
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in Table 4(a) by the predicate operator TLConvergent In P on machine m, set
of states P̂ and variant v. The operator’s WD condition ensures that the variant
is associated to each state. The operator states that, for all progress events e,
when its before-after-states s and s′ satisfy P , variant v decreases (v(s′) < v(s)).

The Sequent Rule of ↓ Associated Operator in EB4EB
TLConvergent In P <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St× Z))
well−definedness v ∈ St → Z

↓ P ≡ ∀x, v, v′· direct definition
(P (v) ∧ G(x, v) ⇒ V (v) ∈ NN)∧ ∀e · e ∈ Progress(m) ⇒ (

(P (v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ V (v′) < V (v)) v[P̂ ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ NN∧
(∀s, s′ · s ∈ Inv(m) ∧ s ∈ P̂∧

s ∈ Grd(m)[{e}] ∧ s′ ∈ BAP (m)[{e}][{s}]
⇒ v(s′) < v(s)))

(a) (b)

Table 4: Convergence in P encoded in EB4EB

Machine M is Divergent in P , ↗ P (TLDivergent In P operator). Diver-
gence property guarantees that any infinite trace of a machine M ends with an
infinite sequence of P -states. The operator TLDivergent In P of Table 5(a) is
identical to the previous convergent operator, except that the variant does not
decrease strictly (v(s′) ≤ v(s)) allowing divergent sequences of P -states.

The Sequent Rule of ↗ Associated Operator in EB4EB
TLDivergent In P <predicate>

↗ P ≡ ∀x, v, v′· (m : Machine(St, Ev), P̂ : P(St), v : P(St× Z))
(¬P (v) ∧ G(x, v) ⇒ V (v) ∈ NN) ∧ well−definedness v ∈ St → Z
(¬P (v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ direct definition

V (v′) < V (v)) ∧ TLConvergent In P (m,St \ P̂ , v)∧
(P (v) ∧ G(x, v) ∧ A(x, v, v′) ∧ V (v′) ∈ NN ⇒ ∀e · e ∈ Progress(m) ⇒ (

V (v′) ≤ V (v)) (∀s, s′ · s ∈ Inv(m) ∧ s ∈ P̂ ∧ s ∈ Grd(m)[{e}]
∧ s′ ∈ BAP (m)[{e}][{s}] ∧ v(s′) ∈ NN

⇒ v(s′) ≤ v(s)))
(a) (b)

Table 5: Divergence in P encoded in EB4EB

Machine M is Deadlock-free in P , ⟲ P (TLDeadlock Free In P operator).
The deadlock-freeness states that a trace of a machine M never reaches a P -state
where no event is enabled. It requires that, in a P -state, at least one event of
M is enabled. This property is defined in Table 6(a) and is formalised by the
operator TLDeadlock Free In P in Table 6(b).

The expression P̂ ∩ Inv(m) ⊆ Grd(m)[ Progress(m)] ensures that at least
one progress event of the Progress(m) set is enabled in a P -state satisfying the
invariant.

The Sequent Rule of ⟲ Associated Operator in EB4EB

⟲ P ≡ ∀v · P (v) ⇒
∨

i(∃x · Gi(x, v))

TLDeadlock Free In P <predicate>

(m : Machine(St, Ev), P̂ : P(St))
direct definition

P̂ ∩ Inv(m) ⊆ Grd(m)[Progress(m)]
(a) (b)

Table 6: Deadlock-freeness in P encoded in EB4EB
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7.2 Deadlock freeness ⟲ P applied to the Read-Write machine

CONTEXT RdWrDeadlockFree
EXTENDS RdWr
THEOREMS

thmDeadlockFreeInP :
TLDeadlock Free In P(rdwr ,

{r 7→ w | w ∈ Z ∧ r ∈ Z ∧ r < w})
END

Listing 10: Generation of Proof
Obligation of Deadlock Free In P

We illustrate how the operators de-
fined above work in the extended EB4EB
framework on the read write case study,
with the case of the deadlock-freeness
property ensuring requirement Req5.

A context RdWrDeadlockFree, extend-
ing the context RdWr of Listing 8 is de-
fined with a theorem, thmDeadlockFree-
InP. This theorem uses the predicate operator Deadlock Free In P, previously
formalised. Here, the P̂ parameter is composed of the pair of state variables
r 7→ w and the property P defined by w ∈ Z ∧ r ∈ Z ∧ r < w. Indeed, the
machine does not deadlock if it reads less data than it writes. Remember that
when a theorem is stated, a PO is automatically generated requiring to prove it.

7.3 Temporal operator proof rules

Section 7.1 presents a formalisation of the basic temporal operators allowing to
define liveness properties. This section is devoted to the formalisation of more
complex temporal properties, relying on the operators previously defined, like
TLGlobally, TLExistence TLUntil, TLProgress, and TLPersistence. Each of
them is defined in the same manner as the previous ones.

Invariance, □I (TLGlobally operator). In Event-B, safety properties are
commonly described as invariants. Although this property is already available
in core Event-B, it can be formalised in EB4EB as well.

Table 7(a) expresses this property using two sequents. The first one is the
inductive invariant proof rule and the second one defines, as theorems, all of the
entailed stronger invariants. The TLGlobally operator of Table 7(b) defines this
property as Inv(m) ⊆ Î; it reuses the native invariant PO of EB4EB.

The Sequent Rule of □ Associated Operator in EB4EB
⊢ init ⇒ I M ⊢ I ↷ I

M ⊢ □I

TLGlobally <predicate>

(m : Machine(St, Ev), Î : P(St))
⊢ J ⇒ I M ⊢ □J

M ⊢ □I

direct definition

Inv(m) ⊆ Î
(a) (b)

Table 7: Invariance encoded in EB4EB

Existence, □♢P (TLExistence operator). The existence temporal property
states that a property P always eventually holds for machine M . To express
existence □♢P in a machine M , we rely on convergence and deadlock-freeness.
Indeed, the machine shall be convergent on ¬P -states, i.e., sometimes ¬P does
not hold and ¬P -states are not deadlocks. The defined TLExistence predicate
operator is defined as the conjunction of the two corresponding previously defined
operators on a set P̂ and a variant v.
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The Sequent Rule of □♢ Associated Operator in EB4EB

M ⊢ ↓ ¬P M ⊢ ⟲ ¬P

M ⊢ □♢P

TLExistence <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z)
well−definedness v ∈ St → Z
direct definition

TLConvergent In P (m,St \ P̂ , v)∧
TLDeadlock Free In P (m,St \ P̂ )

(a) (b)

Table 8: Existence encoded in EB4EB

Until, □(P1 ⇒ (P1UP2)) (TLUntil operator). The Until property states that
a P1-state is always followed eventually by a P2-state. Its definition relies on
the leads-to and existence properties we have introduced. The Until property
requires two antecedents, a leads to from P1∧¬P2 to P1∨P2 in the next state and
the second is the existence of ¬P1∨P2 (see Table 9(a)). This proof rule is directly
formalises using the TLUntil operator (see Table 9(b)). It requires two properties
P1 (P̂1 set) and P2 (P̂2 set) and a variant v. It is defined as the conjunction of
the TLLeads From P1 To P2 and TLExistence predicate operators.

The Sequent Rule of □(P1 ⇒ (P1UP2) Associated Operator in EB4EB
TLUntil<predicate> (m : Machine(St, Ev),

A ≡ (P1 ∧ ¬P2) ↷ (P1 ∨ P2)
P̂1 : P(St), P̂2 : P(St), v : P(St × Z)

B ≡ □♢(¬P1 ∨ P2)
well−definedness v ∈ St → Z

M ⊢ A M ⊢ B

M ⊢ □(P1 ⇒ (P1UP2))

direct definition
Leads From P1 To P2(

m, P̂1 ∩ (St \ P̂2), P̂1 ∪ P̂2)

∧ TLExistence(m, (St \ P̂1) ∪ P̂2, v)
(a) (b)

Table 9: Until encoded in EB4EB

Progress, □(P1 ⇒ (♢P2)) (TLProgress operator). Close to the Until prop-
erty, a more general property, namely Progress can be defined. It states that
always P1-states reaches P2-states. This property does not require P1 to always
hold before reaching P2-states. To describe this property, an intermediate prop-
erty P3 holding before P2 holds is introduced. It acts as a local invariant between
P1-states and P2-states.

The Sequent Rule of □(P1 ⇒ ♢P2) Associated Operator in EB4EB
TLProgress<predicate> (m : Machine(St, Ev),

A ≡ □(P1 ∧ ¬P2 ⇒ P3) P̂1 : P(St), P̂2 : P(St), P̂3 : P(St), v : P(St × Z)
B ≡ □(P3 ⇒ (P3UP2)) well−definedness v ∈ St → Z
M ⊢ A M ⊢ B

M ⊢ □(P1 ⇒ (♢P2))

direct definition

TLGlobally(m, P̂3 ∪ P̂2 ∪ (St \ P̂1))∧
TLUntil(m, variant, P̂3, P̂2)

(a) (b)

Table 10: Progress encoded in EB4EB

The Progress proof rule of Table 10(a) has two antecedents. One states that
always P1 ∧ ¬P2 ⇒ P3 and the second uses the previously defined Until prop-
erty as □(P3 ⇒ (P3UP2)). The TLProgress predicate operator is the conjunc-
tion of the application of the two predicate operators, Leads From P1 To P2 and
TLUntil on the P̂1, P̂2 and P̂3 sets and the variant v, encoding the antecedents.



Formalising Liveness Properties in Event-B 13

Persistence, ♢□P (TLPersistence operator). Persistence is the last prop-
erty we formalise. It states that a predicate P must eventually hold forever
(♢□P ). The two antecedents of the associated proof rule, presented in Ta-
ble 11(a), state that P -states are divergent ¬P -states are deadlock-free. The
TLPersistence predicate operator is defined as a conjunctive expression of
TLDivergent In P and TLDeadlock Free In P operators with the P̂ for the
property P and the variant v as input parameters.

The Sequent Rule of ♢□ Associated Operator in EB4EB

M ⊢ ↗ P M ⊢ ⟲ ¬P

M ⊢ ♢□P

TLPersistence <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z)
well−definedness v ∈ St → Z
direct definition

TLDivergent In P (m, P̂ , variant)∧
TLDeadlock Free In P (m,St \ P̂ )

(a) (b)

Table 11: Persistence encoded in EB4EB

7.4 Existence □♢P applied to the read write machine

CONTEXT RdWrExistence
EXTENDS RdWrDeadlockFree
CONSTANTS L
AXIOMS

axm1 : L ∈ N
thmExistence : TLExistence(

rdwr , {r 7→ w | w ∈ Z ∧ r ≥ L},
{(r 7→ w) 7→ v |

v = ((L − r) + (L + 3 − w))})
END

Listing 11: Generation of Proof
Obligation of Existence

The temporal operators defined in [18]
have been successfully formalised in the
EB4EB as predicate operators used as theo-
rems to be proved for any Event-B machine.

Here, we show how Req6 (the reader
eventually reads L, L ∈ N, pieces of data)
expressed for the read write case study
is fulfilled thanks to the TLExistence op-
erator. Like for deadlock freeness in sec-
tion 7.2, we introduce a new Event-B context
RdWrExistence (see Listing 11), extending the RdWr context of Listing 8, with a
theorem stating the existence property. The existence operator is used with a set
of states {r 7→ w | w ∈ Z ∧ r ≥ L} and a variant v = ((L− r) + (L+ 3−w))}).

8 Correctness of the temporal logic properties proof rules

THEORY Theo4LivenessCorrectness
IMPORT Theo4Liveness , EvtBTraces
TYPE PARAMETERS St, Ev
. . .

Listing 12: Theory of correctness

The last step establishes the correct-
ness of our formalisation with respect
to the semantics of trace, i.e. the de-
fined proof rules actually hold on the
traces of the Event-B machines. The ver-
ification principle of Section 5.2 is set up for this purpose. A theory
Theo4LivenessCorrectness (Listing 12) provides a list of correctness theorems
for each of the defined operators. It imports the previously developed theories
related to liveness properties Theo4Liveness and Event-B traces EvtBTraces.

Below, we present the correctness theorem for the TLExistence property. All
the other theorems are formalised1 and proved using the Rodin Platform.

1 https://www.irit.fr/~Peter.Riviere/models/

https://www.irit.fr/~Peter.Riviere/models/
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Existence in P correctness theorem □♢P (TLExistence). The correct-
ness of the existence property follows the principle of Section 5.2. It is sup-
ported by the proved thm of correctness of Existence theorem stating that
a property P always eventually holds in traces of a machine m. It states that
for any well constructed (Machine WellCons(m)) and consistent (check Ma-
chine Consistency(m)) machine, and for any trace tr of this machine satisfying
the existence property TLExistence(m, P̂ , variant), then for all i there exists j
with j ≥ i where tr(j) satisfies the property P .

THEOREMS

t hm of Correc tness o f Ex i s t ence : ∀m, tr , v , P̂ · v ∈ STATE → Z∧
m ∈ Machine(STATE ,EVENT) ∧ Machine WellCons(m)∧
check Machine Consistency(m) ∧ IsATrace(m, tr) ∧ TLExistence(m, P̂ , v)

⇒ (∀i · i ∈ dom(tr) ⇒ (∃j · j ≥ i ∧ j ∈ dom(tr) ∧ tr(j) ∈ P̂ ))
. . .

Listing 13: Theorem of correctness of the operators Existence

9 Related Work

Reflexive modelling is present under various forms in formal methods. For in-
stance, the ASM-Metamodel API (AsmM) for Abstract State Machines (ASM)
has been developed to be able to handle ASM-related concepts. This leads to sev-
eral extensions, analyses and tools for ASMs [34]. This is also the case when using
Mural to modify a VDM specification [4]. Furthermore, the reflexive modelling
is also addressed with proof assistants like Coq with MetaCoq [39], Agda [32],
PVS [29], HOL [13] and Lean [12] and Event-B with EB4EB [35,36].

Correctness of the Event-B method and its modelling components has been
tackled in various previous work. A meta-level study of Event-B context struc-
ture is proposed in particular to validate the expected properties of theorem
instantiation [5]. Event-B has also been formalised as an institution in category
theory [15,14], with the aim to facilitate and enable composition of heteroge-
neous semantics and of different model specifications. Similarly, Event-B has
been embedded in Coq [10] in order to establish the correctness of refinement,
i.e. that the refinement POs entail the validity of refinement in the trace-based
semantics. Last, a form of shallow embedding of Event-B in itself has been pro-
posed and serves as the basis of a methodology for proving the correctness of
decomposition and re-composition of Event-B machines [17].

Event-B’s methodology is mainly aimed at defining and proving safety prop-
erties (that must always hold), or possible convergence. Expressing liveness prop-
erties (that must hold at some point [22]) is not as trivial, and many authors
address this issue. For Event-B, the ProB model-checker [25] handles Event-B
models and enables the expression and verification of liveness properties. Some
liveness operators have been formalised to be used in Event-B, together with their
related hypotheses [18], making it possible to express some liveness properties.
However, it is to be noted that liveness properties are not generally preserved by
refinement. To address this latter issue, additional conditions on the refinement
must be posed, leading to the definition of particular refinement strategies [19],
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which are proven to preserve liveness properties through to the concrete model.
In addition, the problem of fairness has also been studied. For instance, the work
of [28] proposes to check fairness of Event-B machines in TLA (on a per-machine
basis). Refinement strategies have been defined as well to ensure that fairness
and liveness properties are preserved [42].

Our proposed approach is based on the reflexive modelling of Event-B on
itself, which is fully integrated into Rodin development environment using the
Theory Plugin [9]. Our framework is fully formalised in Event-B and relies solely
on FOL and set theory, similar to other approach like MetaCoq [39] with de-
pendent type. Such characteristic makes it possible to export models expressed
using the framework to any other formalism based on FOL and set theory while
preserving the state-transition semantics of the model. Therefore, the issue of
the translation of the universe and the semantics’ preservation are not related
to our work due to the reflexive modelling.

10 Conclusion

This paper has presented a formalisation of liveness properties for Event-B mod-
els by encoding LTL temporal logic expressions on the Rodin platform using the
reflexive EB4EB framework. LTL logic expressions of properties are formalised
within the defined framework. Automatic generation of proof obligations related
to the expressed properties and the soundness of the defined proof rules using
a trace based semantics have been addressed as well. The proposed approach
relies on the definition of algebraic theories offering the capability to define new
operators. The read write machine case study was borrowed from [18] to illus-
trate our approach. Other case studies have been developed as well (Peterson
algorithm [37] and behavioural analyses in human computer interaction [27]).

The proposed framework supports non-intrusive analysis for Event-B mod-
els, allowing liveness properties to be expressed and verified on any size Event-B
formal model and at any refinement level without resorting to any other formal
methods. Since our framework allows checking temporal properties at any re-
finement level, it avoids dealing with the preservation of temporal properties by
refinement. Furthermore, the proof process has been enhanced with relevant and
proven rewrite rules, which have been incorporated into Rodin tactics, resulting
in a high level of proof automation. All the developments illustrated in this pa-
per have been fully formalised and proved using the Rodin platform. They can
be accessed on https://www.irit.fr/~Peter.Riviere/models/

This work leads to several perspectives. First, we plan to study the capability
to allow compositional definitions of LTL properties relying on the defined basic
operators. In addition, the proposed approach makes it possible to define other
Event-B model analyses or domain specific theories shared by many Event-B
models. Last, we believe that our approach can be scaled up to other state
based methods provided that a reflexive meta-model is available.

https://www.irit.fr/~Peter.Riviere/models/
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