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Abstract

Detection and identification of pathogenic bacteria isolated from biological samples (blood,

urine, sputum, etc.) are crucial steps in accelerated clinical diagnosis. However, accurate

and rapid identification remain difficult to achieve due to the challenge of having to analyse

complex and large samples. Current solutions (mass spectrometry, automated biochemical

testing, etc.) propose a trade-off between time and accuracy, achieving satisfactory results

at the expense of time-consuming processes, which can also be intrusive, destructive and

costly. Moreover, those techniques tend to require an overnight subculture on solid agar

medium delaying bacteria identification by 12–48 hours, thus preventing rapid prescription

of appropriate treatment as it hinders antibiotic susceptibility testing. In this study, lens-free

imaging is presented as a possible solution to achieve a quick and accurate wide range,

non-destructive, label-free pathogenic bacteria detection and identification in real-time using

micro colonies (10–500 μm) kinetic growth pattern combined with a two-stage deep learning

architecture. Bacterial colonies growth time-lapses were acquired thanks to a live-cell lens-

free imaging system and a thin-layer agar media made of 20 μl BHI (Brain Heart Infusion) to

train our deep learning networks. Our architecture proposal achieved interesting results on

a dataset constituted of seven different pathogenic bacteria—Staphylococcus aureus (S.

aureus), Enterococcus faecium (E. faecium), Enterococcus faecalis (E. faecalis), Staphylo-

coccus epidermidis (S. epidermidis), Streptococcus pneumoniae R6 (S. pneumoniae),

Streptococcus pyogenes (S. pyogenes), Lactococcus Lactis (L. Lactis). At T = 8h, our detec-

tion network reached an average 96.0% detection rate while our classification network preci-

sion and sensitivity averaged around 93.1% and 94.0% respectively, both were tested on

1908 colonies. Our classification network even obtained a perfect score for E. faecalis (60

colonies) and very high score for S. epidermidis at 99.7% (647 colonies). Our method

achieved those results thanks to a novel technique coupling convolutional and recurrent

neural networks together to extract spatio-temporal patterns from unreconstructed lens-free

microscopy time-lapses.
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Author summary

In order to combat the spread of resistances and to meet the specific needs of infection

diagnosis in rural and remote settings, there is a strong need for new diagnostic tools that

are faster, space efficient and less expensive than conventional ones while still being accu-

rate. To answer those criteria, optical identification methods such as lens-free microscopy

seem best-suited. Indeed, lens-free microscopy is an imaging technique that allows for

continuous image acquisition during incubation, as it is non-destructive and compact

enough to be integrated into an incubator. Here, we propose the combined use of lens-

free microscopy imaging and deep learning to train neural networks able to detect and

identify pathogenic species thanks to bacteria growth time-lapses on thin-layer agar and a

novel deep learning architecture combining recurrent and convolutional neural networks.

We achieved high quality detection and identification from 8 hours onwards on a dataset

composed of 7 different pathogenic strains. Our study provides new results proving the

usefulness of lens-free imaging on pathogenic species for rapid detection and identifica-

tion tasks in low-resource settings.

3. Introduction

The ever-increasing number of multidrug-resistant bacteria is having a growing influence on

mortality worldwide. With the emergence of resistance to Colistin, a last resort antibiotic effec-

tive against Gram-negative bacteria and especially the Enterobacterales, at the end of 2015

[1,2], the situation is worsening. Unnecessary usage of wide-spectrum drugs is accelerating the

global spread of multidrug resistant organisms. Antibioresistance is even more alarming when

it comes to last-resort antibiotics. Infections resulting from those resistant bacteria are more

and more difficult to cure. Such is the case with Escherichia coli, which is seeing Colistin resis-

tances emerge in already multidrug-resistant strains [3]. The World Health Organization pre-

dicts that by 2050 infectious diseases will once again be the leading cause of death in the world

with 10 million deaths annually [4].

Rapid identification of isolated pathogenic bacteria in biological samples (urine, blood, spu-

tum, etc.) is a key step in the diagnosis of an infection, and therefore in its management.

Indeed, speed and reliability of identification determine how quickly a specific and optimised

antibiotic therapy–more effective and less likely to generate new resistance to antibiotics–will

be administered by precisely targeting the identified pathogen.

Current solutions for microbial species identification providing high quality outputs still

have many shortcomings resulting from many concessions done in order to achieve those very

high identification performance. That is to say, they often require complex, time-consuming

and costly identification protocols in exchange for accurate results.

Identification methods commonly used are either based on biochemical profiling by using

identification cards such as Vitek 2 [5] or on time-of-flight (TOF) mass-spectrogram in partic-

ular with matrix assisted laser desorption ionization (MALDI-TOF) [6,7]. Those techniques

usually require isolated colonies grown on overnight cultures; this requires users to wait 18 to

48 hours for at least one identifiable colony to fully incubate. There is also genotypic analyses,

which allow identification of a target bacteria or virus thanks to its genomic sequence: the

most popular methods using this principle are the sequencing of 16S [8] for prokaryotes and

18S ribosomal Ribonucleic acid (rRNA) [9] for eukaryotes or PCR-based methods for rapid

identification [10]. Such analyses allow reliable and robust pathogenic bacteria identification
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in samples; nevertheless, it is at the expense of an a priori knowledge and understanding of the

infection.

For this reason, the current lines of research on microbial identification are diversified. The

first direction is the development of identification techniques that address the specific needs of

low-resource settings (LRS) or small isolated laboratories [11]. These techniques would expand

the use of diagnosis prior to antibiotic therapy, thereby reducing unnecessary use or misuse of

antibiotics. The second strand of research focuses on automation: many steps in the entire pro-

cess have not yet been automated and require human processing. For instance, in the case of

MALDI-TOF, the choice of the colonies to be analysed, their sampling, the mixing with spe-

cific reagents, are several tricky steps to automate. A fully automated identification method

would lead to a “smart incubator”, [12] i.e. an incubator able to provide an automatic identifi-

cation on every incubated plate, as soon as enough phenotypic information is available. In that

manner, identification results could be delivered during plate incubation, usually at night, and

all human processing done the day after could be dedicated to antibiotic susceptibility testing

(AST). The third and last area of research is single-cell characterization [13–16]: if a technique

can provide an identification on very low biomasses, typically 100 cfu (colony-forming unit)

and less, the results could be obtained before the incubation step, which would reduce time-to-

result significantly (18 h to 48 h less).

Optical identification methods, particularly when they do not require labelling techniques

(i.e. fluorescence microscopy), have decisive advantages: non-invasive, rapid and non-destruc-

tive, they could potentially allow automated, reliable, low-cost and high-throughput diagnosis.

These techniques are based on various optical properties such as scattering, absorption and

emission, reflection or even phase contrast each of which allows for the study of numerous

bacterial characteristics [17,18] (S1 Table). On the one hand, spectroscopic methods highlight

bacterial biochemistry by collecting spectral data over a certain range through the use of

absorption and emission (Fourier transform infrared spectroscopy) [19] or inelastic scattering

(Raman microspectrocopy [20,21]). On the other hand, scattering methods tend to focus on

colony morphology due to their use of diffraction and reflection principles to produce spatial

data. In particular, elastic scattering [22,23] and more precisely forward scattering (BARDOT)

[24,25] both provide specific direct two-dimensional patterns for each bacterial colony based

on their shape, which makes these techniques sensitive to intra-species variation. Furthermore,

some optical setups are capable of producing both spectral and spatial data thanks to hyper-

spectral approaches over large field of view, some even imaging full standard petri dishes. For

instance, hyper spectral diffuse reflectance microscopy [26,27] allows the entire dish to be cap-

tured and its spectral signature to be acquired for later use thanks to in line scanning. Never-

theless, these systems must wait for colonies to reach a certain size for them to be imaged and

are not compact enough to be placed inside an incubator to obtain real-time images. This

leads to a delay in the detection and identification processes.

Lens-free imaging allows for wide-range detection and identification through direct diffracto-

grams analysis [28] or holographic reconstructions [29,30]. Thanks to “colony fingerprint” (i.e.
discriminative parameters) and through cluster analysis, Maeda et al. [31] showed that discrimi-

nating microorganisms was possible with lens-free imaging within the visible range after 8h of

incubation on a limited dataset. In the same manner, Wang et al. [32] proposed an automated

lens-free imaging system to detect and classify bacteria by using neural networks on a small time-

lapse (2 h) obtaining impressive results (>95% detection rate and 99.2–100% precision within

12h) on 3 different Enterobacterales (Klebsiella pneumoniae, Escherichia coli, Klebsiella aerogenes).
In this paper, micro colonies long kinetic growth patterns (>6 h) are used to train a two-

stage deep learning architecture that will detect and identify pathogenic bacteria over a wide-

field, through growth time-lapse, in less than 12 hours.
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This method differs from other lens-free techniques by its approach based on thin-layer un-

reconstructed video microscopy for detection and classification on some of the most prevalent

anaerobic pathogenic bacteria in clinical settings. Among other things, it differentiates itself

through its use of a thin-layer culture medium that minimises the sample-sensor distance.

This technique works well in a low-density context (at maximum ~ 200 colonies/mm2) as it is

possible to image the sample over a large field-of-view while avoiding a magnification-induced

superimposition of holograms which occurs when the sample is moved away from the sensor.

This gives access to a better resolution and higher frequency information than on a Petri dish

during a single-shot acquisition. Nevertheless, this technique’s sample preparation protocol

includes a pour-plating step, thus colonies do not necessarily grow on the same plane as there

is a height variability.

This is where our un-reconstructed holographic approach shines by avoiding either making

an a priori estimation of the sample-sensor distance or having to produce multiple reconstruc-

tions at different heights. It also removes the need for auto-focus, which is not the case for

Petri dishes monitored over time due to inter-plate (Agar pouring height) and intra-plate

height variability (Agar drying out in the incubator) during an experiment. This method thus

avoids all the problems inherent with holographic reconstruction (phase wrapping, twin

images, etc.) by learning directly from a series of holograms within a height range. Finally, it is

the use of neural networks throughout the processing pipeline that allows this method to

obtain rapid and robust results, on par with other work. This pipeline consists of a region-

based convolutional network for detection and a novel dual association of a spatial encoder

(3D convolutional network) with a temporal encoder (2D recurrent network).

4. Materials and methods

4.1 Studied species

In this study, seven different bacterial strains were used in the training and testing dataset:

Staphylococcus aureus (S. aureus), Enterococcus faecium (E. faecium), Enterococcus faecalis

(E. faecalis), Staphylococcus epidermidis (S. epidermidis), Streptococcus pneumoniae R6 (S.

pneumoniae), Streptococcus pyogenes (S. pyogenes), Lactococcus Lactis (L. Lactis) (Fig 1).

Our S. pneumoniae R6 and E. faecalis OG1RF strains are both ATCC strains, respectively

ATCC BAA-255 and ATCC 4707, while other strains are derived from clinical isolates. In par-

ticular, our E. faecium D344 strain is derived from the same clinical isolate used in one paper

written by Williamson R, et al [33].

4.2 Setup

4.2.1 Material and geometry. A six wells lens-free microscope, the cytonote6W (Ipra-

sense, France), was used to perform image acquisition. This commercial imaging system can

easily fit inside an incubator and record the bacterial growth process thanks to its relatively

small size (16x12x10 cm).

It uses a multichip light emitting diode (LED) as its light source, delivering a multi-wave-

length partially coherent illumination. During this study, the red wavelength provided, centred

on 636 nm with a 25 nm spectral bandwidth, will be used. This light source is located more

than 5 cm away from the studied sample and above a 150 μm pinhole placed just under in

order to spatially filter the light, scatter the light and obtain a semi-coherent source. This imag-

ing system uses a CMOS (Complementary metal-oxide-semiconductor) image sensor, with a

29.4 mm2 (6.41×4.59 mm) field of view (FOV), 3840×2748 pixels per image and a pixel size of

1.67 μm.
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Bacterial cultures are then put on top of the CMOS, which means micro-colonies are the

nearest they could be from the sensor with a distance between 0 and 5 mm depending on the

recipient used which might be petri dishes, multiwells plates or in this case thin-layer cultures

(~ 150 μm). Thin-layer cultures are 19 μl gas-tight glass frames, which permit anaerobic

growth of bacteria inside the chamber containing the culture medium for micro-colonies.

4.2.2 Lens-free microscopy. This equipment and geometry let us use lens-free imaging

techniques to follow living cells for detection and identification purposes without being intru-

sive or destructive. This minimalist method consists of acquiring with an imaging sensor the

diffraction patterns formed by the interference of the light scattered by the sample and the

light passing directly through the sample. This way, a holographic pattern is obtained; it is not

an actual image showing the shape of cells but it allows for many applications (counting, track-

ing, identification, etc.) [30–32,34,35]. A lens-free microscope acquires the hologram intensity

of the studied sample which can then be used to reconstruct the original image thanks to some

computational algorithms [36,37]. In this study, unreconstructed holograms amplitudes will

be shown to be more than enough for accurate detection and identification.

4.2.3 Biological protocol. Every bacterial culture was handled according to safety rules

specific to a Biosafety level 2 laboratory. Bacteria were grown in brain heart infusion broth

(BHI medium) from glycerol stocks stored at -80˚C until the optical density (OD) at 600 nm

equals 0.3. Each bacterial culture was incubated at 37˚C with or without shaking in a 5% CO2

atmosphere depending on species requirements.

Agarose pads were made with BHI medium containing 13 mg/ml low gelling temperature

agarose suitable for cell culture (Sigma-Aldrich, A4018). BHI agarose was then liquefied at

75˚C and left to cool. When the temperature reached 39˚C bacteria were added at a concentra-

tion of 2×104 cfu/ml. As shown in Fig 2, a 19 μL suspension is placed on a 24×24 mm glass

slide in a 1 cm2 frame with a 150 μm thickness then another glass slide is placed, this time

22×22 mm on top without trapping bubbles between the slides.

4.3 Data acquisition

Following the previously described protocol, a database of holographic time-lapses from

mono-microbial cultures was collected by monitoring the growth of micro-colonies in several

Fig 1. Bacteria Holograms. Holographic pattern of 7 bacteria strains after 12 hours of incubation at 37˚C on Brain

Heart Infusion (BHI) agar.

https://doi.org/10.1371/journal.pdig.0000122.g001
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thin-layer cultures. To observe a culture growth kinetic with a Cytonote an image is recorded

every thirty minutes. Those experiments lasting twelve hours, each time-lapse is thus com-

posed of 25 images. This database consists therefore of 26 experiments gathering a total of 650

potential images to learn on.

However, each preculture does not show the same biomass (cfu/mL) when inoculated into

the BHI agarose medium. The number of observable bacterial colonies on the reduced field of

view (29.4 mm2) will therefore be culture-dependant. Thus, for the same turbidity (with an

optical density of 1), each species will have a cfu/ml ranging from 2×108 to 14×108 cfu/mL, i.e.
a number of colonies varying from 50 per experiment (e.g. E. faecium) to 300 per sample (e.g.

S. aureus, S. epidermidis). Moreover, the number of experiments per strain is not equivalent,

for example, 5 experiments were done with S. epidermidis or E. faecalis while only 4 were done

with S. aureus.
In the end, those 39 experiments translate to 5961 micro-colonies: 4053 for training and

validation (26 experiments) and 1908 for testing purposes (13 experiments).

4.4 Image pre-processing

Images acquired by Iprasense imaging system are quite large (3840×2748 pixels); therefore,

every image was cut into forty-nine 960×867 pixels overlayed sub-images (S1 Fig) after con-

firming that no species-dependent macro-phenomenon occurred. This overlaid subdivision is

comprised of an initial 4x4 matrix to which we add 3x4 (half step offset along the x-axis), 4x3

(half step offset along the y-axis) and 3x3 (half step offset in both x-axis and y-axis) matrixes.

Raw data was also modified; pixel intensity was changed as pixel values were normalized

between a 0–255 range using a min-max normalization technique (also called feature scaling)

to carry out a linear transformation from the original data to a chosen scale.

For the detection phase, the task of the neural network was to locate areas of interest and

eventually to determine their shapes. Considering this, datasets needed to contain position

and shapes of micro-colonies to be used as ground truths. For that matter, images were anno-

tated following Microsoft COCO format (Common Objects in COntext) [38] one of the most

popular data format for annotating objects. It is widely use because it is adapted for both object

detection and segmentation tasks and due to the Microsoft COCO dataset which is a bench-

mark for evaluating computer vision models performance. Thus, data annotated in this man-

ner can be repurposed for further trainings of state-of-the-art neural networks to compare

results for instance. In this format, objects shapes are described as lists of points forming

masks contained in bounding boxes. Colonies masks were done manually, by circling around

holographic patterns after a 12-hour incubation and back-propagating them to earlier frames.

4.5 Deep learning architecture

Python 3.7.0 [39] was chosen to implement each network alongside with Tensorflow 2.1.0 [40]

and the 2.3.1 Keras interface [41]. By following the proposed architecture in Fig 3, the problem

Fig 2. Thin-layer cultures. Step-by-step production of suitable thin-layer cultures with agarose pads and BHI

medium.

https://doi.org/10.1371/journal.pdig.0000122.g002
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was decomposed into two distinct tasks to facilitate and to better monitor trainings. Trainings

were done with a Nvidia Titan XP as GPU (graphics processing unit) using CUDA (Compute

Unified Device Architecture) 11.2 [42]. Every training done had an 80/20 repartition between

training and validation data.

4.5.1 Detection neural network. The first task identified is to detect growing micro-colo-

nies while they are still incubating. For that reason, a neural network capable of locating small

areas of interest on much bigger images is needed. This network must be capable of taking an

image as an input and produce multiple lists of points that will then be used to crop bounding

boxes for the classification network (S1 Fig).

As described earlier, each image is cut in a 7×7 overlapping sub-images matrix to enable

quicker and less memory-consuming inferences. Due to this sub-devising technique many

detection inferences give redundant outputs–some colonies are detected multiple times and

thus many bounding boxes overlap each other. To answer this problem, a non-max suppres-

sion technique was implemented to remove lower quality redundant predictions. This filter

consists of taking the predictions with the highest confidence score and comparing their IOU

(intersection over union) with other predictions. If the IOU is higher than a certain threshold

(0.3 in this case), the compared image is then removed from the prediction list in order to

retrieve only different and high-quality predictions.

For the training step, 26 experiments out of the seven selected strains were selected. In par-

ticular, the training was focused on a sub-dataset of images between the 11th and 21th frames,

which means between 5 and 10 hours of incubation. Each image was decomposed into 49 sub-

images (960×867 pixels) and only ten frames by experiment were utilized, thus the training

dataset consisted of 12 740 images to train from. In the same manner, 13 experiments were

used for the testing phase, which is equivalent to 6860 testing images.

For the detection neural network, a Mask-RCNN (Mask Regional Convolutional Neural

Network) [43] was chosen to propose regions of interest for the next network to work on. For

its convolutional model we had recourse to a ResNet-101 (Residual Network) [44], pre-trained

on ImageNet [45] and re-trained on our own dataset. To train this network each 960x867

image was resized to be 768x768.

Our Mask-RCNN was trained for 75 epochs on each layer, with a learning rate scheduler

that reduced the learning rate on each loss function plateau and an additional early stopping if

Fig 3. Global Deep Learning schematized architecture. Detection and classification are separated into two different tasks. The detection network takes

768×768 pixels sub-images and outputs regions of interest. The classification network uses candidate crop time-lapses as inputs and outputs a probability

vector to label each time-lapse.

https://doi.org/10.1371/journal.pdig.0000122.g003
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the plateau lasted too long to prevent overfitting. The training started with a learning rate of

0.01, this ratio was then multiplied by 0.1 each time the loss function—applied to the validation

set—did not fluctuate by more than 0.001 over 10 epochs. Futhermore, if it lasted more than

15 epochs without significant improvement despite the learning rate variation then the train-

ing was aborted via early stopping.

4.5.2 Classification neural network. The detection neural network outputs a bounding

box list when presented with an image. From this list, time-lapses are created by extracting the

corresponding crops from each frame available until now. Colony crops are made by retrieving

the centre of the bounding box proposed by the detection network and by cropping a 64×64

square around that centre. The new input is thus a holographic time-lapse that varies in length

depending on which image the first network was applied on.

From those time-lapses, the classification network must distinguish different species, which

implies having a label for every time-lapse as an output. The classification network needs to be

able to extract spatial and temporal patterns to identify every species in the database. Consider-

ing this goal, a combination of a three-dimensional convolutional [46,47] and a two-dimen-

sional long short-term memory network (LSTM) [48] were chosen, in a similar fashion to a

ConvLSTM model [49] which would be applied to an image. This network extracts spatial fea-

tures from frames with its convolutional part (Conv3D) and labels the whole sequence thanks

to its recurrent part which extracts temporal features (LSTM) [50].

One major problem is that this architecture is very size-dependant and kernel size cannot

be the same for every network. That is why the structure of the classification network should

be dynamic depending on time-lapse length. The basic structure of this model is a pair of

Conv3D and ConvLstm2d layers followed by a flatten layer and two dense layers so the output

is a probabilistic distribution (Fig 4). This list size is equivalent to the number of classes in the

Fig 4. Architecture of a seven-frame classification network based on a Conv3D+LSTM2D principle. The network

is composed of three parts: a spatial encoding phase with convolutional layers, a temporal encoding phase with a

recurrent layer and dense layers to classify the data.

https://doi.org/10.1371/journal.pdig.0000122.g004
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training dataset (seven strain classes and one background class), its values are in percentages

(from 0 to 1), its sum equals 1 and each value corresponds to how probable the time-lapse

belongs to the class. Some extra layers might be added in some cases; if the input size allows it,

a MaxPooling layer is added each time a convolutional layer is used and a dropout layer is also

added after each pooling.

For smaller time-lapses (0-1h30) only one Conv3D layer is possible: composed of 32 neu-

rons and a (1, 1, 1) kernel, it is associated to a 20-filter ConvLSTM2D with a (3,3) kernel. For

bigger time-lapses (>7h30) larger (3, 3, 3) kernels and more neurons (64 at most) can be uti-

lized. It is possible to add pooling layers with (2,2,2) kernels and to put three (Conv3D + Max

Pooling) layers in the spatial encoder too. Bigger 40-filter ConvLSTM2D with a (3,3) kernel

are also an option for a more complex temporal encoder in those cases. Training and testing

were done on 64×64 crops extracted from the hand-delineated frames used for the detection

task. Training crops and testing crops came respectively from training and testing time-lapses.

Thus, there was 4053 time-lapses (Fig 5) for training and 1908 time-lapses for testing.

For this multi-class problem, parse categorical cross entropy was used as the loss function

with an Adam optimizer [51] and a reduce-on-plateau learning rate scheduler with an early

stopping call-back. Each training lasted at most 30 epochs and stopped early if the validation

Fig 5. Growth kinetics. Growth kinetics of L. lactis, S. aureus, S. epidermidis, E. faecalis, E. faecium, S. pneumoniae and S. pyogenes over a twelve-hour

incubation time with a 30-minute period between each frame. Each frame is a 64x64-pixel image (107x107 μm).

https://doi.org/10.1371/journal.pdig.0000122.g005
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loss varied by less than 0.001 for 15 epochs. The starting learning rate (0.001) was multiplied

by 0.2 whenever the validation loss reached a 10-epoch plateau.

Data augmentation was also employed to boost training samples numbers and to avoid

overfitting with video augmentation techniques thanks to the vidaug python library [52]. This

library lets us add random noise, move frames along the x-axis or y-axis and rotate images

making up the time-lapses in a homogeneous manner.

5. Results and discussion

We analysed colonies from seven different species (S. aureus, E. faecium, E. faecalis, S. epider-
midis, S. pneumoniae, S. pyogenes, L. Lactis) extracted from 13 experiments. Our testing dataset

contained 350 images and 1908 colonies which were only used in this final evaluation of our

networks’ detection and classification performance. Due to bacterial concentration and experi-

ment number, for each species there was a different amount of colonies to detect and classify.

In fact, the classes in our test dataset are unbalanced in similar proportions to the training set:

we have 275 colonies of S. aureus (2 experiments), 210 E. faecium (2 experiments), 60 E. faeca-
lis (1 experiment), 647 S. epidermidis (2 experiments), 347 S. pneumoniae (1 experiment), 271

S. pyogenes (3 experiments) and 98 L. lactis colonies (2 experiments)—the remaining data

being time-lapses of non-moving objects or empty areas.

To compensate for this class imbalance, our networks gave more importance to the classes

with the least colonies during training. This way, trained weights will not favour one class over

the others. However, it should be kept in mind that a class with more data will generally per-

form better than a class with less data and will be less sensitive to variations and errors.

We tested our networks performance on two tasks—detection and classification. The first

task was evaluated by applying our Mask RCNN network on images at different time marks

and comparing the bounding boxes it produced with our hand labelled ground truth. The sec-

ond task was evaluated by carrying out inferences with our Conv3D+Lstm2D models on time-

lapses varying in length but all beginning at the same time mark (t = 0h).

5.1 Detection

5.1.1 Metrics. During the detection phase, the neural network task is to detect every grow-

ing colony. It is not a problem if some detected elements are not colonies but specks of dust as

the next neural network will be able to differentiate between growing colonies and immobile

structures. In other terms, high sensitivity (few false negatives) is the most important measure

to maximise, even if it implies a low specificity (many false positives). By studying another cri-

terion—the rate of correctly detected colonies over the total number of actual bacterial colo-

nies present in the culture medium—the neural network effectiveness can be quantified and

visualized simply with the data provided.

Another important output to measure is ROIs (regions of interest) prediction quality, for

that matter the IOU criterion is used, which consists of calculating the ratio between actual

and predicted areas. This score helps understanding how accurate correct ROIs are. It is nor-

mally considered that an IOU score under 0.3 is poor while scores over 0.7 are quite good [53].

However, the way each ground truth was created (by circling around full holographic 12h

growth pattern, at their biggest) forces us to relativize the score obtained as IOU decrease very

quickly. In this case, an IOU score above 0.5 can be considered as quite good while scores

under 0.2 translate a really poor detection.

5.1.2 Results. The trained detection network was tested upon a dataset consisting of 1902

colonies from seven different species. This dataset was tested at six different marks in time (2,
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4, 6, 8, 10 and 12 hours) to compare and quantify its detection quality over time. True positives

detection quality was also evaluated thanks to an IOU score.

The results presented in Fig 6 are from inferences utilising a specific version of the detection

network. As explained earlier, its training is comprised only of frames between the 5th and 10th

hour marks. Thus, decent results are expected from the 5th hour onwards; however, the detec-

tion rate reached an already quite decent quality at the 4th hour. At T = 2h (i.e. 5 frames) the

network averaged at a 6.8% detection rate with low IOU scores (0.27 in average) indicating

that these detections were mainly accidentals and uncorrelated to the presence of micro-colo-

nies. Two hours later, at T = 4h, there is already an average 55.8% detection rate with decent

IOU (0.42 in average), which is a huge rise in detection quality. We attain satisfactory detection

rates from T = 8h onwards with an average detection at 96.2% and a good IOU score of 0.51,

enough to have well-centred crops to extract for the next network.

The best average detection rate (96.9%) is reached after 12h of incubation with IOU scores

ranging from 0.32 (E. faecium) to 0.66 (S. pyogenes) meaning that detections are in average

quite accurate. From those observations, it can be seen that this network performs well during

the 5-10h period for which it was designed. Moreover, it is already capable of proposing a rea-

sonable detection, although incomplete, from the 4th hour of growth onwards while its best

results are on data acquired at T = 12 h. This shows that our choice to train on a specific period

of colony growth was a coherent decision. It focused the training on relevant data and helped

generalize the representations in the neural network, which allowed for better and more con-

sistent results earlier.

Those results seem coherent with what can be observed on Fig 5 time-lapses for instance.

Species such as S. epidermidis or S. aureus produce colony holograms visible as early as early as

4h while some as L. lactis or S. pyogenes take longer times (~6/7h) to develop into a well-con-

trasted colony. That is why our performance began to rose around the 4th hour and soared at

the 6th hour. Results continued to improve for slower strains up to 12 hours whereas fast grow-

ing bacteria reached and stabilized around 100% detection rate under 6 hours.

Theses detection results places us on par with other state-of-the-art rapid bacterial identifi-

cation techniques, nearing Wang et al. [32] work proposing a full detection (~100% on every

strain) in 6h hours, which is a very impressive achievement even if we take into consideration

their restricted (only 3 Enterobacterales) and larger dataset (~16000 colonies to train on).

5.2 Classification

5.2.1 Metrics. During the classification phase, our neural network’s goal is to correctly

label every time-lapse used to produce inferences in a rapid fashion. This translates into maxi-

mising the number of true positives. True positives predictions can be evaluated by looking at

sensitivity (or recall) and precision (or positive predictive value). Sensitivity, also called true

positive rate (TPR), quantifies the proportion of true positive predictions. Precision, or posi-

tive predictive value (PPV), measures the rate of false positives. They respectively are defined

by TPR ¼ TP
TPþFN and PPV ¼ TP

TPþFP, where TP refers to the number of true positives, FP to the

number of false positives and FN to the number of false negative predictions.

5.2.2 Results. Looking at the average precision and sensibility of our seven pathogenic

bacteria over time (Fig 7), it can be established that the classification network steadily improves

during incubation going from approximatively 15% sensitivity and 25% precision during the

first hours (1–3 h) to an average 93.8% for sensitivity and 93.5% precision at 12h. However,

precision and sensitivity trends are different for each species (S2 Fig and S3 Fig) and looking

only at average results is not enough to understand the network outputs. For most species

there is a sudden rise in sensitivity and precision between 4 and 7 hours and then a transition
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Fig 6. Detection phase results. (A) Detection rates and (B) IOU scores at four specific time marks (2, 4,6, 8,10, 12) for

every strain.

https://doi.org/10.1371/journal.pdig.0000122.g006
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Fig 7. Classification phase average precision and sensitivity. Precision and sensitivity performance during the

classification phase over a 12-hour incubation period on average. The green area represents the variation between the

maximum and the minimum sensitivity for each time mark on all species.

https://doi.org/10.1371/journal.pdig.0000122.g007
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to a stable plateau, meaning that the classification network correctly discriminates those spe-

cies thanks to their growth kinetic and holographic pattern.

There is such a sudden rise in sensitivity for S. pneumoniae, L. lactis, E. faecium, S. pyogenes
and S. aureus between 5h and 7h while for E. faecalis and S. epidermidis this increase happens

earlier, respectively during 3-6h and 1-5h periods (S3 Fig).

For E. faecium, E. faecalis, L. lactis and S. aureus rises in precision and sensitivity are nearly

correlated, only E. faecalis sees a synchronised rise in precision and sensitivity which might be

due to its small number of colonies in the test dataset. Both S. pneumoniae and S, pyogenes
have an earlier increase in their precision scores by 1 or 2 hours while S. Epidermidis sees its

precision lagging behind its sensitivity by several hours. From this analysis, we can suppose

that there was a S. epidermidis over-guessing in early models which is explainable by the fact

that this species is the most numerous in our dataset (647 test colonies). From those trends it

can be inferred that each strain starts to differentiate itself from the rest of the dataset at a spe-

cific time; S. aureus, E. faecalis, E. faecium, S. epidermidis, S. pneumoniae, L lactis and S. pyo-
genes respectively do so at 4h, 5h, 6h, 6h, 7h and 7h.

Those trends show that growth kinetics might be a suitable way to discriminate bacteria in

an early fashion. However, an average 93.1% in precision and a 94.0% sensitivity is not enough

to produce very high-quality inferences. Having said that, our results are on an equal footing

with the rapid bacterial optical identification literature: Wang et al. [32] lens-free method

achieves a 93.8% accuracy (3 species, 955 colonies) after a 12h incubation while Tang et al. [25]

forward scattering technique using BARDOT reaches ~90% accuracy in less than 24h (37

strains ~3700 colonies). Nevertheless, our dataset still needs to be larger to compensate for

data unbalance and to achieve better results.

Indeed, performance is very species-dependent and varies greatly with each strain; there-

fore–after a 12-hour incubation–precision can range from 83.3% for E. faecalis (60 colonies) to

~100% for E. faecium (99.%, over 210 colonies) and S. epidermidis (98.6% over 647 colonies),

while sensitivity varies between 75.6% for E. faecalis and 96.7% for S. Epidermidis. This phe-

nomenon is due to the data itself, its quality and quantity in particular; there is a clear correla-

tion between number of colonies and the results performance. Species with more colonies to

test on (which also means more to train on) such as S. epidermidis (647 colonies) and S. aureus
(275 colonies) have better precision and sensitivity in those 12-hour tests while the hardest spe-

cies to correctly identify was E. faecalis with much less data than other species.

E. faecalis was indeed much harder to correctly label at each time mark than other species but

if confusion matrixes (Fig 8) are taken in account for the 8th and 12th hour time marks it can be

understood that E. faecalis crops are not just randomly assigned to another label. In fact, there are

two distinguishable parts in those matrices. There is a clear distinction between different genera

and thus errors are mostly between similar genera: E. faecalis crops are primarily confused with E.

faecium colonies. Similarly, confusions take place between staphylococci (S. epidermidis and S.

aureus labels are mixed). This could mean that holographic patterns share similarities between

genera and are not just species dependant; this would allow for a two-time detection with first the

correct genus and then the right species. This would be done by using the possibilities of the

COCO format by introducing super-categories to generalize between multiple classes and imple-

menting a class hierarchy as done in W.Goo et al. paper [54] to learn discriminative subcategory

features as different as possible from grouped super-category features.

6. Conclusion

Using live-cell lens-free imaging system in visible range (636 nm) and thin-layer (150μm) BHI

agar we have acquired the very first database on anaerobic pathogenic bacteria from
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Enterococcus and Streptococcus genera. Our two-stage deep learning architecture (a mask

convolutional network for detection and a three-dimensional recurrent network for identifica-

tion) achieved an average 96.0% detection rate after an 8h incubation time (97.1% at 12h) and

an average 93.6% correct identification rate with 93,1% precision and 94.0% sensitivity.

Those results were reached with holographic amplitudes and growth kinetic patterns only,

proving un-reconstructed approach to be viable in certain setups for detection and identifica-

tion purposes. Their features were extracted thanks to our novel proposal based on the cou-

pling of recurrent and convolutional networks.

Thus, we were able to retrieve spatio-temporal features, which allowed for correct and rapid

colony identification. Proving that holographic time-lapses combined with a deep learning

pipeline to analyse those lens-free videos is an efficient way to answer the need for a solution

that permits a rapid, high throughput, wide range, non-intrusive and non-destructive robust

detection of every colony in a sample and satisfactory identification in real time.

Future investigations will both aim at analysing a wider surface and reaching better identifi-

cation performance. New solutions are being developed to monitor 90-mm diameter Petri

dishes thanks to in-house imaging sensors. A multi-spectral solution, which might provide

Fig 8. Classification networks confusion matrices. Classification networks confusion matrices at (A) T = 2h, (B) T = 4h, (C) T = 8h, (D) T = 12h on eight

classes, which are Background, S. aureus, S. epidermidis, E. faecium, E. faecalis L. lactis, S. pneumoniae and S. pyogenes. Each matrix contains the predicted label

of 275 S. aureus, 647 S. epidermidis, 60 E. faecalis and 210 E. faecium, 98 L. lactis, 347 S. pneumoniae and 271 S. pyogenes.

https://doi.org/10.1371/journal.pdig.0000122.g008

PLOS DIGITAL HEALTH Deep learning for bacterial identification through lens-free microscopy time-lapses

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000122 October 5, 2022 15 / 19

https://doi.org/10.1371/journal.pdig.0000122.g008
https://doi.org/10.1371/journal.pdig.0000122


more phenotypic information, is also being considered in order to improve detection quality

over a larger dataset.

Supporting information

S1 Table. Identification methods comparative table. Pros and cons of techniques used for

bacterial identification.

(TIFF)

S1 Fig. Detailed detection and classification workflows. Detailed workflow split in three

main phases (Data preparation, Training and Testing) for both detection and classification

tasks.

(TIFF)

S2 Fig. Classification phase precision. Precision performance during the classification phase

over a 12-hour incubation period for (A) E. faecium, (B) L. lactis, (C) E. faecalis, (D) S. Pyo-
genes (E) S. pneumoniae, (F) S. epidermidis and on (G) S. aureus.
(TIFF)

S3 Fig. Classification phase sensitivity. Sensitivity performance during the classification

phase over a 12-hour incubation period for (A) E. faecium, (B) L. lactis, (C) E. faecalis, (D) S.

Pyogenes (E) S. pneumoniae, (F) S. epidermidis and on (G) S. aureus.
(TIFF)

Author Contributions

Conceptualization: Paul Paquin, Caroline Paulus, Pierre R. Marcoux.

Data curation: Claire Durmort, Thierry Vernet.

Formal analysis: Paul Paquin.

Funding acquisition: Caroline Paulus, Pierre R. Marcoux, Sophie Morales.

Methodology: Paul Paquin, Claire Durmort.

Project administration: Sophie Morales.

Resources: Sophie Morales.

Software: Paul Paquin.

Supervision: Paul Paquin, Claire Durmort, Caroline Paulus, Pierre R. Marcoux, Sophie

Morales.

Validation: Paul Paquin, Caroline Paulus, Thierry Vernet, Pierre R. Marcoux, Sophie

Morales.

Visualization: Paul Paquin.

Writing – original draft: Paul Paquin.

Writing – review & editing: Paul Paquin, Caroline Paulus, Pierre R. Marcoux, Sophie

Morales.

References
1. Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes

dissemination, global responses, and the alternatives to colistin: A review. Vet World. 2019; 12: 1735–

1746. https://doi.org/10.14202/vetworld.2019.1735-1746 PMID: 32009752

PLOS DIGITAL HEALTH Deep learning for bacterial identification through lens-free microscopy time-lapses

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000122 October 5, 2022 16 / 19

http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000122.s001
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000122.s002
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000122.s003
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000122.s004
https://doi.org/10.14202/vetworld.2019.1735-1746
http://www.ncbi.nlm.nih.gov/pubmed/32009752
https://doi.org/10.1371/journal.pdig.0000122


2. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin

resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular

biological study. Lancet Infect Dis. 2016; 16: 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

PMID: 26603172

3. Zafer MM, El-Mahallawy HA, Abdulhak A, Amin MA, Al-Agamy MH, Radwan HH. Emergence of colistin

resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from can-

cer patients. Ann Clin Microbiol Antimicrob. 2019; 18: 40. https://doi.org/10.1186/s12941-019-0339-4

PMID: 31831019

4. Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S, Kanpravidth W, Brown R, Sommanust-

weechai A. Antimicrobial resistance: from global agenda to national strategic plan, Thailand. Bull World

Health Organ. 2017; 95: 599–603. https://doi.org/10.2471/BLT.16.179648 PMID: 28804172

5. Funke G, Monnet D, deBernardis C, von Graevenitz A, Freney J. Evaluation of the VITEK 2 System for

Rapid Identification of Medically Relevant Gram-Negative Rods. J Clin Microbiol. 1998; 36: 1948–1952.

https://doi.org/10.1128/JCM.36.7.1948-1952.1998 PMID: 9650942

6. Angelakis E, Million M, Henry M, Raoult D. Rapid and accurate bacterial identification in probiotics and

yoghurts by MALDI-TOF mass spectrometry. J Food Sci. 2011; 76: M568–572. https://doi.org/10.1111/

j.1750-3841.2011.02369.x PMID: 22417598

7. Ferroni A, Suarez S, Beretti J-L, Dauphin B, Bille E, Meyer J, et al. Real-time identification of bacteria

and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time

of flight mass spectrometry. J Clin Microbiol. 2010; 48: 1542–1548. https://doi.org/10.1128/JCM.02485-

09 PMID: 20237092

8. Shukla P, Srivastava S, Srivastava R, Rawat AK. Sequencing of 16S rRNA gene for identification of

Staphylococcus species in water sample. Afr J Microbiol Res. 2011; 5: 5142–5146. https://doi.org/10.

5897/AJMR11.313

9. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian P-Y. Optimal Eukaryotic 18S and Universal 16S/18S

Ribosomal RNA Primers and Their Application in a Study of Symbiosis. PLoS ONE. 2014; 9: e90053.

https://doi.org/10.1371/journal.pone.0090053 PMID: 24594623

10. Nguyen MH, Clancy CJ, Pasculle AW, Pappas PG, Alangaden G, Pankey GA, et al. Performance of the

T2Bacteria Panel for Diagnosing Bloodstream Infections: A Diagnostic Accuracy Study. Ann Intern

Med. 2019; 170: 845–852. https://doi.org/10.7326/M18-2772 PMID: 31083728

11. Peeling RW, Mabey D. Point-of-care tests for diagnosing infections in the developing world. Clin Micro-

biol Infect. 2010; 16: 1062–1069. https://doi.org/10.1111/j.1469-0691.2010.03279.x PMID: 20670288

12. Croxatto A, Prod’hom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in clinical bacteriol-

ogy: what system to choose? Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2016; 22:

217–235. https://doi.org/10.1016/j.cmi.2015.09.030 PMID: 26806135

13. Strola SA, Marcoux PR, Schultz E, Perenon R, Simon A-C, Espagnon I, et al. Differentiating the growth

phases of single bacteria using Raman spectroscopy. Biomedical Vibrational Spectroscopy VI:

Advances in Research and Industry. SPIE; 2014. pp. 16–24. https://doi.org/10.1117/12.2041446

14. Tardif M, Jager J-B, Marcoux PR, Uchiyamada K, Picard E, Hadji E, et al. Single-cell bacterium identifi-

cation with a SOI optical microcavity. Appl Phys Lett. 2016; 109: 133510. https://doi.org/10.1063/1.

4963070

15. Therisod R, Tardif M, Marcoux PR, Picard E, Jager J-B, Hadji E, et al. Gram-type differentiation of bac-

teria with 2D hollow photonic crystal cavities. Appl Phys Lett. 2018; 113: 111101. https://doi.org/10.

1063/1.5037849

16. Rebuffel V, Baritaux J-C, Bergmann E, Marcoux P, Espagnon I, Morales S. Results on identification of

bacteria aging in complex environmental samples using Raman spectroscopy. Clinical and Preclinical

Optical Diagnostics II (2019), paper 11075_18. Optical Society of America; 2019. p. 11075_18. https://

doi.org/10.1117/12.2527141

17. Bae E, Kim H, Rajwa B, Thomas JG, Robinson JP. Current status and future prospects of using

advanced computer-based methods to study bacterial colonial morphology. Expert Rev Anti Infect

Ther. 2016; 14: 207–218. https://doi.org/10.1586/14787210.2016.1122524 PMID: 26582139

18. McGoverin C, Steed C, Esan A, Robertson J, Swift S, Vanholsbeeck F. Optical methods for bacterial

detection and characterization. APL Photonics. 2021; 6: 080903. https://doi.org/10.1063/5.0057787

19. Preisner O, Lopes JA, Guiomar R, Machado J, Menezes JC. Fourier transform infrared (FT-IR) spec-

troscopy in bacteriology: towards a reference method for bacteria discrimination. Anal Bioanal Chem.

2007; 387: 1739–1748. https://doi.org/10.1007/s00216-006-0851-1 PMID: 17086390

20. Liu Y, Xu J, Tao Y, Fang T, Du W, Ye A. Rapid and accurate identification of marine microbes with sin-

gle-cell Raman spectroscopy. Analyst. 2020; 145: 3297–3305. https://doi.org/10.1039/c9an02069a

PMID: 32191782

PLOS DIGITAL HEALTH Deep learning for bacterial identification through lens-free microscopy time-lapses

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000122 October 5, 2022 17 / 19

https://doi.org/10.1016/S1473-3099%2815%2900424-7
http://www.ncbi.nlm.nih.gov/pubmed/26603172
https://doi.org/10.1186/s12941-019-0339-4
http://www.ncbi.nlm.nih.gov/pubmed/31831019
https://doi.org/10.2471/BLT.16.179648
http://www.ncbi.nlm.nih.gov/pubmed/28804172
https://doi.org/10.1128/JCM.36.7.1948-1952.1998
http://www.ncbi.nlm.nih.gov/pubmed/9650942
https://doi.org/10.1111/j.1750-3841.2011.02369.x
https://doi.org/10.1111/j.1750-3841.2011.02369.x
http://www.ncbi.nlm.nih.gov/pubmed/22417598
https://doi.org/10.1128/JCM.02485-09
https://doi.org/10.1128/JCM.02485-09
http://www.ncbi.nlm.nih.gov/pubmed/20237092
https://doi.org/10.5897/AJMR11.313
https://doi.org/10.5897/AJMR11.313
https://doi.org/10.1371/journal.pone.0090053
http://www.ncbi.nlm.nih.gov/pubmed/24594623
https://doi.org/10.7326/M18-2772
http://www.ncbi.nlm.nih.gov/pubmed/31083728
https://doi.org/10.1111/j.1469-0691.2010.03279.x
http://www.ncbi.nlm.nih.gov/pubmed/20670288
https://doi.org/10.1016/j.cmi.2015.09.030
http://www.ncbi.nlm.nih.gov/pubmed/26806135
https://doi.org/10.1117/12.2041446
https://doi.org/10.1063/1.4963070
https://doi.org/10.1063/1.4963070
https://doi.org/10.1063/1.5037849
https://doi.org/10.1063/1.5037849
https://doi.org/10.1117/12.2527141
https://doi.org/10.1117/12.2527141
https://doi.org/10.1586/14787210.2016.1122524
http://www.ncbi.nlm.nih.gov/pubmed/26582139
https://doi.org/10.1063/5.0057787
https://doi.org/10.1007/s00216-006-0851-1
http://www.ncbi.nlm.nih.gov/pubmed/17086390
https://doi.org/10.1039/c9an02069a
http://www.ncbi.nlm.nih.gov/pubmed/32191782
https://doi.org/10.1371/journal.pdig.0000122


21. Espagnon I, Ostrovskii D, Mathey R, Dupoy MG, Joly P, Novelli-Rousseau A, et al. Direct identification

of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by

Raman spectroscopy. J Biomed Opt. 2014; 19: 027004. https://doi.org/10.1117/1.JBO.19.2.027004

PMID: 24522809

22. Marcoux PR, Dupoy M, Cuer A, Kodja J-L, Lefebvre A, Licari F, et al. Optical forward-scattering for iden-

tification of bacteria within microcolonies. Appl Microbiol Biotechnol. 2014; 98: 2243–2254. https://doi.

org/10.1007/s00253-013-5495-4 PMID: 24413976
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