P Rivière

N K Singh
email: nsingh@enseeiht.fr

Y Aït-Ameur

G Dupont

Formalising Liveness Properties in Event-B with the Reflexive EB4EB Framework

Keywords: Proof and state-based methods, Event-B and Theories, Metatheory, Reflexive EB4EB framework, Temporal logic, Liveness properties, Traces and soundness

 allowing for manipulation of the core concepts of Event-B, we propose to formalise and operationalise the automatic generation of proof obligations associated to liveness properties expressed in LTL. Furthermore, relying on trace-based semantics, we demonstrate the soundness of this formalisation, and provide a set of intermediate and generic theorems to increase the rate of proof automation for these properties. Finally, a case study is proposed to demonstrate the use of the defined operators for expressing and proving liveness properties.

Introduction

Event-B is a formal method based on explicit state expression, refinement and formal proof. It enables the design of complex systems using correct by construction. This method has been used successfully in the design of many complex systems in various engineering areas such as aeronautics [START_REF] Su | Aircraft landing gear system: approaches with Event-B to the modeling of an industrial system[END_REF], railway systems [START_REF] Butler | Formal modelling techniques for efficient development of railway control products[END_REF][START_REF] Butler | The first twenty-five years of industrial use of the b-method[END_REF], health and medicine [START_REF] Singh | Using Event-B for Critical Device Software Systems[END_REF], etc. In particular, it has shown its effectiveness in establishing properties related to system functionalities, safety, security, reachability and compliance with some temporal requirements, and so on.

Event-B models are machines that express state-transition systems using set theory and first-order logic (FOL). A mechanism of proof by induction enables the demonstration of inductive properties based on the preservation of properties at initialization and by each transition (event). Refinement, on the other hand, is defined by a weak simulation relation in which proof obligations guarantee the preservation of behaviours between levels of abstraction. The Rodin platform supports the development of Event-B models. It offers an environment for model editing, automatic and interactive proofs, animation, model checking, etc. However, Event-B, like all formal methods, lacks some capabilities. Event-B supports the verification of a fragment of temporal logic properties: □ using invariants and theorem clauses and ♢ using variants and convergence proof obligations. There is a lack of composition of temporal logic operators, as well as the ability to express and reason about liveness properties. To remedy this absence, two solutions are possible in general. The first solution consists in embedding an Event-B model in another formal method offering the possibility of expressing and reasoning about liveness properties such as TLA + [START_REF] Lamport | Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers[END_REF], NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource tool for symbolic model checking[END_REF], PRISM [START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF], PAT [START_REF] Sun | Pat: Towards flexible verification under fairness[END_REF], Spin [START_REF] Holzmann | Spin Model Checker, the: Primer and Reference Manual[END_REF], Uppaal [START_REF] Behrmann | A Tutorial on Uppaal[END_REF], ProB [START_REF] Leuschel | ProB: an automated analysis toolset for the B method[END_REF] etc. However, tracing the verification results on the source Event-B models is difficult and care must be taken to guarantee the correctness of this embedding. This approach is very popular and is followed by many authors who use other formal methods allowing to express and verify this type of property without worrying about the correctness of the transformation. However, there exist several approaches to ensuring the transformation's correctness [START_REF] Leroy | Com-pCert -A formally verified optimizing compiler[END_REF][START_REF] Halchin | Handling B models in the PERF integrated verification framework: Formalised and certified embedding[END_REF][START_REF] Pnueli | Translation validation[END_REF][START_REF] Bodeveix | Towards a verified transformation from AADL to the formal component-based language FIACRE[END_REF]. The second solution consists in extending the Event-B method to allow expressing and reasoning about liveness properties. This second approach requires the expression of the semantics and the proof system of the temporal logic in Event-B, as well as establishing the soundness of this extension.

Based on the second approach, JR. Abrial and TS. Hoang [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF] proposed an axiomatisation of LTL temporal logic for Event-B in their article entitled "Reasoning about liveness properties in Event-B". This work has defined a set of proof obligations allowing to establish temporal properties such as reachability, progress, persistence or until. However, these proof obligations are mathematically formalised in that paper but are neither implemented nor generated automatically. They must be explicitly described in Event-B by the developer for each model, thus leading to formalization errors. Moreover, their proofs are cumbersome and require too much manual effort to proving them.

Relying on the reflexive EB4EB framework [START_REF] Riviere | EB4EB: A Framework for Reflexive Event-B[END_REF][START_REF] Riviere | Reflexive Event-B: Semantics and Correctness the EB4EB Framework[END_REF][START_REF] Riviere | Standalone Event-B models analysis relying on the EB4EB meta-theory[END_REF] defined in Event-B, we propose to formalise and operationalise the automatic generation of proof obligations associated with liveness properties expressed in LTL temporal logic. We define an extension of EB4EB including a set of operators expressing these properties on traces. In addition, we demonstrate the soundness of these properties on model traces. Finally, a set of intermediate and generic theorems are also proposed to increase the rate of proof automation. Note that our proposed approach is non-intrusive (self-contained) and does not require the use of any other formal techniques or tools; it is fully formalised in Event-B and mechanised on the Rodin platform.

This paper is organised as follows. Section 2 describes the Event-B modelling language and its Theory plugin extension. Section 3 recalls linear temporal logic, and the EB4EB framework is described in Section 4. Section 5 presents the tracebased semantics of Event-B, and its soundness properties. Section 6 describes a case study that will be used as a running example to show how to use defined LTL operators. Section 7 presents the temporal logic proof rules encoded as EB4EB proof obligations. Their correctness is discussed in Section 8. Section 9 summarises related work, and Section 10 concludes the paper.

Event-B

Event-B [START_REF] Abrial | Modeling in Event-B: System and software engineering[END_REF] is a state-based, correct-by-construction formal method, where systems are modelled with a set of events representing state changes, using firstorder logic (FOL) and set theory. Contexts and machines (Tables 1.a and 1.b). Contexts (Table 1.a) encompass the model's static part: carrier sets s and constants c, as well as their properties, through axioms A and theorems T ctx . Machines (Table 1.b) describe the model's behaviour, using a set of events evt, each of which may be guarded G and/or parameterized by α. An event models the evolution of a set of variables x using a Before-After Predicate (BAP) that links the before (x) and after (x ′) value of the variables. Safety properties are encoded using invariants I(x) and theorems T mch (x), and variants V (x) may be defined to demonstrate the machine's convergence. Model consistency is established by discharging a number of automatically generated POs (Table 2).

Refinements. One strength of Event-B is its refinement operation, which is used to transform an abstract model into a more concrete one, adding information (refined states) and behavioural (refined events) details gradually, while This extension is central for embedding, as data types, concepts that are unavailable in core Event-B, similar to Coq [START_REF] Bertot | Interactive Theorem Proving and Program Development -Coq'Art: The Calculus of Inductive Constructions[END_REF], Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL -A Proof Assistant for Higher-Order Logic[END_REF] or PVS [START_REF] Owre | PVS: A prototype verification system[END_REF]. Many theories have been defined, for supporting real numbers, lists, differential equations and so on. Well-definedness (WD). Beyond machine-related POs, one key aspect of model consistency is the well-definedness (WD) of the expressions involved in it. This notion supplements the one of syntactical correctness with the idea of a formula being "meaningful", i.e. it can always be safely evaluated (e.g., dividing by a constant that is provably non 0). Each formula of a model is associated to a WD PO, usually consisting in checking that operators are correctly used and combined. Once proven, WDs are added to set of hypotheses of other POs.

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts) (2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ T mch (x) (For machines) (3) Initialisation (Init) A(s, c) ∧ BAP(x ′)⇒ I(x ′) (4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x ′) ⇒ I(x ′) (5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x ′ • BAP(x, α, x ′) (6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x ′) ⇒ V (x ′) < V (x)
Note that theories allow designers to provide custom WD conditions for partially defined operators in order to precisely characterise their proper use. The Rodin Platform. Rodin is an open source integrated development platform for designing, editing and proving Event-B models. It also supports model checking and animation with ProB, as well as code generation. Being based on Eclipse, it also allows the definition of plug-ins, including theory extensions. Many provers for first-order logic as well as SMT solvers are plugged to Rodin for helping the proof process.

Linear Temporal Logic

This section recalls the principles of linear temporal logic (LTL) following the definition of Manna and Pnueli [START_REF] Manna | Adequate proof principles for invariance and liveness properties of concurrent programs[END_REF]. Linear temporal logic is defined syntactically as an extension of propositional logic. A valid LTL formula consists in literals (usually, predicates on the state of the system), the usual logical connectors (∧, ∨, ¬ and ⇒) as well as modal operators □, ♢ and U. The semantics of LTL is expressed in terms of traces of a system. Given a trace tr = s 0 → s 1 → . . ., then tr i (i ∈ N) denotes the suffix trace of tr, starting from s i , tr i = s i → s i+1 → . . .

A state that satisfies a predicate P is called a P -state. LTL semantics are given with the following rules:

1. For any state predicate P , tr ⊨ P iff s 0 is a P-state.

2. tr ⊨ ϕ 1 ∧ ϕ 2 iff tr ⊨ ϕ 1 and tr ⊨ ϕ 2 3. tr ⊨ ϕ 1 ∨ ϕ 2 iff tr ⊨ ϕ 1 or tr ⊨ ϕ 2 4. tr ⊨ ¬ϕ iff not tr ⊨ ϕ 5. tr ⊨ ϕ 1 ⇒ ϕ 2 iff not tr ⊨ ϕ 1 or tr ⊨ ϕ 2 6
. tr ⊨ □ϕ iff for all k, tr k ⊨ ϕ 7. tr ⊨ ♢ϕ iff there exists a i such that tr i ⊨ ϕ 8. tr ⊨ ϕ 1 Uϕ 2 iff there exists a i such that tr i ⊨ ϕ 2 , and for all j < i, tr j ⊨ ϕ 1 A machine M satisfies a property ϕ, denoted M ⊨ ϕ if and only if for all traces tr of M , that trace satisfies ϕ (tr ⊨ ϕ).

The EB4EB Framework

The EB4EB framework [START_REF] Riviere | EB4EB: A Framework for Reflexive Event-B[END_REF][START_REF] Riviere | Reflexive Event-B: Semantics and Correctness the EB4EB Framework[END_REF] proposes to extend the reasoning capabilities of Event-B by enabling the access of Event-B components as first-class citizens within Event-B models (reflection), thereby making it possible to express new reasoning mechanism at the meta-level. Machine structure. Event-B is formalised in an Event-B theory. A machine is represented using the data-type Machine (see Listing 1) parameterised by generic types with event labels (Ev) and states (St). Constructor Cons machine gathers the components of a machine, such as Event, State, Grd, Inv, BAP, etc.

Well-Construction. A machine built using Cons machine may not be consistent, despite being syntactically correct. Thus, additional operators are defined to encode the well-construction of a machine, i.e. the consistency of its components with regard to each others (Listing 2). For instance, Event WellCons ensures that events are partitioned between initialisation and progress events.

Machine Proof Obligations. For any machine expressed in the framework, its associated proof obligations are provided under the form of operators (see Listing 3). Such operators are predicates that rely on the set-theoretical definition of the machine and guarded transition system semantics.

In a particular, for a given machine m the predicate Mch INV(m) holds if and only if the invariants of m hold with regard to m's behaviour, corresponding to PO INV (see Table 2). Following similar principles, every machine-related POs of the Event-B method is formalised in the theory. Listing 4: Operator for Event-B machine consistency Remark. The EB4EB framework makes accessible all the features of Event-B machines, and thus enables the formalisation and verification of the fragment of temporal logic properties already supported by classical Event-B machines: □ using invariants and theorem clauses and ♢ using variants and convergence proof obligations. However, it does not support the composition of these operators nor any of the other temporal logic properties.

Instantiation of the meta-theory is used to define specific Event-B machines (instantiation) using the Cons machine constructor. An Event-B context where values for the type parameters St and Ev are provided.

Trace-Based Semantics of Event-B

Establishing the correctness of the POs provided in the EB4EB framework requires modelling of Event-B trace-based semantics. We express traces in an Event-B theory and relate them to an EB4EB machine. It becomes possible to prove that a PO defined in EB4EB encodes correctly the property it formalises.

Semantics: traces of Event-B machines in EB4EB

A machine m consists of state variables and events describing their evolution. A trace tr of m is a sequence of states tr = s 0 → s 1 → . . . → s n → . . . such that:

1. the initial state s 0 satisfies the after predicate (AP) of the initialisation event 2. each pair of consecutive states s i , s i+1 corresponds to the activation of an event e of m, i.e.: 1) s i verifies the guard, and 2) s i → s i+1 verifies the BAP 3. if tr is finite, its final state deadlocks (i.e., system cannot progress any more)

In EB4EB, traces are encoded in a theory (Listing 5) extending EvtBTheo. They are linked to machines. A trace is a partial function tr ∈ N → St such that, for any n in the domain, tr(n) = s n is the n-th state of the trace.

P(N × St)) d i r e c t d e f i n i t i o n (tr ∈ N → St ∨ (∃n • n ∈ N ∧ tr ∈ 0..n → St ∧ tr (n) / ∈ Grd(m)[Progress(m)]))∧ tr (0) ∈ AP(m)∧ (∀i, j • i ∈ dom(tr) ∧ j ∈ dom(tr) ∧ j = i + 1 ⇒ IsANextState(m, tr (i), tr (j))) . . . END

Listing 5: Theory of Event-B Traces

The operator IsATrace captures the relation between machines and traces. A transition associated to an event in a trace is defined by the IsANextState operator. Considering a machine m and two states s and sp, the operator checks that there exists an event e such that: 1) s verifies the guard of e (s ∈ Grd(m)[{e}]), and 2) the pair s → sp verifies the BAP of e (s → sp ∈ BAP (m)[{e}]).

Correctness Principle

Soundness properties can be expressed with the formalisation of the semantics using traces, in particular the correctness of the newly defined POs [START_REF] Riviere | Reflexive Event-B: Semantics and Correctness the EB4EB Framework[END_REF]. A generic principle can be stated as follows.

In It has been proved, by induction on the indexes of the traces, using the Rodin platform provers. This principle is applied for all the newly introduced POs, in particular for the temporal logic properties POs introduced in this paper. In the original paper [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF], the authors used the read-write case study to illustrate their approach. For comparison purposes, we use the same case study. The system requirements are: Req1 -The reader process reads data from the buffer; Req2 -The writer process writes data to the buffer; Req3 -The reader and the writer share the same buffer; Req4 -The shared buffer has a fixed size of 3; Req5 -The system does not stop when data is written and not read; and Req6 -The reader eventually reads L, L ∈ N, pieces of data.

MACHINE RdW rM ch VARIABLES r , w INVARIANTS inv1-2 : r ∈ N , w ∈ N inv3-4 : 0 ≤ w -r , w -r ≤ 3 EVENTS INITIALISATION THEN a c
) = Z × Z axm6 : Init(rdwr) = init axm7 : Inv (rdwr) = {r → w | r ∈ N ∧ w ∈ N∧ 0 ≤ w -r ∧ w -r ≤ 3} axm8 : AP(rdwr) = {0 → 0} axm9 : BAP(rdwr) = {e → ((r → w) → (rp → wp)) | (e = read ∧ rp = r + 1 ∧ wp = w) ∨(e =
Listing 8.a proposes the RdWrMch Event-B machine fulfilling the above requirements. The reader (resp. writer) is modelled by variable r (resp. w) corresponding to its position in the buffer and by event read (resp. write) that represents the associated input/output operation and increments the pointer (Req1 and Req2). The shared buffer is captured by interval r + 1..w (Req3). The correct formalisation of the events, i.e. data that has not been written yet is not read and the amount of data in the buffer does not exceed 3 (Req4), is guaranteed by invariants inv3-4. Listing 8.b shows the context obtained when instantiating the EvtBTheo theory (Listing 1) of the EB4EB framework. The thm1 theorem guarantees the consistency of the RdWrMch Event-B machine.

Missing requirements. Req5 and Req6 are not safety properties in the usual sense and are not present in the current model. Event-B does not natively provide explicit constructs for handling them. Additional modelling effort is necessary, like introducing variants and new theorems and altering events.

7 Temporal logic proof rules as EB4EB POs THEORY T heo4Liveness IMPORT EvtBT heo TYPE PARAMETERS Ev , St . . .

Listing 9: Liveness operators Theory

To support temporal logic properties and handle the missing requirements, we propose an Event-B extension relying on the EB4EB framework. This section presents the formalisation of the liveness properties, introduced in [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF], that are missing in core Event-B. For this purpose, we extend the EB4EB framework to introduce the corresponding PO definitions. All the definitions are formalised in the Theo4Liveness theory (see Listings 9) extending the EvtBTheo theory of EB4EB using a set of operators, defined for each proof rule defined in [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF]. Each of these definitions is introduced below. Note that each of the following tables contain two parts, where (a) is from [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF] and (b) our corresponding formalization.

Notations. For a predicate P on states of St, we define the subset P of states satisfying the property P as P = {x ∈ St | P (x)}.

Liveness properties

This section presents core definitions for expressing formal definition of liveness properties. We first describe the basic building operators.

Machine M Leads From P 1 to P 2 , P 1 ↷ P 2 (TLLeads From P1 To P2 operator). For a machine M , given two state formulas P 1 and P 2 , we state that M leads from P 1 to P 2 if for every trace of M with two successor states such that s i ∈ P1 then s i+1 ∈ P2 . The given property of Table 3(a) is formally defined by the operator TLLeads From P1 To P2 with a machine m and two set of states P1 and P2 as parameters. Its direct definition is a predicate BAP (m)[{e}][P1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P2 stating that for all progress events of machine m that preserve invariant, states of P1 lead to P2 .

The Sequent Rule for ↷ Associated Operator in EB4EB TLLeads From P1 To P2 <predicate> (m : M achine(St, Ev), P1 : P(St), P2 : 4(a) by the predicate operator TLConvergent In P on machine m, set of states P and variant v. The operator's WD condition ensures that the variant is associated to each state. The operator states that, for all progress events e, when its before-after-states s and s ′ satisfy P , variant v decreases (v(s ′) < v(s)).

P(St)) P1 ↷ P2 ≡ ∀v, v ′ , x• direct definition P1(v) ∧ G(x, v) ∧ A(x, v, v ′) ⇒ P2(v ′) ∀e • e ∈ P rogress(m) ⇒ BAP (m)[{e}][P1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P2 (a) (b)
The Sequent Rule of ↓ Associated Operator in EB4EB TLConvergent In P <predicate> (m : M achine(St, Ev), P :

P(St), v : P(St × Z)) well-definedness v ∈ St → Z ↓ P ≡ ∀x, v, v ′ • direct definition (P (v) ∧ G(x, v) ⇒ V (v) ∈ N N)∧ ∀e • e ∈ P rogress(m) ⇒ ((P (v) ∧ G(x, v) ∧ A(x, v, v ′) ⇒ V (v ′) < V (v)) v[P ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ N N∧ (∀s, s ′ • s ∈ Inv(m) ∧ s ∈ P ∧ s ∈ Grd(m)[{e}] ∧ s ′ ∈ BAP (m)[{e}][{s}] ⇒ v(s ′) < v(s))) (a) (b)
P(St), v : P(St × Z)) (¬P (v) ∧ G(x, v) ⇒ V (v) ∈ N N) ∧ well-definedness v ∈ St → Z (¬P (v) ∧ G(x, v) ∧ A(x, v, v ′) ⇒ direct definition V (v ′) < V (v)) ∧ T LConvergent In P (m, St \ P , v)∧ (P (v) ∧ G(x, v) ∧ A(x, v, v ′) ∧ V (v ′) ∈ N N ⇒ ∀e • e ∈ P rogress(m) ⇒ (V (v ′) ≤ V (v)) (∀s, s ′ • s ∈ Inv(m) ∧ s ∈ P ∧ s ∈ Grd(m)[{e}] ∧ s ′ ∈ BAP (m)[{e}][{s}] ∧ v(s ′) ∈ N N ⇒ v(s ′) ≤ v(s))) (a) (b)
⟲ P ≡ ∀v • P (v) ⇒ i (∃x • Gi(x, v))
TLDeadlock Free In P <predicate> (m : M achine(St, Ev), P : We illustrate how the operators defined above work in the extended EB4EB framework on the read write case study, with the case of the deadlock-freeness property ensuring requirement Req5.

P(St)) direct definition P ∩ Inv(m) ⊆ Grd(m)[P rogress(m)] (a) (b)
A context RdWrDeadlockFree, extending the context RdWr of Listing 8 is defined with a theorem, thmDeadlockFree-InP. This theorem uses the predicate operator Deadlock Free In P, previously formalised. Here, the P parameter is composed of the pair of state variables r → w and the property P defined by w ∈ Z ∧ r ∈ Z ∧ r < w. Indeed, the machine does not deadlock if it reads less data than it writes. Remember that when a theorem is stated, a PO is automatically generated requiring to prove it.

Temporal operator proof rules

Section 7.1 presents a formalisation of the basic temporal operators allowing to define liveness properties. This section is devoted to the formalisation of more complex temporal properties, relying on the operators previously defined, like TLGlobally, TLExistence TLUntil, TLProgress, and TLPersistence. Each of them is defined in the same manner as the previous ones.

Invariance, □I (TLGlobally operator). In Event-B, safety properties are commonly described as invariants. Although this property is already available in core Event-B, it can be formalised in EB4EB as well.

Table 7(a) expresses this property using two sequents. The first one is the inductive invariant proof rule and the second one defines, as theorems, all of the entailed stronger invariants. The TLGlobally operator of Table 7(b) defines this property as Inv(m) ⊆ Î; it reuses the native invariant PO of EB4EB.

The Sequent Rule of □ Associated Operator in EB4EB ⊢ init ⇒ I M ⊢ I ↷ I M ⊢ □I TLGlobally <predicate> (m : M achine(St, Ev), Î : P(St)) ⊢ J ⇒ I M ⊢ □J M ⊢ □I direct definition Inv(m) ⊆ Î (a) (b)
Table 7: Invariance encoded in EB4EB

Existence, □♢P (TLExistence operator). The existence temporal property states that a property P always eventually holds for machine M . To express existence □♢P in a machine M , we rely on convergence and deadlock-freeness. Indeed, the machine shall be convergent on ¬P -states, i.e., sometimes ¬P does not hold and ¬P -states are not deadlocks. The defined TLExistence predicate operator is defined as the conjunction of the two corresponding previously defined operators on a set P and a variant v.

The Sequent Rule of □♢ Associated Operator in EB4EB

M ⊢ ↓ ¬P M ⊢ ⟲ ¬P M ⊢ □♢P
TLExistence <predicate> (m : M achine(St, Ev), P :

P(St), v : P(St × Z) well-definedness v ∈ St → Z direct definition T LConvergent In P (m, St \ P , v)∧ T LDeadlock F ree In P (m, St \ P) (a) (b)
The Sequent Rule of □(P1 ⇒ (P1U P2) Associated Operator in EB4EB TLUntil<predicate> (m : M achine(St, Ev), A ≡ (P1 ∧ ¬P2) ↷ (P1 ∨ P2) P1 : P(St), P2 : P(St), v : P(St × Z) B ≡ □♢(¬P1 ∨ P2) well-definedness v ∈ St → Z M ⊢ A M ⊢ B M ⊢ □(P1 ⇒ (P1U P2)) direct definition Leads F rom P 1 T o P 2(m, P1 ∩ (St \ P2), P1 ∪ P2) ∧ T LExistence(m, (St \ P1) ∪ P2, v) (a) (b)
P(St × Z) B ≡ □(P3 ⇒ (P3U P2)) well-definedness v ∈ St → Z M ⊢ A M ⊢ B M ⊢ □(P1 ⇒ (♢P2)) direct definition T LGlobally(m, P3 ∪ P2 ∪ (St \ P1))∧ T LU ntil(m, variant, P3, P2) (a) (b)
Table 10: Progress encoded in EB4EB

The P rogress proof rule of Table 10(a) has two antecedents. One states that always P 1 ∧ ¬P 2 ⇒ P 3 and the second uses the previously defined U ntil property as □(P 3 ⇒ (P 3 UP 2)). The TLProgress predicate operator is the conjunction of the application of the two predicate operators, Leads From P1 To P2 and TLUntil on the P1 , P2 and P3 sets and the variant v, encoding the antecedents.

Persistence, ♢□P (TLPersistence operator). Persistence is the last property we formalise. It states that a predicate P must eventually hold forever (♢□P). The two antecedents of the associated proof rule, presented in Table 11(a), state that P -states are divergent ¬P -states are deadlock-free. The TLPersistence predicate operator is defined as a conjunctive expression of TLDivergent In P and TLDeadlock Free In P operators with the P for the property P and the variant v as input parameters.

| w ∈ Z ∧ r ≥ L}, {(r → w) → v | v = ((L -r) + (L + 3 -w))}) END

Listing 11: Generation of Proof Obligation of Existence

The temporal operators defined in [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF] have been successfully formalised in the EB4EB as predicate operators used as theorems to be proved for any Event-B machine.

Here, we show how Req6 (the reader eventually reads L, L ∈ N, pieces of data) expressed for the read write case study is fulfilled thanks to the TLExistence operator. Like for deadlock freeness in section 7.

Listing 12: Theory of correctness

The last step establishes the correctness of our formalisation with respect to the semantics of trace, i.e. the defined proof rules actually hold on the traces of the Event-B machines. The verification principle of Section 5.2 is set up for this purpose. A theory Theo4LivenessCorrectness (Listing 12) provides a list of correctness theorems for each of the defined operators. It imports the previously developed theories related to liveness properties Theo4Liveness and Event-B traces EvtBTraces.

Below, we present the correctness theorem for the TLExistence property. All the other theorems are formalised1 and proved using the Rodin Platform.

Existence in P correctness theorem □♢P (TLExistence). The correctness of the existence property follows the principle of Section 5.2. It is supported by the proved thm of correctness of Existence theorem stating that a property P always eventually holds in traces of a machine m. It states that for any well constructed (M achine W ellCons(m)) and consistent (check M achine Consistency(m)) machine, and for any trace tr of this machine satisfying the existence property T LExistence(m, P , variant), then for all i there exists j with j ≥ i where tr(j) satisfies the property P .

Related Work

Reflexive modelling is present under various forms in formal methods. For instance, the ASM-Metamodel API (AsmM) for Abstract State Machines (ASM) has been developed to be able to handle ASM-related concepts. This leads to several extensions, analyses and tools for ASMs [START_REF] Riccobene | Towards an interchange language for ASMs[END_REF]. This is also the case when using Mural to modify a VDM specification [START_REF] Bicarregui | Reasoning about VDM developments using the VDM support tool in MURAL[END_REF]. Furthermore, the reflexive modelling is also addressed with proof assistants like Coq with MetaCoq [START_REF] Sozeau | The MetaCoq project[END_REF], Agda [START_REF] Van Der | Reflection in Agda[END_REF], PVS [START_REF] Mitra | PVS strategies for proving abstraction properties of automata[END_REF], HOL [START_REF] Fallenstein | Proof-producing reflection for HOL -With an application to model polymorphism[END_REF] and Lean [START_REF] Ebner | A metaprogramming framework for formal verification[END_REF] and Event-B with EB4EB [START_REF] Riviere | EB4EB: A Framework for Reflexive Event-B[END_REF][START_REF] Riviere | Reflexive Event-B: Semantics and Correctness the EB4EB Framework[END_REF].

Correctness of the Event-B method and its modelling components has been tackled in various previous work. A meta-level study of Event-B context structure is proposed in particular to validate the expected properties of theorem instantiation [START_REF] Bodeveix | Event-B Formalization of Event-B Contexts[END_REF]. Event-B has also been formalised as an institution in category theory [START_REF] Farrell | Building specifications in the Event-B institution[END_REF][START_REF] Farrell | An institution for Event-B[END_REF], with the aim to facilitate and enable composition of heterogeneous semantics and of different model specifications. Similarly, Event-B has been embedded in Coq [START_REF] Castéran | An Explicit Semantics for Event-B Refinements[END_REF] in order to establish the correctness of refinement, i.e. that the refinement POs entail the validity of refinement in the trace-based semantics. Last, a form of shallow embedding of Event-B in itself has been proposed and serves as the basis of a methodology for proving the correctness of decomposition and re-composition of Event-B machines [START_REF] Hallerstede | Refinement of decomposed models by interface instantiation[END_REF].

Event-B's methodology is mainly aimed at defining and proving safety properties (that must always hold), or possible convergence. Expressing liveness properties (that must hold at some point [START_REF] Lamport | Proving the correctness of multiprocess programs[END_REF]) is not as trivial, and many authors address this issue. For Event-B, the ProB model-checker [START_REF] Leuschel | ProB: an automated analysis toolset for the B method[END_REF] handles Event-B models and enables the expression and verification of liveness properties. Some liveness operators have been formalised to be used in Event-B, together with their related hypotheses [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF], making it possible to express some liveness properties. However, it is to be noted that liveness properties are not generally preserved by refinement. To address this latter issue, additional conditions on the refinement must be posed, leading to the definition of particular refinement strategies [START_REF] Hoang | Foundations for using linear temporal logic in Event-B refinement[END_REF], which are proven to preserve liveness properties through to the concrete model. In addition, the problem of fairness has also been studied. For instance, the work of [START_REF] Méry | Towards an integrated formal method for verification of liveness properties in distributed systems: with application to population protocols[END_REF] proposes to check fairness of Event-B machines in TLA (on a per-machine basis). Refinement strategies have been defined as well to ensure that fairness and liveness properties are preserved [START_REF] Zhu | A fairness-based refinement strategy to transform liveness properties in Event-B models[END_REF].

Our proposed approach is based on the reflexive modelling of Event-B on itself, which is fully integrated into Rodin development environment using the Theory Plugin [START_REF] Butler | Practical theory extension in Event-B. In: Theories of Programming and Formal Methods -Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday[END_REF]. Our framework is fully formalised in Event-B and relies solely on FOL and set theory, similar to other approach like MetaCoq [START_REF] Sozeau | The MetaCoq project[END_REF] with dependent type. Such characteristic makes it possible to export models expressed using the framework to any other formalism based on FOL and set theory while preserving the state-transition semantics of the model. Therefore, the issue of the translation of the universe and the semantics' preservation are not related to our work due to the reflexive modelling.

Conclusion

This paper has presented a formalisation of liveness properties for Event-B models by encoding LTL temporal logic expressions on the Rodin platform using the reflexive EB4EB framework. LTL logic expressions of properties are formalised within the defined framework. Automatic generation of proof obligations related to the expressed properties and the soundness of the defined proof rules using a trace based semantics have been addressed as well. The proposed approach relies on the definition of algebraic theories offering the capability to define new operators. The read write machine case study was borrowed from [START_REF] Hoang | Reasoning about liveness properties in event-b[END_REF] to illustrate our approach. Other case studies have been developed as well (Peterson algorithm [START_REF] Riviere | Standalone Event-B models analysis relying on the EB4EB meta-theory[END_REF] and behavioural analyses in human computer interaction [START_REF] Mendil | Nonintrusive annotation-based domain-specific analysis to certify event-b models behaviours[END_REF]).

The proposed framework supports non-intrusive analysis for Event-B models, allowing liveness properties to be expressed and verified on any size Event-B formal model and at any refinement level without resorting to any other formal methods. Since our framework allows checking temporal properties at any refinement level, it avoids dealing with the preservation of temporal properties by refinement. Furthermore, the proof process has been enhanced with relevant and proven rewrite rules, which have been incorporated into Rodin tactics, resulting in a high level of proof automation. All the developments illustrated in this paper have been fully formalised and proved using the Rodin platform. They can be accessed on https://www.irit.fr/ ~Peter.Riviere/models/ This work leads to several perspectives. First, we plan to study the capability to allow compositional definitions of LTL properties relying on the defined basic operators. In addition, the proposed approach makes it possible to define other Event-B model analyses or domain specific theories shared by many Event-B models. Last, we believe that our approach can be scaled up to other state based methods provided that a reflexive meta-model is available.

THEORYListing 1 :

 1 EvtBT heo TYPE PARAMETERS St, Ev DATATYPES Machine (St , Ev) CONSTRUCTORS Cons machine(Event : P(Ev), State : P(St), Init : Ev,P rogress : P(Ev) V ariant : P(St × Z), AP : P(St), BAP : P(Ev × (St × St)), Grd : P(Ev × St), Inv : P(St) , . . .) Machine Data type Event WellCons <p r e d i c a t e > (m : M achine(St, Ev)) d i r e c t d e f i n i t i o n partition(Event(m), {Init(m)}, P rogress(m)) . . . Machine WellCons <p r e d i c a t e > (m : M achine(St, Ev)) d i r e c t d e f i n i t i o n Event W ellCons(m) ∧ . . .

Listing 2 :

 2 Operators to check well-defined data type (static semantics)

 Mch INV Init <p r e d i c a t e > (m : M achine(St, Ev)) d i r e c t d e f i n i t i o n AP (m) ⊆ Inv(m) Mch INV One Ev <p r e d i c a t e > (m : M achine(St, Ev), e : Ev) well-definedness e ∈ P rogress(m) d i r e c t d e f i n i t i o n BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m) Mch INV <p r e d i c a t e > (m : M achine(St, Ev)) d i r e c t d e f i n i t i o n M ch IN V Init(m) ∧ (∀e • e ∈ P rogress(m) ⇒ M ch IN V One Ev(m, e)) . . . Listing 3: Well-defined data type operators (behavioural semantics) Finally, the PO operators are all gathered in a conjunctive expression within the check Machine Consistency operator (Listing 4), which thus encode the correctness condition for the machine. It uses Machine WellCons as WD condition. At instantiation, it is used as a theorem to ensure machine correctness. check Machine Consistency <p r e d i c a t e > (m : M achine(St, Ev)) well-definedness M achine W ellCons(m) d i r e c t d e f i n i t i o n M ch IN V (m) ∧ . . .

Listing 6 :

 6 Listing 6, each PO [PO] is associated with a thm of Correctness of [PO] soundness theorem in the Theo4[PO]Correctness theory. It states that the [PO] predicate definition (see Section 7) implies the PO predicate definition expressed on traces using the PO Spec On Traces expression. Such theorems have been proved for each PO introduced in the EB4EB framework. THEORY Theo4 [PO] C o r r e c t n e s s IMPORT EvtBTraces , Theo4 [PO] TYPE PARAMETERS St, Ev THEOREMS t h m o f C o r r e c t n e s s o f [PO] : ∀m, tr • m ∈ Machine(St, Ev) ∧ Machine WellCons(m)∧ IsATrace(tr , m) ∧ . . . ∧ [PO](m, args) ⇒ P O Spec On T races(. . .) Liveness Analyses Correctness Example: Soundness of the Invariant PO (INV). The theorem of Listing 7 states that for any well-constructed machine m, if the invariant PO holds (Mch INV (m)) then for any trace tr associated to this machine (IsATrace(tr , m)), each state of that trace is in the invariant of the machine (tr(i) ∈ Inv (m)).

THEORY

 E v t B C o r r e c t n e s s IMPORT EvtBTraces , EvtBPO TYPE PARAMETERS St, Ev THEOREMS t h m o f C o r r e c t n e s s o f I n v a r i a n t P O : ∀m, tr • m ∈ Machine(St, Ev)∧ Machine WellCons(m) ∧ IsATrace(tr , m) ∧ Mch INV (m) ⇒ (∀i • i ∈ dom(tr) ⇒ tr(i) ∈ Inv(m)) END Listing 7: Theorem of correction of the proof obligation 6 A Case Study: A read write machine

t 1 :

 1 r, w := 0, 0 END read WHERE g r d 1 : r < w THEN a c t 1 : r := r + 1 END write WHERE g r d 1 : w < r + 3 THEN a c t 1 : w := w + 1 END END (a) CONTEXT RdW r SETS Ev CONSTANTS rdwr , init , read , write AXIOMS axm1 : partition(Ev , {init}, {read}, {write}) axm2 : rdwr ∈ Machine(Z × Z, Ev) axm3 : Event(rdwr) = Ev axm5 : State(rdwr

 write ∧ rp = r ∧ wp = w + 1)} axm10 : Grd(rdwr) = {e → (r → w) | (e = read ∧ r < w)∨ (e = write ∧ w < r + 3)} axm11 : Progress(rdwr) = {read, write} . . . thm1 : check Machine Consistency(rdwr) END (b) Listing 8: Read write machine in Event-B (a) and instantiation with EB4EB (b)

 2, we introduce a new Event-B context RdWrExistence (see Listing 11), extending the RdWr context of Listing 8, with a theorem stating the existence property. The existence operator is used with a set of states {r → w | w ∈ Z ∧ r ≥ L} and a variant v = ((L -r) + (L + 3 -w))}). 8 Correctness of the temporal logic properties proof rules THEORY T h e o 4 L i v e n e s s C o r r e c t n e s s IMPORT T heo4Liveness , EvtBT races TYPE PARAMETERS St, Ev . . .

THEOREMS t h m

 o f C o r r e c t n e s s o f E x i s t e n c e : ∀m, tr , v ,P • v ∈ STATE → Z∧ m ∈ Machine(STATE , EVENT) ∧ Machine WellCons(m)∧ check Machine Consistency(m) ∧ IsATrace(m, tr) ∧ TLExistence(m, P , v) ⇒ (∀i • i ∈ dom(tr) ⇒ (∃j • j ≥ i ∧ j ∈ dom(tr) ∧ tr (j) ∈ P)) . . .Listing 13: Theorem of correctness of the operators Existence

Table 1 :

 1 Global structure of Event-B Contexts, Machines and Theories

Table 2

 2

	: Relevant Proof Obligations for Event-B contexts and machines
	retaining a similar observational behaviour (simulation relationship). Refinement
	correctness is established with the help of a gluing invariant, and ensures prop-
	erties are preserved from the abstract to the concrete model.
	Extension with theories. Being based on set theory and FOL, the Event-
	B formalism is mathematically low-level and thus very expressive. However, it
	lacks features to build up more complex structures. The theory extension has
	been proposed to address this issue [9]. A theory is a type of component that
	makes it possible to define new type-generic datatypes together with constructive
	and axiomatic operators, specific theorems and axioms and even proof rules (see
	Table 1.c). The resulting theories consistency can be established by providing
	witnesses for axioms and definitions, ensuring conservative extensions of Event-
	B. Once defined, elements of a theory become seamlessly available in an Event-B
	model and its proofs.

 THEORY EvtBT races IMPORT EvtBT heo TYPE PARAMETERS St , Ev OPERATORS IsANextState p r e d i c a t e (m : Machine(St, Ev) , s : St , sp : St) d i r e c t d e f i n i t i o n ∃e • e ∈ Progress(m) ∧ s ∈ Grd(m)[{e}] ∧ s → sp ∈ BAP(m)[{e}] IsATrace p r e d i c a t e (m : Machine(St, Ev) , tr :

Table 3 :

 3 Leads from P1 to P2 encoded in EB4EBMachine M is Convergent in P , ↓ P (TLConvergent In P operator). For a given property P , a machine M is convergent in P if it does not allow for an infinite sequence of P -states (i.e. states satisfying the property P). It is formalised in Table

Table 4 :

 4 Convergence in P encoded in EB4EB

Machine M is Divergent in P , ↗ P (TLDivergent In P operator). Divergence property guarantees that any infinite trace of a machine M ends with an infinite sequence of P -states. The operator TLDivergent In P of Table

5

(a) is identical to the previous convergent operator, except that the variant does not decrease strictly (v(s ′) ≤ v(s)) allowing divergent sequences of P -states.

The Sequent Rule of ↗ Associated Operator in EB4EB TLDivergent In P <predicate> ↗ P ≡ ∀x, v, v ′ • (m : M achine(St, Ev), P :

Table 5 :

 5 This property is defined in Table6(a) and is formalised by the operator TLDeadlock Free In P in Table6(b).The expression P ∩ Inv(m) ⊆ Grd(m)[P rogress(m)] ensures that at least one progress event of the P rogress(m) set is enabled in a P -state satisfying the invariant.

	The Sequent Rule of ⟲	Associated Operator in EB4EB

Divergence in P encoded in EB4EB

Machine M is Deadlock-free in P , ⟲ P (TLDeadlock Free In P operator). The deadlock-freeness states that a trace of a machine M never reaches a P -state where no event is enabled. It requires that, in a P -state, at least one event of M is enabled.

Table 6 :

 6 Deadlock-freeness in P encoded in EB4EB7.2Deadlock freeness ⟲ P applied to the Read-Write machine

	CONTEXT RdWrDeadlockFree
	EXTENDS RdWr
	THEOREMS
	thmDeadlockFreeInP :
	TLDeadlock Free In P(rdwr ,
	{r → w | w ∈ Z ∧ r ∈ Z ∧ r < w})
	END
	Listing 10: Generation of Proof
	Obligation of Deadlock Free In P

Table 8 :

 8 Existence encoded in EB4EBUntil, □(P 1 ⇒ (P 1 UP 2)) (TLUntil operator). The Until property states that a P 1 -state is always followed eventually by a P 2 -state. Its definition relies on the leads-to and existence properties we have introduced. The U ntil property requires two antecedents, a leads to from P 1 ∧¬P 2 to P 1 ∨P 2 in the next state and the second is the existence of ¬P 1 ∨P 2 (see Table9(a)). This proof rule is directly formalises using the TLUntil operator (see Table9(b)). It requires two properties P 1 (P1 set) and P 2 (P2 set) and a variant v. It is defined as the conjunction of the TLLeads From P1 To P2 and TLExistence predicate operators.

Table 9 :

 9 Until encoded in EB4EBProgress, □(P 1 ⇒ (♢P 2)) (TLProgress operator). Close to the U ntil property, a more general property, namely P rogress can be defined. It states that always P 1 -states reaches P 2-states. This property does not require P 1 to always hold before reaching P 2 -states. To describe this property, an intermediate property P 3 holding before P 2 holds is introduced. It acts as a local invariant between P 1 -states and P 2 -states.

	The Sequent Rule of □(P1 ⇒ ♢P2)	Associated Operator in EB4EB
		TLProgress<predicate> (m : M achine(St, Ev),
	A ≡ □(P1 ∧ ¬P2 ⇒ P3)	P1 : P(St), P2 : P(St), P3 : P(St), v :

Table 11 :

 11 Persistence encoded in EB4EB 7.4 Existence □♢P applied to the read write machine

	CONTEXT RdWrExistence
	EXTENDS RdWrDeadlockFree
	CONSTANTS L
	AXIOMS
	axm1 : L ∈ N
	t h m E x i s t e n c e : TLExistence(
	rdwr , {r → w

https://www.irit.fr/ ~Peter.Riviere/models/