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Abstract: The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor
applications where low concentrations are detected. This resolution can be improved by increasing
the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose,
various researchers have investigated the use of micro-structured materials with promising results.
Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a
nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with
thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor
surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface
roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency
shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes,
H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of
sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank
ones, without strong side effects on resonance frequency stability or mechanical quality factor. An
approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black
gold layer compared to the blank QCM sensor.

Keywords: nanostructured materials; black aluminium; black gold; QCM sensors; sensor applica-
tions; sputtering depositions; evaporation depositions

1. Introduction

Quartz crystal microbalances (QCM) sensors refer to a quartz resonator that oscillates
at a characteristic resonant frequency. It stands out as a direct, label-free detection tool
suitable for real-time monitoring. Frequency shifts are induced by the changes in resonator
mass as a result of the surface adsorption of molecules. The QCM sensors are based on
the piezoelectric properties of quartz. Mechanical deflections are produced by applying
an alternating electrical potential across the quartz-crystal cut. The frequency drop ∆ fm
caused by an applied mass ∆ms is described by the Sauerbrey equation [1]. If the active
surface of the sensor is increased, then the applied mass also has the potential to increase,
which, consequently, can lead to a higher value of ∆ fm, thus improving the sensitivity. To
enhance the selectivity, it is possible to decorate the active layer of the QCM with certain
specific receptors, e.g., antibodies.

A sensitive biosensor can be obtained with a combination of specialized antibodies—
from several review journals [2–4]. QCM sensors have been used for the detection of
volatile organic compounds (VOCs), which are one of the causes of air pollution prob-
lems [5–8]. Sensitive and selective polymer films deposited onto the QCM electrodes
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have been used as an adsorption surface for these VOC vapors. Several applications have
been reported in both gas and liquid phases for odorant biosensors [9,10]. Recently, an
improvement in the discrimination of QCM gas sensors has been reported using coated
sensing polymeric films such as ethyl cellulose, polymethyl methacrylate, Apiezon L, and
T [6]. Moreover, 5.73 times higher responses have been shown for the 30-MHz sensors than
for the 12-MHz ones.

Black metals (BMs) are defined as highly porous nanocrystalline materials that can sig-
nificantly trap incident light [11–13]. These porosities are introduced during the growth of
the metal film due to the presence of impurities which creates a structure allowing complex
subwavelength electromagnetic interactions with the light in wide wavebands [14]. To date,
BMs have found applications in electronics for optical sensing and imaging [14–16], heat
radiators enhancement [17–19], electrochemical sensing and catalysis [20], solar cells [21],
and energy harvesting [11,14,22–25]. Especially highly porous aluminum has attracted
great interest in recent years [26,27]. Several metals, such as gold, platinum, tungsten,
copper, titanium, palladium, or aluminum, were examined to obtain a black or colored
coating [13,28–35]. Recently, surface desorption processes have been reported on thin layers
of black aluminum [35]. Desorption measurements reported that weakly bound atoms of
oxygen and nitrogen have two stages of desorption: one below room temperature (RT)
corresponding to physical desorption and the latter above RT corresponding to desorption
of chemisorbed particles.

In this work, we report the sensitivity improvement of QCM sensors coated by BMs
layers. Two different BMs are deposited on QCM sensors, black aluminum (B-Al), and
black gold (B-Au). The consequences between their high roughness and the improvement
of QCM sensor characteristics (sensitivity, quality factor, equivalent circuit parameters)
are discussed.

2. Experimental
2.1. QCM Sensor Substrates

The specially prepared QCMs resonators with gold electrodes from Krystaly Hradec
Kralove a.s. were used as QCM sensor substrates. These QCMs are AT-cut ones with a
resonator diameter of 8.65 mm and electrode diameter of 4.4 mm, oscillating at a funda-
mental frequency of 10.88 MHz. Their operating temperature range is between −20 ◦C and
+70 ◦C, with a quality factor (Q) of≥ 45, 000. For black metal preparation, a circular-shaped
homemade mask was used.

2.2. Preparation of Black Aluminium

The black aluminum (B-Al) films were deposited by pulsed DC magnetron sputtering.
A DC power supply Hüttinger 3000 combined with a pulse generator MELEC was operated
at the power of 400 W. The repetition rate was set to 10 kHz with a duty cycle of 0.5. An
Aluminium target (99.99% purity) with a diameter of 100 mm was used for sputtering.
A distance of 100 mm was fixed between the target and the substrate. The base pressure
in the chamber of 5× 10−3 Pa was ensured by the diffusion pump, and the magnetron
discharge was maintained in N2/Ar mixture atmosphere at a constant total pressure of
0.5 Pa, which was regulated by a throttle valve situated at the high-vacuum pump gate.
Ar flow was fixed at 16 sccm, and the N2 flow was kept at ∼0.4 scc, which corresponds to
N2/Ar mixture of ∼6.5%. The thicknesses of the deposited films were 280 nm.

2.3. Preparation of Black Gold

The black gold (B-Au) films were prepared by thermal evaporation method from a
tungsten boat in an inert argon atmosphere using Zahoxin KXN-15200D DC power supply.
The samples were mounted on a stainless-steel table at a distance of 60 mm above the
heating source. A pure 100 mg gold pellet was the source material for evaporation. The
deposition was performed in five steps with a heating current of 130 A; it was regulated so
that the temperature of the substrates did not exceed 50 ◦C. It was experimentally observed
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that this is the maximal possible temperature that results in a pitchy black-gold layer. The
deposition conditions are summarized in Table 1.

Table 1. Deposition conditions of B-Au.

Quantity Value

Base Pressure 5.5·10−4 Pa
Working Pressure 100 Pa
Heat Power < 340 W
Substrate Temperature < 50 ◦C

2.4. Instrumentation and Devices
2.4.1. Scanning Electron Microscopy

Surface morphology was characterized by scanning electron microscopy (SEM) using
Mira 3 Tescan electron microscope (TESCAN Inc., Brno, Czech Republic) at high magnifica-
tions (100 kx and 500 kx) with a perpendicular in-beam secondary electron detector at an
accelerating voltage of 10 kV and 30 kV, respectively. The layer thickness was determined
by sample cross-section measurement starting from the cut of glass substrates.

2.4.2. Atomic Force Microscopy

Atomic force microscopy AFM Dimension ICON, Bruker, and Bruker Multimode 8
equipped with Nanoscope V electronics (Bruker Inc., Camarillo, CA, USA) was used to
investigate the surface morphology and roughness. Measurements were made under ambi-
ent conditions, and images were obtained by Peak Force Tapping mode using ScanAsystAir
tips with scan areas of 1 × 1 µm2.

2.4.3. Impedance Spectroscopy of QCMs

Blank and deposited QCM sensors with black gold (B-Al) and black aluminum (B-Al)
films were characterized by an Agilent 4294A precision impedance analyser, 40 Hz–110 MHz
(Keysight Technologies, Inc., Santa Rosa, CA, USA). Impedance spectra were measured
around the fundamental resonance frequency of the QCMs at room temperature and in a
constant gas flow of 70 mL min−1 of synthetic air. A homemade 4-wire probe adapter and
glass chamber were used for the measurement. From the obtained spectra, the parameters
of the equivalent circuit, resonance frequencies, and quality factor were determined using
an internal fitting algorithm of the impedance analyzer.

2.4.4. Measurement of Sensor Response

The characteristics of the QCM sensor were measured in a homemade ground glass
joint apparatus that is capable of simultaneous measurement of up to 4 QCMs in a cascade-
like arrangement. The principal configuration of the measuring setup is shown in Figure 1.
The dead volume of the glass chamber is approximately 2.5 mL. To determine the resonance
frequency of QCMs, a home-developed oscillator circuit with inverter chips driven at 5 V
d.c. in combination with National Instrument PCI-6602,8-channel counter card (National
Instruments Inc., Austin, Texas, USA) was used. The QCM sensors were measured at room
temperature, in a constant gas flow rate of 70 mL min−1 using tedlar bags for analytes and
reference atmosphere. All sensors were measured simultaneously, together with a blank
QCM as a reference. The temperature was measured with a PT100 probe. Synthetic air was
used as the reference atmosphere; the measured mixture contained a defined concentration
of ethanol or water vapors, respectively.
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Figure 1. Scheme of the measurement apparatus.

3. Results and Discussion
3.1. Investigation of Morphology and Thickness of Black Metal Films by SEM

SEM images from the B-Al layer and B-Au layer deposited on the surfaces of the QCM
sensor are presented in Figure 2, which shows the surface of the B-Al and B-Au layers;
Figure 3 presents cross-section images of both layers. Both surface morphologies reveal
similar structures of cauliflowers similar to those reported in the literature [34,36,37]. The
two main differences are the size of the grains and the layer densities, which are smaller for
B-Au than the B-Al. The cross-section pictures in Figure 3 illustrate these differences, where
the B-Al film presents pretty dense columnar structures, while the B-Au film presents a
highly porous columnar structure. These differences originate from the different deposition
techniques used to coat the QCM sensors. The energy of particles from the DC pulsed
sputtering technique is higher than the energy from the evaporation technique, which
leads to a higher energetical film growth process in the first case. Both techniques have
been used to deposit black metal films, and similar results have been reported to those
observed in this work [36,37]. The B-Au films deposited by evaporation presented highly
porous surfaces made of condensed particles with a diameter between 5 and 20 nm [37]. A
chain-like structure has been described due to the high porosity that also corresponds to the
B-Au film morphology reported in this work and observed in Figure 2. The B-Au samples
prepared by sputtering techniques showed less porous surface films made of condensed
particles with a diameter of ∼60 nm [36]. The prepared black metal layers, according to
the morphology investigated, match the black layers prepared previously; therefore, a
more detailed characterization of the physical properties can be found in the previous
articles [12,31]. The thickness of the black aluminum layer and the black gold layer was
estimated to be 278 ± 11 nm and 280 ± 40 nm, respectively.
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Figure 3. SEM images of the B-Al layer (a,c) and the B-Au layer (b,d) deposited on QCM sensors.
(c) Cross section of B-Al layer and (b) cross-section of the B-Au layer.

3.2. Atomic Force Microscopy

AFM pictures are shown in Figure 4. The B-Al surface is presented in Figure 4a, and
the B-Au surface is shown in Figure 4b. RMS values of 49 nm and 305 nm are measured
from the surface roughnesses of B-Al and B-Au films, respectively. The RMS value for B-Al
is lower than those reported in our previous works, which were equal to 93 and 114 nm,
respectively [11,12]. The mean difference between each result is the thickness of B-Al layers
deposited previously of 500 nm and 1 µm, which are higher than the one deposited on the
QCM sensors of 280 nm. An increase in the roughness value can be correlated with an
increase in the B-Al film thickness.
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Figure 4. AFM pictures of B-Al surface layer in (a) and B-Au surface layer in (b) deposited on
QCM sensors.

A six-times higher RMS value is measured from the B-Au surface than from the B-Al
surface, which confirms the higher roughness of the B-Au layer deposited on the QCM
sensor. The presence of agglomerated grains of ∼20 nm diameter can be observed on
the surface of the B-Au film shown in Figure 4b. It also confirms the chain-like structure
already observed in the SEM images in Figure 3a,b, which leads to a cauliflower surface
morphology of the film.

3.3. Impedance Spectra and Stability of QCM Sensors

The impedance spectra of the QCM sensors before and after the deposition of the
B-Al layer and the B-Au layer are presented in Figure 5a,b. Parameters of the commonly
used Butterworth–Van Dyke (BVD) equivalent circuit, modeled by the impedance analyzer,
were used for the QCM characterization. They are presented in Tables 2 and 3. Since we
are operating QCMs under atmospheric conditions, the BVD model is sufficient for the
characterization of prepared QCM sensors, and its parameters well describe the behavior of
the resonator. According to the literature, the motional resistance (Rs) of equivalent circuit
matches the dissipation of the oscillation energy with the influence of the surrounding
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environment, which is in contact with the crystal. The capacity (Cs) corresponds to the
energy stored in the oscillation and is related to the elasticity of quartz and surrounding
spaces, while the inductance (Ls), in turn, corresponds to the mass loading adsorbed
on the surface during the vibrations. The capacity (C0) is determined primarily by the
capacitor, formed by the gold electrodes on both sides of a QCM, and depends mainly on
its geometry [38].
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Table 2. Equivalent circuit parameters for QCM with B-Al layer.

Rs (Ω) Cs (fF) Ls (mH) C0 (pF) fs (Hz) fp (Hz) Q (1)

10.4 24.2 8.8 5.0 10, 888, 252.49 10, 914, 695.32 5.8·104

35.4 24.3 8.8 5.8 10, 867, 364.74 10, 890, 115.17 1.7·104

∆ fs 20, 887.74

Table 3. Equivalent circuit parameters for QCM with B-Au layer.

Rs (Ω) Cs (fF) Ls (mH) C0 (pF) fs (Hz) fp (Hz) Q (1)

10.6 26.3 8.1 5.4 10, 888, 549.48 10, 915, 112.63 5.2·104

18.0 24.2 8.9 5.2 10, 866, 520.86 10, 891, 966.94 3.4·104

∆ fs 22, 028.61

It is clear that to ensure the correct operation of the QCM sensor, the stability of
oscillations plays a significant role. In terms of oscillations stability, the motional resistance
(Rs) and the quality factor (Q), which is determined by Equation (1), are commonly used
as the main parameters to assess the stability of QCM resonators regarding the load of the
deposited layer [39,40]. Suppose the quality factor is too low or the motional resistance is
too high. In that case, dumping occurs, so it becomes impossible to determine the resonance
frequency, especially by the common oscillating drive circuits.

Q =
1

2π· fs·Rs·Cs
(1)

Regarding these circumstances, the layers of the black coatings were kept relatively
thin (280 nm) so that the quality factors (Q) are still relatively high (QBAl = 1.7·104 for
black aluminum and QBAu = 3.4·104 for black gold) in comparison to the quality factors of
blank sensors (QBlank = 5.8·104 and 5.2·104) The oscillations are, therefore, stable, which is
also supported by the motional resistance (Rs), which is commonly around 10 Ω.

The change in resonance frequency of the QCM (∆ fs) was used to determine the total
deposited mass and the density of the deposited black metal layers, according to [41]. The
following equation was used:

∆m =
A·√ρq·µq

2 f02 ∆ fs (2)
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where (∆ fs) is the measured frequency shift due to the deposited mass, ( f0) is the fun-
damental series resonant frequency of the blank QCM ( fs), (A) is the electrode area and
(ρq) and (µq) are the density and shear modulus of quartz, respectively. The deposited
mass of the black gold layer (B-Au) was estimated to 12.5 µg and its density to 2.9 g cm−3,
which is almost 10 times lower than the density of bulk gold. This is in correlation with
the highly porous surface measured by SEM and AFM. In the literature, one can find even
lower densities, but that is the case for thicker layers—up to tens of microns, e.g., [37].
The deposited mass of the black aluminum (B-Al) layer was estimated to 11.8 µg and the
density to 2.7 g cm−3, which is the same as for the bulk material.

3.4. Gas Sensor Measurements

To investigate the sensing properties of prepared black metal layers and to determine
the effect of highly nanostructured surfaces, the frequency response of prepared QCM
sensors was simultaneously measured with the blank QCM, serving as a reference, to
different concentrations of EtOH and water vapors. Figure 6a depicts the response to water
vapors in terms of different relative humidity, while Figure 6b depicts the response to
different concentrations of EtOH vapors. It can be clearly seen that the black metal coatings
increased the response of the QCM sensors compared to the reference blank in both cases.
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To determine the effect of the nanostructured black metal coating, the standard cali-
bration curve was used, and the sensitivity, computed as a slope of the calibration curve
(according to IUPAC), served as the main parameter [42]. Calibration curves for relative
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humidity and ethanol vapors are depicted in Figure 7. The computed sensitivities (S) and
also sensitivity factor (S f ), that was determined as the ratio of the black coated sensor
sensitivity to the sensitivity of blank QCM(3), are listed in Table 4.

S f =
SB−M
SBlank

(3)
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Table 4. Sensitivity of prepared QCMs with black metal coatings.

Ethanol Vapours Water Vapours

QCM
Sensor

Sensitivity
(SEtOH)

Sensitivity Factor
(SfEtOH)

Sensitivity
(SH2O)

Sensitivity Factor
(SfH2O)

Blank 2.1 1.0 1.7 1.0
B-Au 21.3 10.2 8.8 5.2
B-Al 5.3 2.6 4.1 2.4

As can be seen, the black aluminum coating increased the sensitivity of QCM to water
and ethanol vapors by 2.4 times and 2.6 times, respectively, while the black gold coating
increased the sensitivity of QCM by a factor of 5.2 for water and 10.2 for EtOH. The increase
in sensitivity of QCMs by porous gold films was already reported in the literature with
different results depending on the used analytes [43,44]. Enhanced sensitivities of 1.4 for N2,
He, and 2 for SF6 [42] were reported for QCM sensors coated with Au-Ag porous electrodes
operating at 300 K. This enhancement was even able to be a factor of 40 for liquid N2, He
detection. Porous Au deposited by electrochemical technique was also used to improve
the sensitivity of QCM for biosensing [43]. Here, the authors achieved improvement by a
factor of 3 in response to myoglobin.

Regarding the interaction of black metals with gas species, it is clear that the nanos-
tructured surface of black gold is highly stable; on the other hand, the porous surface
of black aluminum tends to oxidize spontaneously, especially in the surface layer [45].
However, this oxidation takes place mainly after the preparation of B-Al, when the samples
are removed from the chamber into the atmosphere. As depicted in Figure 6, even the
QCM with the B-Al layer showed good long-term stability during the measurement that
was carried out several days after the sensor preparation. The stability of the B-Al surface
is also confirmed by previous thermally stimulated desorption measurements [35] and XPS
measurements of the nanostructured surface [11].

In this study, we focus mainly on the comparison of black coatings with different
porosities. It is clear that highly nanostructured coatings—such as black metal—can
significantly increase the sensitivity of QCM sensors, and this effect is highly affected
by the surface morphology of black metal coatings. The black gold layer shows a more
porous surface than the black aluminum one and, therefore, provides more bonding sites
for the gas analytes and has the potential for a larger increase in sensitivity. As for the
selectivity of obtained sensors—although the black metal layers themselves are not very
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selective, there is still big potential to use them as sensitivity enhancers. The QCM electrode
covered by black metal can be subsequently functionalized by proper selective receptors
that decorate the nanostructured surface of black metal and provide better selectivity while
still preserving increased sensitivity. Thus, e.g., porous and nano-porous gold electrodes
were functionalized using self-assembled monolayers (SAMs) by protein arrays for the
detection of peptides in blood plasma [46] or used as biosensors for liquid detection of
organophosphates [47]. We have also published the first attempts at the functionalization
of black gold layers by SAMs with promising results [48].

4. Conclusions

Black metal coatings were utilized to improve the sensitivity of the QCM sensor for gas
detection. Two metals have been tested, black gold (B-Au) and black aluminum (B-Al), with
a film thickness of 280 nm for both. Each film showed a highly porous structure with a large
relative surface made up of condensed particles. These porosities are introduced during
the film metal growth due to the presence of impurities. The sensitivity of sensors has been
tested on H2O vapors and EtOH vapors at different concentrations. An improvement of
QCM sensor factors of 5.3 and 4.1 for B-Al coated QCM and of 21.3 and 8.8 for B-Au coated
QCM was observed under H2O and EtOH vapors, respectively. A clear improvement has
been reported in comparison to the blank QCM sensor, showing the advantage of coating
QCM with black metals for gas sensing applications.
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