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Abstract
Dimensionality reduction techniques are essential tools for simplifying and interpreting high-

dimensional datasets by mapping them to a lower-dimensional space. Among existing methods,

Uniform Manifold Approximation and Projection (UMAP) has recently gained a huge popularity,

being applied in contexts as diverse as transcriptomics, machine learning, image processing or

thermodynamics. However, understanding of this method is still sparse. Here we gives analytical

prediction for the UMAP projection of well defined datasets including pure noise, binary data and

one-dimensional signal. For the latter, we uncover a phase transition in the lateral spreading of

the projected points. We hope that our results could help improving data analysis using non-linear

dimensionality reduction in various fields.

PACS numbers:
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I. INTRODUCTION

Dimensionality reduction techniques are essential tools for simplifying and interpreting

high-dimensional datasets by mapping them to a lower-dimensional space. Several popu-

lar algorithms exist, including principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE) [1], isometric mapping (ISOMAP) [2], and Uniform Mani-

fold Approximation and Projection (UMAP) [3]. Among them, UMAP (Uniform Manifold

Approximation and Projection) has gained popularity due to its ability to process high-

dimensional data faster and more accurately than other techniques.

UMAP is a newer algorithm that has gained popularity due to its ability to process high-

dimensional data faster and more accurately than other non-linear dimensionality reduction

techniques. It uses a combination of graph theory and manifold learning to identify the

underlying structure in the data and project it into a lower-dimensional space. This makes

it an ideal tool for visualizing complex data and identifying patterns or clusters that may

be difficult to detect otherwise.

The power and limitations of UMAP have been studied in several research papers, and

it has been shown to be highly effective in a variety of applications, us diverse as tran-

scriptomic profiles [4, 5], evolution of microglial morphology [6] or pan-viral interactome of

Sars-COV2 [7] in biology, and free-energy landscapes [8] and phase transitions in physics [9].

However, there is still much to learn about the properties of UMAP, especially in well-defined

conditions. Therefore, in this article, we propose to bridge this gap by studying UMAP’s

properties analytically under three well-defined conditions: pure Gaussian noise, discrete

clusters, and one-dimensional datasets.

Through this study, we aim to provide a deeper understanding of the properties of

UMAP’s dimensionality reduction, and how it can be used to improve data analysis in

various fields. By investigating the systematic properties of the dimensionality reduction

obtained through UMAP, we can better understand its strengths and limitations and how

to optimize its performance in different applications. Among our analytical results, we un-

cover phase transitions in the UMAP projection of one-dimensional signal, of different nature

from transitions observed when using PCA [10].
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A. Optimization function

As stated in the article presenting UMAP [3], the algorithm can be seen as an optimiza-

tion problem with the following function:

LUMAP = −
∑
i 6=j

vij log(wij) + (1− vij) log(1− wij) (1)

In the latter, the weights vij measures the proximity of the points in the initial space, whereas

wij measures the proximity in the space of embedding. In [3], the authors have chosen

vij = 2 exp

(
−||xi − xj|| − ρ

σ

)
− exp

(
−2

||xi − xj|| − ρ

σ

)
(2)

wij =
1

1 + a||yi − yj||2b
(3)

where x and y denote respectively the position of point i in the initial and embedding space.

The optimisation is then performed on the embedded positions y.

Later, it has been seen that the actual optimization problem UMAP solves is slightly

different [11]. Here however, we will rely on the optimization function 1.

II. DIMENSIONALITY REDUCTION OF PURE NOISE DATA AND CONNEC-

TION TO RANDOM MATRIX THEORY

A. No disorder in the coupling constants

First, we consider a dataset in which vij = v is the same for all pairs of points (all pairs

are at the same distance relative to each other, which is asymptotically true for a gaussian

cloud in high dimension). In such case, the function to minimize is:

LUMAP = −
∑
i 6=j

v log(wij) + (1− v) log(1− wij) (4)

=
∑
i 6=j

v log

(
1− wij

wij

)
− log(1− wij) (5)

We focus on the large N limit, so that we can replace the sum by an integral with

the introduction of the density ρ of points in the low dimensional space. With such a

manipulation, one should add a self-interaction energy which turns out to be negligible in

the thermodynamic limit in the presence of long-range interactions [12, 13].
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Let assume a projection in dimension d = 2. Using complex notation z = yx + iyy, one

has to minimize over ρ:

LUMAP =

∫∫
dzdz′ρ(z)ρ(z′)

[
(v − 1) log(a|z − z′|2b) + log(1 + a|z − z′|2b)

]
+ λ

(∫
dzρ(z)− 1

)
(6)

where the last term is a Lagrange mupltiplier enforcing the normalization of the density ρ.

We assume that the integral runs on a compact support, that should be a disk by symmetry.

Cancelling the functional derivative leads to:

0 =

∫
dz′ρ(z′)

[
(v − 1) log(a|z − z′|2b) + log(1 + a|z − z′|2b)

]
+ λ (7)

Let now apply the Laplacien ∂z∂z̄:

0 = (v − 1)bπ

∫
dz′ρ(z′)δ(z − z′) +

∫
dz′ρ(z′)

ab|z − z′|2b

1 + a|z − z′|2b−2
(8)

= (v − 1)bπρ(z) +

∫
dz′ρ(z′)

ab|z − z′|2b−2

1 + a|z − z′|2b
(9)

We now assume that we can neglect the a|z − z′|2b expression in the denominator in the

second term (we explain the validity afterwards) and we choose b = 1:

0 = (v − 1)πρ(z) + a (10)

So, on the compact support, ρ is uniform with density ρ(z) = a
π(1−v)

. We thus get the radius

of the disk R =
√

(1− v)/a (Fig. 1A-B). Interestingly, this problem turns to be the same

than the distribution of eigenvalues of complex matrices with independent and identically

distributed entries (the Girko’s circular law) [14]. Surprisingly enough, the way we have

recovered the law above is, to the best of our knowledge, new. Neglecting the term in the

denominator is thus valid for v close to 1. If not, the attracting force is not strong enough

and the cut-off in the repulsion plays a role. For b 6= 1, we expect the density to be not

perfectly flat, but the size of the disk should scale the same way.

B. Disordered coupling constants

We now turn to the case of disordered coupling vij. This is the usual regime of use of

UMAP, which substract the typical large distance between pairs of points -coming from
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FIG. 1: UMAP dimensionality reduction for pure noise datasets. A. Example of a two dimensional

UMAP dimensionality reduction for constant v. B. Radius of the dimensionality reduction as a

function of
√
1− v, with simulation (dots) and our prediction (line). C. Same as A but for a

gaussian input in D=512 dimensions with non-uniform ρ. D. Prediction of the mapping function

R in the case of non uniform ρ. E. Comparison of our prediction of the radial density of the cloud

(line) with simulations (histogram). F. Same as E but for uniform ρ.

5



dimensionality curse- to each distance. More precisely, we assume that points of the initial

space are i.i.d, with any component being drawn from a normal distribution (up to a rescal-

ing, we can choose the variance to be 1). In the large D limit, the distribution of radial

squared distances is then normal with mean D and standard variance 3D. We note r the

squared radial distance. We also take ρ uniform. To compute v(x, x′), we first compute:

||x− x′||2 =
D∑
i=1

x2
i + x′2

i + 2xix
′
i ' r + r′ (11)

where the crossed term is negligible in the high D limit. Then, we get

v(r, r′) = 2 exp

(
−
√
r + r′ − ρ

σ

)
− exp

(
−2

√
r + r′ − ρ

σ

)
(12)

= 1− (
√
r + r′ − ρ)2

σ2
(13)

after expanding for large σ sot that weights are close to 1. Noting u = r −m, u′ = r −m′

and ρ2 = 2m− δ we get (see Appendix):

1− v(u, u′) =
4m+ δ2 − 2δ(u+ u′) + (u+ u′)2

8mσ2
= A+B(u+ u′) + C(u+ u′)2 (14)

Indexing each point by its initial radial distance r, one has to minimize (after expansion of

the repulsive term and a = b = 1):

LUMAP =

∫∫∫∫
dzdz′drdr′ρ(z, r)ρ(z′, r′)

[
(v(r, r′)− 1) log(|z − z′|2) + |z − z′|2

]
(15)

where ρ stands for the joint distribution in the initial and final space (we forget the Lagrange

multiplier because we will directly enforce the normalisation). Note that the polar integra-

tion on radial distances r has been replaced by a cartesian integral because the distribution

of r is peaked very far from r = 0 due to the large-D hypothesis.

In this disordered case, points are not equivalent anymore: points with large initial r

will tend to be further of all the other points, and thus less attracted than average, whereas

small r will tend to be attracted by more points (Fig 1C). Hence, it is quite understandable

that after optimization in the low dimensional space, points with small initial r will be put

in the center of the cloud and points with large initial r on the periphery. We thus expect a

strong coupling between initial and final radial distance. To make the calculation feasible,

we make the following ansatz:

ρ(z, r) = ρ0(r)δ(|z| − R(r))(2πR(r))−1 (16)
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meaning that any point with initial radial distance r will be placed at a radial distance

R(r) in the space of embedding. ρ0(r) denotes the distribution of the initial distances

r. The integration on z is now straightforward using
∫ 2π

0
log(x2 + y2 − 2xy cos θ)dθ =

2π log(max(x, y)2):

LUMAP =

∫∫
drdr′2ρ0(r)ρ0(r

′)
[
(v(r, r′)− 1) log(max((R(r)),R(r′))) +R(r)2 +R(r′)2

]
= 4

∫ ∞

−∞

∫ r

−∞
drdr′ρ0(r)ρ0(r

′)(v(r, r′)− 1) log(R(r)) + 2

∫ ∞

−∞
drρ0(r)R(r)2 (17)

We can now differentiate with respect to the unknown function R, so that the optimal

function satisfies: ∫ r

−∞
dr′ρ0(r)ρ0(r

′)(v(r, r′)− 1)
1

R(r)
+ ρ0(r)R(r) = 0 (18)

The solution is thus

R(r) =

√∫ r

−∞
(1− v(r, r′))ρ0(r′)dr′ (19)

It is straightforward to check that this expression is perfectly consistent with the previous

case of uniform v(r, r′) = v, that is a uniform distribution of points stacked on a disk of

radius
√
1− v. Let now compute this for the case of v(r, r′) given by (14). We get:

R(u)2 =

∫ u

−∞
du′ e

− u2

2s2

√
2πs

(A+B(u+ u′) + C(u+ u′))

= (A+Bu+ C(u2 + s2))Φ(u/s)− s(B + 3Cu)√
2π

e−
u2

2s2 (20)

where Φ is the cumulative distribution function of standard gaussian variable. This result

is in striking contrast with the previous one: the fact that v’s are disordered lead to a cloud

which is not anymore of compact support (even though most points are densely packed

inside a circle of radius B + Cs).

We can finally compute the local density of the embedded cloud as a function of the

radial distance d:

f(d) =

∫
dr

∫
|z|=d

dzρ(r, z)/(2πd) =
ρ0(u)

2πR(u)R′(u)
(21)

with u = R−1(d) (see Fig. 1E). On the other hand, the cumulative function (the fraction of

points at radial distance smaller than d) is simply:

C(d) =

∫ R−1(d)

0

ρ0(r) dr (22)
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Let now turn to the case where ρ is not uniform, but depends on the closest neighbour

of each point. ρ2i is correlated to r2i and we write ρ2i = r2i +m− α + δi = 2m− α + ui + δi,

where δi is approximately normally distributed of mean zero and with zero correlation with

r2i . The calculation is mostly similar to the previous one and one obtain:

1− v(ui, uj) =
4m+ α2 − α(ui + uj − δi − δj) + 3/2(ui + uj − δi − δj)

2

8mσ2
(23)

Hence, the problem is now turned into the mapping of the variable vi = 2ui − δi from high

to low dimension (See Fig. 1D and F).

III. DIMENSION REDUCTION OF BINARY NOISY DATA

We now turn to the use of UMAP as a clustering tool. We focus on the case of data

without any noise. Hence, let consider the case where there are two populations of points,

with attractive weights v11 = v22 = v and v12 = v− δv. For δv = 0, all points are equivalent

and we are back to the situation of the previous part without noise: the embedding lead

to a disk of radius R =
√
1− v. For non-zero δv, this disk will break in two hemispheres

H1 and H2, one for each community, separated by a distance ∆ (see Fig. 2A-C). We expect

that at first order, the diameter of both hemispheres is the same than for δv = 0. We want

to estimate this distance as a function of δv. One has to minimize the following quantity

over ∆:

L =

∫
H1

∫
H2

dzdz′
[
(v12 − 1) log |z − z′|2 + |z − z′|2

]
(24)

Let note H∗
2 the hemisphere shifted by −∆ so that the reunion of H1 and H∗

2 is a disk. We

can now write:

L =

∫
H1

∫
H∗

2

dzdz′
[
(v12 − 1) log(|z − z′|2 − 2∆(x− x′) + ∆2) + |z − z′|2 − 2∆(x− x′) + ∆2

]
= (v − δv − 1)

∫
H1

∫
H∗

2

dzdz′
[
log |z − z′|2 − 2(x− x′)

|z − z′|2
∆+

(
1

|z − z′|2
+

2(x− x′)2

|z − z′|4

)
∆2

]
+

∫
H1

∫
H∗

2

dzdz′
[
|z − z′|2 − 2∆(x− x′) + ∆2

]
(25)

with z = (x, y), z′ = (x′, y′) and x chosen along the axis of shift. We know that for δv = 0,

∆ = 0 is a minimum. Thus:∫
H1

∫
H∗

2

dzdz′
[
(1− v)

(x− x′)

|z − z′|2
− (x− x′)

]
= 0 (26)
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Finally, at second order in ∆:

L = C∆2 + 2δv

∫
H1

∫
H∗

2

dzdz′
(x− x′)

|z − z′|2
∆ (27)

with C =
∫
H1

∫
H∗

2
dzdz′

[
v−1

|z−z′|2

(
1 + 2 (x−x′)2

|z−z′|2

)
+ 1

]
> 0. This leads to a trancritical transi-

tion:

∆ =
4πR3

3C
δv =

4πR

3C ′ δv (28)

where we have used (26) to simplify the numerator and C ′ = C/R2 is a pure number (see

Fig 2D). Thus, as soon as δv is of order of unity, both clouds are very well separated, with

distance between them comparable to their size. For the sake of completeness, we also give

the scaling behaviour for very dissimilar communities (δv � 1): ∆ ∼ 1/
√
δv.

IV. DIMENSION REDUCTION OF 1D CONTINOUS SIGNAL AND PHASE

TRANSITION

A. No noise

Let first investigate the case of perfect signal, with no noise. Let {xN} be the set of

points in the ambient space of dimension D, and let note {yN} their UMAP-projection in

the space of dimension d < D. Here, we focus on the case where the points {xN} lie perfectly

on a segment of length 1, and are equally spaced. We can also assume d = 1, and we note

yi = g(xi) = g(i/N) for 0 ≤ i < N .

To compute the length of the obtained projection, we look for a solution g(x) = αx that

minimizes LUMAP, in the limit of small σ (i.e. for large α). Performing a change of variable

and using the symmetry of the integrand, we have to compute:

LUMAP = −2

∫ 1

0

dv

∫ v

0

duK(u) log(aα2bu2b) + 2

∫ 1

0

dv

∫ v

0

du log

(
1 +

1

aα2bu2b

)
(29)

The first integral is easy to evaluate:

I1 = −2

∫ 1

0

dv

∫ v

0

duK(u) log(aα2bu2b)

= −4b logα

∫ 1

0

dv

∫ v

0

duK(u) + C

= (6bσ +O(σ2)) logα + C (30)
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where C does not depend on α.

The second part gives, for large α:

I2 =
2

αa
1
2b

∫ +∞

0

du log(1 + 1/u2b)

=
2K

αa
1
2b

(31)
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For UMAP default parameters, this integral is numerically evaluated to K = 3.196. Putting

all together, deriving with respect to α to find the extremum, we obtain the length of the

UMAP projected line:

α =
K

3ba1/(2b)σ
(32)

B. With noise

We now assume that uncorrelated gaussian noise of amplitude ε/
√
2 is added on each

point (the
√
2 is only here to make the variance of the difference between two realisations of

the noise to be ε). We are in interested in the regime D � 1 and Dε2 � 1 (so that the 1-d

signal can be extracted from the noise). The Umap projection typically creates an elongated

cloud of length α and thickness δ. Let first assume general σ and ρ. We focus in the limit

of large α (which corresponds to small sigma, similarly to the no noise case).

To get an analytical estimate of α and δ, we will make some assumptions and approxi-

mation. The first one is that we can minimize the annealed functional, which is expected to

be exact in the thermodynamic limit. The second one is that the density of the cloud along

the transverse axis is gaussian. This is not exact but should give the same scaling with the

problem parameters. Let note m = Dε2, s =
√
3Dε2.

First, after introducing η, the radial noise in the initial space η =
∑

i=1...D−1 η
2
i , which is

a gaussian v.a. of mean m and variance s in the large D limit, we get:

L =−
∫ 1

0

dx

∫ x

0

dy

∫ ∞

−∞

e−
(η−m)2

2s2

N
dη

∫ ∞

−∞

e−
ξ2

4δ2

N ′ dξ

[(−2e−
√

y2+η−ρ

σ + e−2

√
y2+η−ρ

σ ) log(a(α2y2 + ξ2)b)− log

(
a(α2y2 + ξ2)b

1 + a(α2y2 + ξ2)b

)
(33)

For large α, we can neglect side effects and obtain a translation-invariant problem:

L =−
∫ ∞

0

dy

∫ ∞

−∞

e−
(η−m)2

2s2

N
dη

∫ ∞

−∞

e−
ξ2

4δ2

N ′ dξ[
(−2e−

√
y2+η−ρ

σ + e−2

√
y2+η−ρ

σ ) log(a(α2y2 + ξ2)b)− log(
a(α2y2 + ξ2)b

1 + a(α2y2 + ξ2)b
)

]
(34)

Now, we develop the expression in the limit of large noise. We have to compute I =∫∞
−∞ dη e

− (η−m)2

2s2

N
e−

√
y2+η−ρ

σ . Let note ρ =
√
m−∆ρ. Within UMAP choice of parameters, we

have ∆ρ = kε log(ND1/4ε), but the following calculations is more general. In the limit we
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are interested in, σ is always much smaller than m, so that:

I =

∫ ∞

−∞
dη′

e−
η′2

2s2

N
e
− y2+η′+m−ρ2

σ(

√
y2+η′+ρ) (35)

' e
− y2

2σ
√
m e−

∆ρ
σ

∫ ∞

−∞
dη′

e−
η′2

2s2

N
e
− η′

2σ
√
m

' e
− y2

2σ
√
m e−

∆ρ
σ e

s2

8mσ2

' ce−
y2

2σ̃2 (36)

For the second exponential we get the same value by replacing σ̃2 to σ̃2/2 and c by c2.

We see that after averaging over the initial noise, we get an expression close to the one

without noise : simply a change from σ to σ̃ =
√√

mσ and a gaussian kernel in place of an

exponential one with prefactors c in front of exponential terms. Finally, one has to minimize:

L =

∫ ∞

0

dy

∫ ∞

−∞
dξ

e−
ξ2

4δ2

N ′

[
b(2ce−

y2

2σ̃2 − c2e−
y2

σ̃2 ) log(α2y2 + ξ2)− log

(
a(α2y2 + ξ2)b

1 + a(α2y2 + ξ2)b

)]
(37)

Unfortunately, we cannot get explicit expressions with a gaussian kernel. We simplify a bit

by replacing by a square of size σ̃ and amplitude v = 2c− c2. We also restrict to b = 1 and

a = 1 (which amounts to rescale length in low dimenion space). Thus:

L =
1

α

∫ ∞

0

dy

∫ δ

0

dξ

δ

[
vH(y/ασ̃) log(y2 + ξ2)− log

(
y2 + ξ2

1 + y2 + ξ2

)]
(38)

Let pose S = ασ̃ and divide the former by σ̃. We now optimize on S and δ the function:

L =
1

S

∫ ∞

0

dy

∫ δ

0

dξ

δ

[
vH(y/S) log(y2 + ξ2)− log

(
y2 + ξ2

1 + y2 + ξ2

)]
(39)

Now we can compute everything. The first term with the Heaviside gives:

Latt = v

[
log(S2 + δ2) +

δ

S
arctan

S

δ
+

S

δ
arctan

δ

S

]
(40)

The second one gives

Lrep = −π

2

δ

S

[
1−

√
1 + 1/(2δ2)− argsh(

√
2δ)/(2δ2)

]
(41)

Now, it is not hard to see that if v > 1, then δopt = 0. This is due to the fact that at

short distance points always attract more then they repulse so that points with same signal
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collapse. Then, we can easily compute S = π
2
√
2v

Then, we can get the critical behaviour close

to v = 1. Let introduce e = 1 − v. At first order we get δ = 3e
2
√
2−2/(πS)

. At this order, the

value of S is unchanged. We have thus obtained a phase transition in the UMAP projection,

with a transcritical bifurcation (due to the fact that there is no δ ↔ −δ symmetry): for

strong attraction v, one gets a line of strictly zero thickness, whereas for large attraction

one obtains a thick elongated cloud.

We can estimate the aspect ratio of the cloud. Our results above are for general ρ and σ,

but we will focus only to their values with UMAP default settings. Then, c is only controlled

by ∆ρ, so that:

a = δ/α

= cst.σ̃e

= cst.ε
3/2D1/4

σ1/2
(42)

As for σ defined as the distance to the k-th neighbour minus ρ, we have two regimes:

σ = dk − ρ

=
√

(k/N)2 +Dε2 −
√
Dε+∆ρ

= ∆ρ+
(k/N)2√

Dε
for

√
Dε � k/N (43)

= k/N −
√
Dε for

√
Dε � k/N (44)

The large noise regime can be split in two: either∆ρ � (k/N)2√
Dε

and σ = (k/N)2√
Dε

or∆ρ � (k/N)2√
Dε

and σ = ∆ρ ' kε. Finally, we get:

a = cst.εD
1/4

σ1/2
for

√
Dε � k/ND1/4 (45)

= cst.ε
2D1/2

k/N
for k/N �

√
Dε � k/ND1/4 (46)

= cst.ε
3/2D1/4

k/N
for

√
Dε � k/N (47)

V. DISCUSSION

Our analytical study of UMAP dimensionality reductions brings insight into the structure

of the obtained patterns. By considering the limit of a large number of points, we were able
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FIG. 3: UMAP dimensionality reduction for 1D continuous signal datasets. A, B, C. Example of

a two dimensionality reductions for a noise amplitude equal to 0.05, 0.02, 0.005 respectively. B.

Radius of the dimensionality reduction as a function of
√
1− v, with simulation (dots) and our

prediction (line). D. Length of the dimensionality reduction (points: simulation, line: prediction).

E. Thickness of the dimensionality reduction (points: simulation, line: prediction).
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to use mean-field approaches and explore the continuous density of points. For instance,

a pure Gaussian noisy input (without any structure) produces a cloud of size of order one

with nearly uniform density. This should prompt users of this technique to pay attention to

the size of the obtained reductions.

At the same time, the discrete cluster analysis shows that the technique is highly sensitive

to minor differences between clusters. This effect results from the long-range interactions

between dimension reduction points, which are specific to UMAP. While the entropic effect

has a negligible effect on the average density, it remains present and has a strong impact on

cluster segregation.

Finally, our mean-field approximation can predict the shape (length and thickness) of

clouds resulting from the dimensionality reduction of high-dimensional signals containing

only a one-dimensional manifold structure. We were able to characterize a transcritical

phase transition as a function of the interaction strength, v, that explains the effectiveness

of UMAP in revealing such structures.

We believe that our analysis provides a strong foundation for assessing the significance

of UMAP dimensionality reduction in the presence of high levels of noise, which is often the

case in realistic data analysis scenarios. Furthermore, this mean-field approach can extend

beyond the simple scenarios that we have considered here.
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— A*MIDEX.

Appendix A: Calculation of v(u, u′) in the pure noise case

In the case of uniform ρ, the calculation is straightforward. Let first note d2ij = 2m+ εij.

By expanding the exponential terms for large σ with the assumption that δ and εij are small

15



compared to m, we obtain:

σ2(1− v) = (dij − ρ)2

=
1

8m
(ε2ij + δ2 − 2εijδ)

=
1

8m
(d4ij + δ2 − (4m+ 2δ)d2ij + (2m+ δ)2)

=
4m+ δ2 − 2δ(u+ u′) + (u+ u′)2

8m
(A1)

This is the equation (14) in the main text.

The calculation for non-uniform is similar, except that one has to introduce a δ depending

on the considered point δi.

Appendix B: Code availability

As noted previously, our implementation of UMAP stictly follows the optimization func-

tion 1, which is different from the initial implementation [3]. Our implementation has

been coded in the Rust programming language and is available at https://gitlab.com/

rouault-team-public/analysis/umaprs.
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